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INTRODUCTION 
Team Autonomous Ground Vehicle (AGV), under the ambit of Center for Excellence in 

Robotics, IIT Kharagpur, has been pioneering the autonomous ground vehicle technology with 

the ultimate aim of developing India’s first self-driving car. The team has been participating in 

IGVC since 2011 with the 

Eklavya series of vehicles. 

Eklavya 5.0, another feather in 

the cap of the research group is 

all set to participate in the 24th 

Intelligent Ground Vehicle 

Competition (IGVC), Oakland 

University. With new robotic 

innovations, the successor of 

Eklavya 4.0, is a much more 

simplified and powerful in all 

aspects i.e. mechanical, electrical 

and software. 

TEAM ORGANIZATION 

The effort behind this 

project was put in by a bunch of 

over fifty enthusiastic and intellectual underg-          Figure 0: Team Organization  

raduate students from various departments of IIT Kharagpur.  

                                                      

* Associate Professor, Department of Mining Engineering, IIT Kharagpur, C1-100, IIT Campus, Kharagpur 721302. 
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DESIGN PROCESS 
The failure points of 

Eklavya 4.0, which 

participated at IGVC 2015, 

were thoroughly analyzed 
Figure (1) describes the major 

improvements made in 

Eklavya 5.0.  
While designing 

Eklavya 5.0, some 

assumptions were taken into 

account such as - there was no 

skidding of wheels which 

meant that the velocities 

obtained from encoder signals 

are true, around a centre of 

curvature, which paved the 

way for designing the control systems.                    Figure 1: Design process for the 

vehicle  
A new path planning module was built in order to generate kinematically feasible 

trajectories for our bot. In addition to that, a robust lane navigator was designed after testing on 

numerous corner case scenarios. The design considerations and the process for Eklavya 5.0 are 

shown in Figure (1) after incorporating the above mentioned improvements and assumptions. 

 
MECHANICAL DESIGN 

Overview 

The Eklavya 4.0 was a front wheel 

driven and steered vehicle. However, it had 

many shortcomings. It was vulnerable to 

undue vibrations. The structure was made 

up of wood. Hence, it was prone to lateral 

vibrations as well as longitudinal vibrations 

While designing Eklavya 5.0 

(Figure (2)), achieving maximum stability 

by lowering the centre of gravity and 

reducing vibrations were the two major 

concerns. The steering column, when at first connected to the frame through a flat plate, did not 

produce enough opposing torque to nullify the induced moment of the drive motor. Therefore 

another link was added to support the other dynamic forces acting on the flat plate joint, and thus 

reducing the longitudinal vibrations [1]. The height of the camera mount was not sufficient in 

Eklavya 4.0 for efficient lane navigation. To tackle this, the height of the bot and the caster angle 

of the front wheel were considered and calculations the optimal height for camera placement 

came out to be 5.5 ft. Finally, to reduce the transverse vibrations, the design of the bearing case 

was modified. In order to keep the design simple, compatible and light weight, no suspension 

system is installed in the robot. 
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STEERING COLUMN 
The drive motor is attached to the steering column which causes both radial and axial 

loading. The angle of inclination of the steering column with the horizontal was calculated to be 

20 degrees. This led to less radial loading which further lowered the torque requirement for 

steering the vehicle. In addition to that, the steering column is designed to be self-centred which 

helps the bot to move forward easily. The final moment diagram of the steering column and the 

final manufactured column are shown in Figures (4) and (3) respectively. 
 

Figure 3: Manufactured Steering Column            Figure 4: Moment diagram of the steering column 

            

Ra = Reaction due to upper bearing          Rb = Reaction due to lower bearing 
F1 = Weight acting on steering stem                     Mm = Torque provided by motor 
Mw = Torque due to weight of motor          F2 = Force due to acceleration 
Rc = Reaction from tire 

Table 1. Dynamic Analysis of Steer Column 

Scenario F1 F2 Theta Total 

length 

Shear (Max) Bending 

Moment 

Dynamic State (Max 

torque=120Nm) 
34.2 99 70 .25 64 54 

Stationary State 34.2 0 70 .25 34.202 8.55 

During a jerk (5 cm at 10 

miles/hour) 
34.20

2 
99 70 .25 1050 250 

 

Stress = My/I 

For the dimensions, I = 1.17 x 10-8, Maximum moment = 53.54 Nm, 

Stress will be maximum at outer face, y = 3 cm, Stress = 58.5 MPa  
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Conclusion 

Fork length: 25 cm, Angle with horizontal: 70°, Length of steering T stem: 20 cm, Diameter of 

Fork: 3 cm, Thickness of fork: 3 mm 

These dimensions are similar to that of a motorbike’s steering column, so the steering stem and 

forks of a Hero Honda Aviator scooter were used.  

The Reduction of Longitudinal Vibration  
The longitudinal vibrations [1] were reduced with the introduction of a new rod. This is evident 

from the force analysis done using Ansys (Figure (5)). 

            
 
Figure 5: Comparison made when load is applied with the support rod and without support rod  

 

WHEEL HUB DESIGN 
Front Wheel 
For translation, a 16-inch wheel with an attached hub motor is used. The wheel is attached to the 

fork with the help of U-clamps and the load is transferred effectively via two mild steel couplers.  
Rear Wheels 
Tapered roller bearings were chosen because of their capability of carrying loads in both axial 

and radial directions. This discards the need for thrust bearings which creates a problem in 

disassembling the robot. A pair of tapered roller bearings can be arranged in three ways- "Face to 

face", "Back to back" and "Tandem (parallel)”. Face to face type has less support width so it does 

not provide rigid support. This arrangement is less suitable to support tilting moments due to its 

lower stiffness. A pair of tapered roller bearings adjusted in back to back arrangement was used 

by us, as it provides rigid support to handle the weight transferred to the wheel hub. 
The stress analysis of the front wheel performed using Ansys supports the assumption (Figure 

(7)). 

 

                   

Figure 6: Roller bearing                               Figure 7: ANSYS stress analysis of front wheel. 
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ELECTRONIC AND POWER DESIGN 

Overview 
The electrical system overview is detailed in Figure (8). 

 
Figure 8: Electronic Architecture 

 

 
Power Distribution 

Figure (9) briefly describes the Power Distribution in Eklavya 5.0. The fabricated circuit 

developed by the team is shown in Figure (11). 

Figure 9: Power Distribution Flow 
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Battery Management System 

 

The previous versions of Eklavya faced problems with batteries and their management. 

State of charge, state of health, estimated time for complete discharge were not monitored and 

hence there was a possibility of batteries going into deep cycle, further decreasing their 

longetivity[2]. The main goal of a battery management system is to monitor the above stated 

parameters of batteries for their safety and take appropriate action for the same. 

The battery management system for Eklavya 5.0 continuously monitors the variation of 

the battery voltage and accordingly displays the state of charge for each battery on a 84 mm x 48 

mm dot matrix LCD screen which has been installed on the robot. The voltage of each battery is 

proportionally scaled to 5V logic levels using potential dividers and is fed as an analog voltage 

input to the microcontroller, Arduino Nano, which reads the input and displays the state of charge 

on the screen accordingly. As the current consumed by sensors and motors varies in such a way 

that total charge cannot be obtained with a generic methodology, a method of estimating the 

charge left by deriving the discharge curves was employed. Thus, the charge left by evaluating 

the battery voltages itself is calculated. The discharge curves of the batteries were experimentally 

obtained from many discharge cycles observations [3]. The working principle of the battery 

management system is briefed in Figure (10).  

          Figure 10: Battery monitoring System 
 

SENSORS and ACTUATORS 
                                              Table 2. Specification for sensors. 

Sensors Specifications 

1. Autonics E80H 

Encoders 

 10 Bit Resolution  

 hollow shaft Quadrature Type  

 6 Channel - 4 Output , 2 for Verification 

2. Genius 

Widecam F100 

Camera 

 120 degrees ultra wide angle view at 30 FPS 

 12 MP , 1080p Image view 

 Manual Focus with Glass lens 
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3. Vectornav VN-

200 INS 

 3-axis accelerometer, 3-axis gyroscope, 3-axis magnetometer, 

barometric pressure sensor. 

 GPS-aided Inertial Navigation System (INS). 

 Low power input 0.5 W  

 Accurate Signal output owing to Internal Kalman Filtering 

4. Hokuyo UTM-  

30LX LIDAR 

 Range of 30 m in 270 degree Plane of device 

 Millimeter resolution in a 270° arc. 

 Accuracy  ±50 mm within a range of 0.1-30 m 

 
                Figure 11. Power circuit for sensors                           Figure 12. BLDC hub motor 

 

Table 3. Specification for Actuators 

Actuators Specifications 

1. Brushless DC Hub Motor 

(Figure 12) 

 Reduces Space consumed by conventional DC motor 

 Operating Voltage: - 48V. 

 Current :- Max - 9 Amp 

      Normal - 7 Amp 

 5 Pin hall effect wiring , 3 stator wire 

 Speed control with specified Analog value 

     2.    DC Steer Motor  Inline Motor for compatibility with  steering Column 

 Operating Voltage :- 12V 

 Current :- Max - 15 A 

      Normal - 10 A 

 Torque :- 100-125 IN-LBS 

 12 Bit resolution optical encoder for feedback 

 Compatible with Roboteq 

                                              
CONTROL SYSTEM 

The speed control system, curvature control system and an angle control system are the 

three main control systems working in Eklavya 5.0. The steering angle control is implemented on 

a Roboteq motor controller while the other two controllers are implemented in the C++ code 

running on the main computing platform of the robot.  
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Speed Control System 
The speed control system tries to reject the environmental disturbances and tracks the 

given speed unit step commands. The control action is actuated using a BLDC hub motor. As 

such, the controller is a mixed-signal control system as the BLDC motor runs on analogue voltage 

values while the rest of the control system, viz. the controller, the speed measurements and 

reference commands are in digital domain. A Digital to Analog Converter (DAC) converts the 

digital control input signal to analogue voltage command to control the speed of the BLDC 

motor. The speed control is an experimentally tuned PID controller implemented on the C++ 

code. PID control scheme is chosen because of its ease of implementation and the degree of 

freedom of tuning three parameters to achieve better performance. The speed feedback is 

obtained using the two rear wheel encoders. 
The experimentally tuned PID control scheme was verified by simulations on MATLAB. 

Using system identification techniques [4], a transfer function model was obtained for the BLDC 

hub motor. For the obtained transfer function, a PID controller was designed and performance 

was simulated on MATLAB. 
 
Angle Control System 

 
        Similar to the speed control 

system, the steer angle is 

controlled using a PID controller 

implemented on a Roboteq motor 

controller. The angle feedback is 

obtained using an optical encoder 

placed on the shaft of the motor. 

The Roborun utility of Roboteq 

             Figure 13: Block Diagram for Angle control              helps in tuning the performance of 

the steering angle control system. The block diagram in Figure (13) explains the implemented 

control scheme. Verification of the results was done using simulations on MATLAB by 

identifying the parameters of a second order transfer function. The controlled responses were 

plotted and hence the experimental tuning was verified using simulations on MATLAB. 

 

Curvature Control System 

 
This is the most 

important part of the 

control system of Eklavya 

5.0 as it tries to follow the 

trajectories, the motion 

planning algorithm 

generates. The radius of 

curvature of the 

instantaneous axis of 

rotation is calculated 

using the translation 

speed (calculated as the 

average of the two rear      
Figure 14: Block Diagram for Curvature Control                                      wheel speeds measured by 

the encoders) and the angular velocity data given by the Inertial Measurement Unit (IMU). This 
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feedback is compared with the desired radius of curvature given by the planner and an 

experimentally tuned PID controller is implemented on the C++ code. The block diagram in 

Figure (14) describes the control system in detail. The curvature control system feeds the angle 

and speed control systems as shown with their respective reference commands. A simplifying 

assumption is that there is either no or negligible coupling between the three control systems 

 

Safety systems and their integration 
In order to ensure that the sensors sensitive to the sudden voltage change are always 

electrically safe, the power circuit of all the components are designed in such a way by using 

proper voltage regulators, Buck converters, capacitors, diodes and fuses that always clean dc 

voltage is supplied. The fuses of proper rating are used, along with it LED indicators, which 

indicate any power cut. Battery Management System ensures that the batteries never enter deep 

discharge mode by alarming the user at lower voltages.  

 

Overview of Software 
Figure (15) gives an overview of the software architecture of the robot. The details of 

each of the blocks are presented in detail in the following sections. 

 
                                           Figure 15: Overview for Software Architecture 

 

Obstacle Detection and Avoidance 
The white strips in the obstacles interfere with the lane detection algorithm as they occur 

as false positives and thus have to be removed before lane detection. This problem was not dealt 

with in Eklavya 4.0 and was successfully solved in this new version. First, a median filter was 

applied. Next, using a Canny edge detection technique, the remainder few obstacle points do not 

interfere in the lane navigation algorithm. Hence, with this new approach the obstacle 

interference was bypassed in a very novel and simple way. In conjunction to this, circular Hough 

transforms were used to detect and remove potholes.  

 

Software Strategy and Path Planning 
High Level Planner 

The high level planner of 

Eklavya 5.0 was implemented as an 

FSM (finite state machine). The two 

states of the FSM are - the lane 

navigator state and the waypoint 

navigator state.  The transition between 

these states is governed by the 
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following               

Figure 16: High level planner FSM                         observations. 

                       

 

 

1.  If the bot is outside the no man’s land and can see lanes, the lane navigator state of the 

FSM is switched on. 

2. When the FSM is in its lane navigator state and distance of a waypoint is less than a 

predefined threshold, then the FSM switches to waypoint navigator state. 

 
Motion Planning 

In Eklavya 4.0, the inbuilt move base node of ROS was used for path planning. However, 

the planner didn’t work well as it didn’t generate kinematically feasible trajectories at all times 

for the front steered bot. 
To solve this problem, the TP-RRT planner was implemented on Eklavya 5.0. Compared 

to many other planners, it has an advantage of planning a kinematically feasible path for the 

robot. Also, it is relatively faster compared to the planners which employ algorithms like 

Dijkstra’s and A*. In this case, there is an acceptable trade-off between speed and optimality. 

Figure (17) and (18) show the result of TP-RRT planner implemented in Eklavya 5.0.  
 

 
      Figure 17. TP-RRT- an overview                  Figure 18. Path planned by TP-RRT          

                                                                                                                                           

The TP-RRT planner implements the TP Space-RRT algorithm [5]. The planner first 

converts the entire frame into TP (trajectory parameter) space [6] wherein the RRT (rapidly 

exploring random tree) algorithm is used to plan the path to the target. The algorithm 

incrementally builds a tree of collision-free trajectories rooted at the initial condition. Hence, 

RRT is initialized as a tree, including the initial state as its unique vertex and without any edges. 

Next, several families of trajectories (PTGs-Parameterized Trajectory Generators) are employed 

while attempting to grow the tree using random intermediate targets. The most suitable path is 

chosen after the tree reaches the target node along the expanded tree keeping in mind the 

kinematic constraints of the bot. In the code, the RRT algorithm isn’t directly applied to the free-

object space. It is further filtered to a space in which the states of RRT are such that each one of 

them can be achieved by the bot and this is how the bot gets its holonomic nature.        

 

Map Generation 
 
Localization 
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The robot was localized using an extended Kalman filter algorithm (same as previous 

year) by estimating x, y, θ (yaw) and their differentials from IMU, GPS and encoder data [7]. In 

the last iteration, there were problems while integrating GPS data into the filter, especially when 

the satellite data was inaccurate at some places. In this iteration, the covariance matrices were 

tuned and an average of 100 iterations of GPS data was used to set the origin in the GPS frame. 

 With this, errors as low as 0.2m (in x and y directions) were achieved after following a closed 

loop path of perimeter 400m. For localization, two frames were used. The bot was localized in the 

‘odom’ frame (starting point taken as the origin and the frame drifting over time due to odometry 

errors). The bot frame was assumed to be ‘base_link’ (i.e. what the bot sees at a particular 

instant). Figures (19)-(21) show the error being eliminated using the filtering. 
  

 
                    Figure 19. Data from encoders                        Figure 20. Data from GPS 

            (drift error being integrated over time)                        (axis rotated 90o) 
 

 
 

Figure 21: Filtered data using EKF 
 

Mapping 
For both lane and waypoint navigation, LIDAR data was used to find out the obstacles 

around the vehicle space. First the LIDAR data was converted to a point cloud in the ‘base_link’ 

frame (the body axis). To generate the cost map for the lane navigator and the waypoint 

navigator, the point cloud of the lanes was fused with the LIDAR data. Finally, resulting point 

cloud data was converted to ‘odom’ frame for navigation.  
 

Goal Selection and Path Generation 
 
Lane Detection 
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The grassy portions of the image were removed with an SVM (Support Vector Machine) 

classifier [8] where features for learning were taken as a kernel of an 8×8 ROI of the image. This 

kernel was classified as grass or non-grass type using a polynomial SVM classifier.  
The classifier was unable to generate satisfactory results due to the shadows which 

perturb the HSV values of the regions. Hence, a shadow removal technique was used. To that 

end, the image was first converted to the YCrCb colour space. Then, all the pixels with intensity 

less than 1.5 times the standard deviation of Y channel were classified as shadow pixels and the 

image was converted into binary [9]. 
Curves were generated by the classifier based on results over the shadow removed 

images. Although, this was prone to false positives, most of the lanes were classified as non-

grass. Also, grass offers a more uniform patch as compared to lanes as the lane portions in the 

image vary in brightness and lightning conditions. Lanes also exhibit non-uniform thickness. 

Hence, both the thresholding and Hough line method would still output false lanes. This would 

even more be the case in thresholding, as it is very difficult to find fine threshold values. So, 

Random Sample Consensus (RANSAC) was incorporated to detect lanes. On rigorous testing, 

RANSAC was found to be a reliable technique for curve-fitting. Finally the image was 

transformed to a top down view by using an inverse perspective transform (IPT).  The output of 

the lane detection algorithm is shown in Figure (22). 

 
    Figure 22: Detection of lanes after removing noise 
 

It was further observed that the height of the camera had to be increased as compared to 

Eklavya 4.0 to account for the fact that obstacles blocked the view of lanes behind it. Also, since 

classifying single lanes as right or left and giving a target, is less favorable than the double lane 

case a 120o FOV (Field of View) camera was used instead of the 75o FOV camera used last year 

Figures (24) and (23) clearly show the improved performance with the higher FOV camera. 

 
         

      Figure 23: Results from 75o FOV camera               Figure 24: Results from 120o FOV camera 
 
Flag detection 

The flags were detected using HSV thresholding 

for red and blue colors. The algorithm was provided with 
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parameters that can be modified dynamically. This helped us to adapt to the external environment 

quickly.  
 

 

Figure 25: Result for Potholes detection 

Potholes detection  
The potholes were detected using circular Hough transform, which identifies circles from 

points on the circumference and selects the maxima from the accumulator matrix as shown in 

Figure (25). 

Lane Navigation 

The lane navigation algorithm has been explained with the help of flow chart in Figure (26). 
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Figure 26: Flow diagram to determine target for Lane navigation 

 

 
Waypoint Navigation 

 
The Waypoint navigator first selects the 

target as the nearest waypoint and then traverses 

all the waypoints by visiting the nearest one at 

each step. The entire logic along with FSM 

switching is explained using the flowchart in 

Figure (27). 
 

Additional Creative Concepts  
For lane navigation, the concept of 

“Tracking” was used to distinguish between 

single and double lanes and to further distinguish 

between right and left lanes. A track of the 

previous frame at every instant was kept and on 

the point of transition from double lanes to 

single lane, the distances of the single lane from 

both the lanes of the previous frame were 

compared. This comparison yields left and right 

lane in this case. 

 

 
 

Figure 27: Waypoint navigator Flowchart 

Canny edge detection was applied on the image before applying quadratic curve fitting. 

This made sure that the white portion in the obstacles didn’t interfere with the curve fitting. To 

minimize the errors due to GPS, instead of calculating the target at every step using the 

fluctuating GPS data, all the waypoint targets were converted into odom frame in the first 

iteration itself by using the GPS coordinate of the origin of the odom frame. 

 Simulation 
 

Gazebo was used as the 

simulation software for the 

vehicle. A close to real 

representation of the robot as 

well as the IGVC course was 

constructed. To analyze the real 

life robustness of the code, 

noise was added to the readings 

of the sensors. The IGVC 

course was realistically 

portrayed so as to simulate the 

code on the actual course.  
 

    Figure 28. Simulation Arena - Gazebo    The SolidWorks model of the 

bot was imported as a mesh in Gazebo and the sensors used in the bot were simulated with errors 
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as per specification when available or with experimental data. A view of implementation can be 

seen in Figure 28. The controller plugin was written specifically for the bot to convert command 

velocity published by the planner into steer angle and rpm of each of the wheels.  \ 
Failure Modes and Resolutions 

 Lane Detection: In lane detection, the code fails in the case where the proposed target 

lies on an obstacle. The issue was resolved by taking input from the LIDAR and checking 

whether the goal lies on an obstacle or not. The final goal is adjusted accordingly. 

 Localization: The bot experiences a drift in its odometry in case of wheel slippage. For 

correct localization of the bot using GPS data, there should be an adequate number of 

satellites present (i.e. greater than 4). Also, the IMU unit should be at the centre of the bot 

in ‘base_link’ frame, which for Eklavya 5.0 is the centre of back wheels.  

 TP-RRT Planner: The planner does not alter the path of bot in presence of dynamic 

obstacles. 

 Power Management: Failure mode LED indicators are placed at the power source of 

BLDC motor, encoder channels and steer motor which light up on occurrence of fuse 

blow, low battery and/or short circuit. 

 Control System: If the tuned PID fails, the PID can be re-tuned easily by changing the 

parameters in a launch file.  

 Plate coupler failure - Steer column would break from the main frame if the normal 

stress in the bolts exceeds 19.4 MPa. 

 The bearing would fail in case of rusting, high spots in cup seats, corrosion, etc. 

 

Performance Testing 

 Max torque without skidding: 51 Nm  

 Max Acceleration: 2.548 m/s2  

 Average driving force on the bot: 255 N  

 Average Motor torque: 18.53 Nm  

 Average speed: 5.6 mph. 

 Ramp climbing ability at 30 degrees -1.56 m/s2 
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