
 1

Eklavya 5.0: Autonomous Ground Vehicle Research Group
Indian Institute of Technology, Kharagpur, India

Faculty Advisor: Dr. Debashish Chakravarty*

INTRODUCTION
Team Autonomous Ground Vehicle (AGV), under the ambit of Center for Excellence in

Robotics, IIT Kharagpur, has been pioneering the autonomous ground vehicle technology with

the ultimate aim of developing India’s first self-driving car. The team has been participating in

IGVC since 2011 with the

Eklavya series of vehicles.

Eklavya 5.0, another feather in

the cap of the research group is

all set to participate in the 24th

Intelligent Ground Vehicle

Competition (IGVC), Oakland

University. With new robotic

innovations, the successor of

Eklavya 4.0, is a much more

simplified and powerful in all

aspects i.e. mechanical, electrical

and software.

TEAM ORGANIZATION

The effort behind this

project was put in by a bunch of

over fifty enthusiastic and intellectual underg- Figure 0: Team Organization

raduate students from various departments of IIT Kharagpur.

* Associate Professor, Department of Mining Engineering, IIT Kharagpur, C1-100, IIT Campus, Kharagpur 721302.

 2

DESIGN PROCESS
The failure points of

Eklavya 4.0, which

participated at IGVC 2015,

were thoroughly analyzed
Figure (1) describes the major

improvements made in

Eklavya 5.0.
While designing

Eklavya 5.0, some

assumptions were taken into

account such as - there was no

skidding of wheels which

meant that the velocities

obtained from encoder signals

are true, around a centre of

curvature, which paved the

way for designing the control systems. Figure 1: Design process for the

vehicle
A new path planning module was built in order to generate kinematically feasible

trajectories for our bot. In addition to that, a robust lane navigator was designed after testing on

numerous corner case scenarios. The design considerations and the process for Eklavya 5.0 are

shown in Figure (1) after incorporating the above mentioned improvements and assumptions.

MECHANICAL DESIGN

Overview

The Eklavya 4.0 was a front wheel

driven and steered vehicle. However, it had

many shortcomings. It was vulnerable to

undue vibrations. The structure was made

up of wood. Hence, it was prone to lateral

vibrations as well as longitudinal vibrations

While designing Eklavya 5.0

(Figure (2)), achieving maximum stability

by lowering the centre of gravity and

reducing vibrations were the two major

concerns. The steering column, when at first connected to the frame through a flat plate, did not

produce enough opposing torque to nullify the induced moment of the drive motor. Therefore

another link was added to support the other dynamic forces acting on the flat plate joint, and thus

reducing the longitudinal vibrations [1]. The height of the camera mount was not sufficient in

Eklavya 4.0 for efficient lane navigation. To tackle this, the height of the bot and the caster angle

of the front wheel were considered and calculations the optimal height for camera placement

came out to be 5.5 ft. Finally, to reduce the transverse vibrations, the design of the bearing case

was modified. In order to keep the design simple, compatible and light weight, no suspension

system is installed in the robot.

 3

STEERING COLUMN
The drive motor is attached to the steering column which causes both radial and axial

loading. The angle of inclination of the steering column with the horizontal was calculated to be

20 degrees. This led to less radial loading which further lowered the torque requirement for

steering the vehicle. In addition to that, the steering column is designed to be self-centred which

helps the bot to move forward easily. The final moment diagram of the steering column and the

final manufactured column are shown in Figures (4) and (3) respectively.

Figure 3: Manufactured Steering Column Figure 4: Moment diagram of the steering column

Ra = Reaction due to upper bearing Rb = Reaction due to lower bearing
F1 = Weight acting on steering stem Mm = Torque provided by motor
Mw = Torque due to weight of motor F2 = Force due to acceleration
Rc = Reaction from tire

Table 1. Dynamic Analysis of Steer Column

Scenario F1 F2 Theta Total

length

Shear (Max) Bending

Moment

Dynamic State (Max

torque=120Nm)
34.2 99 70 .25 64 54

Stationary State 34.2 0 70 .25 34.202 8.55

During a jerk (5 cm at 10

miles/hour)
34.20

2
99 70 .25 1050 250

Stress = My/I

For the dimensions, I = 1.17 x 10-8, Maximum moment = 53.54 Nm,

Stress will be maximum at outer face, y = 3 cm, Stress = 58.5 MPa

 4

Conclusion

Fork length: 25 cm, Angle with horizontal: 70°, Length of steering T stem: 20 cm, Diameter of

Fork: 3 cm, Thickness of fork: 3 mm

These dimensions are similar to that of a motorbike’s steering column, so the steering stem and

forks of a Hero Honda Aviator scooter were used.

The Reduction of Longitudinal Vibration
The longitudinal vibrations [1] were reduced with the introduction of a new rod. This is evident

from the force analysis done using Ansys (Figure (5)).

Figure 5: Comparison made when load is applied with the support rod and without support rod

WHEEL HUB DESIGN
Front Wheel
For translation, a 16-inch wheel with an attached hub motor is used. The wheel is attached to the

fork with the help of U-clamps and the load is transferred effectively via two mild steel couplers.
Rear Wheels
Tapered roller bearings were chosen because of their capability of carrying loads in both axial

and radial directions. This discards the need for thrust bearings which creates a problem in

disassembling the robot. A pair of tapered roller bearings can be arranged in three ways- "Face to

face", "Back to back" and "Tandem (parallel)”. Face to face type has less support width so it does

not provide rigid support. This arrangement is less suitable to support tilting moments due to its

lower stiffness. A pair of tapered roller bearings adjusted in back to back arrangement was used

by us, as it provides rigid support to handle the weight transferred to the wheel hub.
The stress analysis of the front wheel performed using Ansys supports the assumption (Figure

(7)).

Figure 6: Roller bearing Figure 7: ANSYS stress analysis of front wheel.

 5

ELECTRONIC AND POWER DESIGN

Overview
The electrical system overview is detailed in Figure (8).

Figure 8: Electronic Architecture

Power Distribution

Figure (9) briefly describes the Power Distribution in Eklavya 5.0. The fabricated circuit

developed by the team is shown in Figure (11).

Figure 9: Power Distribution Flow

 6

Battery Management System

The previous versions of Eklavya faced problems with batteries and their management.

State of charge, state of health, estimated time for complete discharge were not monitored and

hence there was a possibility of batteries going into deep cycle, further decreasing their

longetivity[2]. The main goal of a battery management system is to monitor the above stated

parameters of batteries for their safety and take appropriate action for the same.

The battery management system for Eklavya 5.0 continuously monitors the variation of

the battery voltage and accordingly displays the state of charge for each battery on a 84 mm x 48

mm dot matrix LCD screen which has been installed on the robot. The voltage of each battery is

proportionally scaled to 5V logic levels using potential dividers and is fed as an analog voltage

input to the microcontroller, Arduino Nano, which reads the input and displays the state of charge

on the screen accordingly. As the current consumed by sensors and motors varies in such a way

that total charge cannot be obtained with a generic methodology, a method of estimating the

charge left by deriving the discharge curves was employed. Thus, the charge left by evaluating

the battery voltages itself is calculated. The discharge curves of the batteries were experimentally

obtained from many discharge cycles observations [3]. The working principle of the battery

management system is briefed in Figure (10).

 Figure 10: Battery monitoring System

SENSORS and ACTUATORS
 Table 2. Specification for sensors.

Sensors Specifications

1. Autonics E80H

Encoders

 10 Bit Resolution

 hollow shaft Quadrature Type

 6 Channel - 4 Output , 2 for Verification

2. Genius

Widecam F100

Camera

 120 degrees ultra wide angle view at 30 FPS

 12 MP , 1080p Image view

 Manual Focus with Glass lens

 7

3. Vectornav VN-

200 INS

 3-axis accelerometer, 3-axis gyroscope, 3-axis magnetometer,

barometric pressure sensor.

 GPS-aided Inertial Navigation System (INS).

 Low power input 0.5 W

 Accurate Signal output owing to Internal Kalman Filtering

4. Hokuyo UTM-

30LX LIDAR

 Range of 30 m in 270 degree Plane of device

 Millimeter resolution in a 270° arc.

 Accuracy ±50 mm within a range of 0.1-30 m

 Figure 11. Power circuit for sensors Figure 12. BLDC hub motor

Table 3. Specification for Actuators

Actuators Specifications

1. Brushless DC Hub Motor

(Figure 12)

 Reduces Space consumed by conventional DC motor

 Operating Voltage: - 48V.

 Current :- Max - 9 Amp

 Normal - 7 Amp

 5 Pin hall effect wiring , 3 stator wire

 Speed control with specified Analog value

 2. DC Steer Motor Inline Motor for compatibility with steering Column

 Operating Voltage :- 12V

 Current :- Max - 15 A

 Normal - 10 A

 Torque :- 100-125 IN-LBS

 12 Bit resolution optical encoder for feedback

 Compatible with Roboteq

CONTROL SYSTEM

The speed control system, curvature control system and an angle control system are the

three main control systems working in Eklavya 5.0. The steering angle control is implemented on

a Roboteq motor controller while the other two controllers are implemented in the C++ code

running on the main computing platform of the robot.

 8

Speed Control System
The speed control system tries to reject the environmental disturbances and tracks the

given speed unit step commands. The control action is actuated using a BLDC hub motor. As

such, the controller is a mixed-signal control system as the BLDC motor runs on analogue voltage

values while the rest of the control system, viz. the controller, the speed measurements and

reference commands are in digital domain. A Digital to Analog Converter (DAC) converts the

digital control input signal to analogue voltage command to control the speed of the BLDC

motor. The speed control is an experimentally tuned PID controller implemented on the C++

code. PID control scheme is chosen because of its ease of implementation and the degree of

freedom of tuning three parameters to achieve better performance. The speed feedback is

obtained using the two rear wheel encoders.
The experimentally tuned PID control scheme was verified by simulations on MATLAB.

Using system identification techniques [4], a transfer function model was obtained for the BLDC

hub motor. For the obtained transfer function, a PID controller was designed and performance

was simulated on MATLAB.

Angle Control System

 Similar to the speed control

system, the steer angle is

controlled using a PID controller

implemented on a Roboteq motor

controller. The angle feedback is

obtained using an optical encoder

placed on the shaft of the motor.

The Roborun utility of Roboteq

 Figure 13: Block Diagram for Angle control helps in tuning the performance of

the steering angle control system. The block diagram in Figure (13) explains the implemented

control scheme. Verification of the results was done using simulations on MATLAB by

identifying the parameters of a second order transfer function. The controlled responses were

plotted and hence the experimental tuning was verified using simulations on MATLAB.

Curvature Control System

This is the most

important part of the

control system of Eklavya

5.0 as it tries to follow the

trajectories, the motion

planning algorithm

generates. The radius of

curvature of the

instantaneous axis of

rotation is calculated

using the translation

speed (calculated as the

average of the two rear
Figure 14: Block Diagram for Curvature Control wheel speeds measured by

the encoders) and the angular velocity data given by the Inertial Measurement Unit (IMU). This

 9

feedback is compared with the desired radius of curvature given by the planner and an

experimentally tuned PID controller is implemented on the C++ code. The block diagram in

Figure (14) describes the control system in detail. The curvature control system feeds the angle

and speed control systems as shown with their respective reference commands. A simplifying

assumption is that there is either no or negligible coupling between the three control systems

Safety systems and their integration
In order to ensure that the sensors sensitive to the sudden voltage change are always

electrically safe, the power circuit of all the components are designed in such a way by using

proper voltage regulators, Buck converters, capacitors, diodes and fuses that always clean dc

voltage is supplied. The fuses of proper rating are used, along with it LED indicators, which

indicate any power cut. Battery Management System ensures that the batteries never enter deep

discharge mode by alarming the user at lower voltages.

Overview of Software
Figure (15) gives an overview of the software architecture of the robot. The details of

each of the blocks are presented in detail in the following sections.

 Figure 15: Overview for Software Architecture

Obstacle Detection and Avoidance
The white strips in the obstacles interfere with the lane detection algorithm as they occur

as false positives and thus have to be removed before lane detection. This problem was not dealt

with in Eklavya 4.0 and was successfully solved in this new version. First, a median filter was

applied. Next, using a Canny edge detection technique, the remainder few obstacle points do not

interfere in the lane navigation algorithm. Hence, with this new approach the obstacle

interference was bypassed in a very novel and simple way. In conjunction to this, circular Hough

transforms were used to detect and remove potholes.

Software Strategy and Path Planning
High Level Planner

The high level planner of

Eklavya 5.0 was implemented as an

FSM (finite state machine). The two

states of the FSM are - the lane

navigator state and the waypoint

navigator state. The transition between

these states is governed by the

 10

following

Figure 16: High level planner FSM observations.

1. If the bot is outside the no man’s land and can see lanes, the lane navigator state of the

FSM is switched on.

2. When the FSM is in its lane navigator state and distance of a waypoint is less than a

predefined threshold, then the FSM switches to waypoint navigator state.

Motion Planning

In Eklavya 4.0, the inbuilt move base node of ROS was used for path planning. However,

the planner didn’t work well as it didn’t generate kinematically feasible trajectories at all times

for the front steered bot.
To solve this problem, the TP-RRT planner was implemented on Eklavya 5.0. Compared

to many other planners, it has an advantage of planning a kinematically feasible path for the

robot. Also, it is relatively faster compared to the planners which employ algorithms like

Dijkstra’s and A*. In this case, there is an acceptable trade-off between speed and optimality.

Figure (17) and (18) show the result of TP-RRT planner implemented in Eklavya 5.0.

 Figure 17. TP-RRT- an overview Figure 18. Path planned by TP-RRT

The TP-RRT planner implements the TP Space-RRT algorithm [5]. The planner first

converts the entire frame into TP (trajectory parameter) space [6] wherein the RRT (rapidly

exploring random tree) algorithm is used to plan the path to the target. The algorithm

incrementally builds a tree of collision-free trajectories rooted at the initial condition. Hence,

RRT is initialized as a tree, including the initial state as its unique vertex and without any edges.

Next, several families of trajectories (PTGs-Parameterized Trajectory Generators) are employed

while attempting to grow the tree using random intermediate targets. The most suitable path is

chosen after the tree reaches the target node along the expanded tree keeping in mind the

kinematic constraints of the bot. In the code, the RRT algorithm isn’t directly applied to the free-

object space. It is further filtered to a space in which the states of RRT are such that each one of

them can be achieved by the bot and this is how the bot gets its holonomic nature.

Map Generation

Localization

 11

The robot was localized using an extended Kalman filter algorithm (same as previous

year) by estimating x, y, θ (yaw) and their differentials from IMU, GPS and encoder data [7]. In

the last iteration, there were problems while integrating GPS data into the filter, especially when

the satellite data was inaccurate at some places. In this iteration, the covariance matrices were

tuned and an average of 100 iterations of GPS data was used to set the origin in the GPS frame.

 With this, errors as low as 0.2m (in x and y directions) were achieved after following a closed

loop path of perimeter 400m. For localization, two frames were used. The bot was localized in the

‘odom’ frame (starting point taken as the origin and the frame drifting over time due to odometry

errors). The bot frame was assumed to be ‘base_link’ (i.e. what the bot sees at a particular

instant). Figures (19)-(21) show the error being eliminated using the filtering.

 Figure 19. Data from encoders Figure 20. Data from GPS

 (drift error being integrated over time) (axis rotated 90o)

Figure 21: Filtered data using EKF

Mapping
For both lane and waypoint navigation, LIDAR data was used to find out the obstacles

around the vehicle space. First the LIDAR data was converted to a point cloud in the ‘base_link’

frame (the body axis). To generate the cost map for the lane navigator and the waypoint

navigator, the point cloud of the lanes was fused with the LIDAR data. Finally, resulting point

cloud data was converted to ‘odom’ frame for navigation.

Goal Selection and Path Generation

Lane Detection

 12

The grassy portions of the image were removed with an SVM (Support Vector Machine)

classifier [8] where features for learning were taken as a kernel of an 8×8 ROI of the image. This

kernel was classified as grass or non-grass type using a polynomial SVM classifier.
The classifier was unable to generate satisfactory results due to the shadows which

perturb the HSV values of the regions. Hence, a shadow removal technique was used. To that

end, the image was first converted to the YCrCb colour space. Then, all the pixels with intensity

less than 1.5 times the standard deviation of Y channel were classified as shadow pixels and the

image was converted into binary [9].
Curves were generated by the classifier based on results over the shadow removed

images. Although, this was prone to false positives, most of the lanes were classified as non-

grass. Also, grass offers a more uniform patch as compared to lanes as the lane portions in the

image vary in brightness and lightning conditions. Lanes also exhibit non-uniform thickness.

Hence, both the thresholding and Hough line method would still output false lanes. This would

even more be the case in thresholding, as it is very difficult to find fine threshold values. So,

Random Sample Consensus (RANSAC) was incorporated to detect lanes. On rigorous testing,

RANSAC was found to be a reliable technique for curve-fitting. Finally the image was

transformed to a top down view by using an inverse perspective transform (IPT). The output of

the lane detection algorithm is shown in Figure (22).

 Figure 22: Detection of lanes after removing noise

It was further observed that the height of the camera had to be increased as compared to

Eklavya 4.0 to account for the fact that obstacles blocked the view of lanes behind it. Also, since

classifying single lanes as right or left and giving a target, is less favorable than the double lane

case a 120o FOV (Field of View) camera was used instead of the 75o FOV camera used last year

Figures (24) and (23) clearly show the improved performance with the higher FOV camera.

 Figure 23: Results from 75o FOV camera Figure 24: Results from 120o FOV camera

Flag detection

The flags were detected using HSV thresholding

for red and blue colors. The algorithm was provided with

 13

parameters that can be modified dynamically. This helped us to adapt to the external environment

quickly.

Figure 25: Result for Potholes detection

Potholes detection
The potholes were detected using circular Hough transform, which identifies circles from

points on the circumference and selects the maxima from the accumulator matrix as shown in

Figure (25).

Lane Navigation

The lane navigation algorithm has been explained with the help of flow chart in Figure (26).

 14

Figure 26: Flow diagram to determine target for Lane navigation

Waypoint Navigation

The Waypoint navigator first selects the

target as the nearest waypoint and then traverses

all the waypoints by visiting the nearest one at

each step. The entire logic along with FSM

switching is explained using the flowchart in

Figure (27).

Additional Creative Concepts
For lane navigation, the concept of

“Tracking” was used to distinguish between

single and double lanes and to further distinguish

between right and left lanes. A track of the

previous frame at every instant was kept and on

the point of transition from double lanes to

single lane, the distances of the single lane from

both the lanes of the previous frame were

compared. This comparison yields left and right

lane in this case.

Figure 27: Waypoint navigator Flowchart

Canny edge detection was applied on the image before applying quadratic curve fitting.

This made sure that the white portion in the obstacles didn’t interfere with the curve fitting. To

minimize the errors due to GPS, instead of calculating the target at every step using the

fluctuating GPS data, all the waypoint targets were converted into odom frame in the first

iteration itself by using the GPS coordinate of the origin of the odom frame.

 Simulation

Gazebo was used as the

simulation software for the

vehicle. A close to real

representation of the robot as

well as the IGVC course was

constructed. To analyze the real

life robustness of the code,

noise was added to the readings

of the sensors. The IGVC

course was realistically

portrayed so as to simulate the

code on the actual course.

 Figure 28. Simulation Arena - Gazebo The SolidWorks model of the

bot was imported as a mesh in Gazebo and the sensors used in the bot were simulated with errors

 15

as per specification when available or with experimental data. A view of implementation can be

seen in Figure 28. The controller plugin was written specifically for the bot to convert command

velocity published by the planner into steer angle and rpm of each of the wheels. \
Failure Modes and Resolutions

 Lane Detection: In lane detection, the code fails in the case where the proposed target

lies on an obstacle. The issue was resolved by taking input from the LIDAR and checking

whether the goal lies on an obstacle or not. The final goal is adjusted accordingly.

 Localization: The bot experiences a drift in its odometry in case of wheel slippage. For

correct localization of the bot using GPS data, there should be an adequate number of

satellites present (i.e. greater than 4). Also, the IMU unit should be at the centre of the bot

in ‘base_link’ frame, which for Eklavya 5.0 is the centre of back wheels.

 TP-RRT Planner: The planner does not alter the path of bot in presence of dynamic

obstacles.

 Power Management: Failure mode LED indicators are placed at the power source of

BLDC motor, encoder channels and steer motor which light up on occurrence of fuse

blow, low battery and/or short circuit.

 Control System: If the tuned PID fails, the PID can be re-tuned easily by changing the

parameters in a launch file.

 Plate coupler failure - Steer column would break from the main frame if the normal

stress in the bolts exceeds 19.4 MPa.

 The bearing would fail in case of rusting, high spots in cup seats, corrosion, etc.

Performance Testing

 Max torque without skidding: 51 Nm

 Max Acceleration: 2.548 m/s2

 Average driving force on the bot: 255 N

 Average Motor torque: 18.53 Nm

 Average speed: 5.6 mph.

 Ramp climbing ability at 30 degrees -1.56 m/s2

References
[1] Y. Karim and C. Blanzé. “Vibration reduction of a structure by design and control of a bolted joint”

LMSSC, CNAM, 2 rue Conté, 75003 Paris, France

[2] C. Chen, et.al. “Design and Realization of Smart battery management”

[3] Gerald P. Arada and Elmer R. Magsino “Development of a Power Monitoring System for

Backup Lead-Acid Batteries”

[4] System Identification Toolbox MATLAB

[5] Jose Luis Blanco, Mauro Bellone and Antonio Gimenez-Fernandez. “TP-Space RRT – Kinematic Path

Planning of Nonholonomic Any-Shape Vehicles”. Int J Adv Robot Syst, 2015

[6] Jose-Luis Blanco, Javier González, and Juan Antonio Fernández-Madrigal. “Extending obstacle

avoidance methods through multiple parameter space transformations. Autonomous Robots” 2008

[7] Sebastian Thrun, “Probabilistic Robotics”

[8] Zhou, Shengyan, et al. "Road detection using support vector machine based on online learning and

evaluation."Intelligent Vehicles Symposium (IV), 2010 IEEE. IEEE, 2010.

[9] Deb, Kaushik, and Ashraful Huq Suny. "Shadow Detection and Removal Based on YCbCr Color

Space." Smart CR 4 (2014): 23-33.

