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Introduction 
 
Otto is a mobile robotic platform for testing sensors, high level autonomy algorithms, low level control                               
strategies, electrical hardware, and mechanical solutions. The platform serves as an educational tool                         
for undergraduates and graduate students alike. The current iteration of the robot has been                           
updated to conform with the requirements of the IGVC: autonomous-mode warning blinkers and                         
line detection camera subsystems have been added to the existing hardware and software                         
systems, as well as a one-touch start button for all autonomy. 
 
William Nourse graduated with a B.S. in Electrical Engineering from Case Western Reserve University                           
in 2018. He is now an Electrical Engineering Ph.D student, focusing on robotic control and                             
neuromorphic computing. Aside from robotics research, William also has personal projects in                       
designing electronic musical instruments. 
 
Ian Adams is a Mechanical Eng. PhD student focusing on intelligent robotics. He graduated from                             
CWRU in 2017 with an undergraduate dual major in Mechanical and Aerospace Engineering. Ian is a                               
full time student at CWRU and has several personal projects in motion control, including several other                               
pet robots, and his home built CNC machine. 
 
Chude (Frank) Qian is an Electrical Engineering BS/MS student focusing on autonomous vehicles.                         
He is expected to graduate in 2020 for his BS and 2021 for his MS. Frank has several autonomous                                     
vehicle projects involving a low cost ackermann-steering autonomous vehicle platform, full                     
sensor fusion, RGBD image processing and deep learning for object recognition. He is also the lead                               
person for  CWRU’s duckietown initiative.  
 
One exceptional part in the design of Otto is the array of sensors. We have a pair of optical flow                                       
odometry sensors which can measure change in position in x and y. These sensors do not slip and                                   
have been very reliable in other robotic applications.  
 
The optical detection of the painted white edges is an application of computer vision; by                             
transforming the detected lines into obstacles in mapping, the robot can neatly recognize and                           
respond to them. This is much more elegant than other line following algorithms we have                             
employed in the past. 
 
This year, we added an Intel RealSense D435 stereo-vision camera. Through some filtering                         
algorithms, we have used these very cost effective sensors to act as both obstacle detectors, and in                                 
some cases, for visual odometry. By using this sensor for a wide range of functions, we hope to                                   
test its robustness for other applications.  
 
Lastly, the data is processed with an Unscented Kalman filter, which allows us to get a robust                                 
estimate of position from noisy inputs. Each sensor contributes to the localization, and each                           
sensor has a redundancy. This means no one sensor failing will drastically reduce the robot’s                             
effectiveness in operations. The Unscented Kalman filter is a change from last year’s extended                           
kalman filter. The UKF has the advantage of being simpler to design and calculate and more                               
robust against nonlinear sensor readings such as those from the PX4flow and Rf2o odometry                           
sources.  



 
 
Mechanical Overview  
 

Chassis Dimensions      

Overall Width  666  mm 

Track Width  550  mm 

Overall Length  990  mm 

Wheelbase  690  mm 

Height  720  mm 

Drive Wheel Diameter  330  mm 

Weight  68  Kg 

 
 
Otto is a uniaxial differential drive robot, meaning that its two collinear drive motors can operate                               
independently to affect the linear and angular velocity of the system as a whole. The robot also                                 
has two passive rear casters. This geometry allows us to take advantage of the unicycle model of                                 
mobile robot. This model has well defined control characteristics, and easily defined kinematics. 
 
Otto has a welded tube steel chassis which has a control box mounted to the top, and several                                   
modular attachments at the front. The robot has a cast aluminum battery bracket which also                             
serves as the mounting points for the two motors. Cast aluminum or tubular steel mounting                             
points on all four sides well as underneath the chassis allow flexible configurations of sensor                             
instrumentation and task-specific implements. 
 
The rear of the chassis has a rocker bar attached to the two passive casters, which allows the                                   
robot to travel smoothly over uneven terrain. In front of the motor mount, the chassis has an                                 



extruded aluminum Bosch rail for mounting the USB cameras, Novatel 702GG GPS antenna, and a                             
Sick LMS111 270 degree lidar.  
 
The control electronics are contained in a watertight Pelican Case 1560 with a custom vacuformed                             
shroud. The E-stop and control switches are mounted on a laser-cut acrylic panel to the rear of the                                   
vacuform shroud. Weather proofing is achieved through silicone gasket material applied on all                         
seams where components are not inherently sealed. With the exception of the cameras, the                           
exterior sensors are weatherproofed enough to resist incidental water exposure. A plastic sealing                         
wrap can be applied to the cameras if the weather turns south. 
 

 

Electronics and Power Design 
 
Otto is powered by two 12V Optima Yellowtop deep cycle AGM marine batteries, connected in                             
series provide the vehicle with a 24V power system. This provides 38 amp-hours of power,                             
allowing the robot to operate for roughly four hours between charging. Voltage regulation for                           
many components is achieved through separate 12V and 5V switching regulators capable of 20A                           
each, more than enough for our demands. 
 
In the lowest level of our control systems, wheel velocity is controlled at 100 Hz. The onboard                                 
National Instruments cRIO FPGA counts encoder input from the motors, which runs at a 26,000:1                             
ticks per meter ratio (when we account for the diameter of the wheels). The FPGA then performs a                                   
PID control loop at 100 Hz to rotate the wheels at the angular rate described in the velocity                                   
command it receives over a serial link. The PID gains were hand-tuned through testing the closed                               
loop system response to step inputs.  
 
The next control layer provides velocity commands at 10 Hz. The 10 Hz velocity commands                             
originate from the robot software guidance system which makes the robot converge on the given                             
path. The higher level velocity commands are processed at 10 Hz in the onboard PC. Because the                                 
low level implements ten control cycles between each high level velocity command, we are                           
confident the robot adequately executes the commanded velocity within the tolerances necessary                       
to compete in the IGVC. 



 
A 95-watt-max picoPSU powers a 35W Intel Core i3 dual-core hyperthreading CPU, on an ASUS                             
mini-itx motherboard with 8 gigabytes of DDR3 SDRAM, and a 128 gigabyte solid-state disk. This is                               
the main processor for the robot’s various algorithms providing high-level control. The                       
GNU/Linux operating system runs Willow Garage’s Robot Operating System (ROS), a                     
comprehensive middleware framework focused on providing soft-real-time scheduling and                 
message passing for an unlimited number of software nodes. These nodes operate independently                         
and in parallel, constantly publishing new output messages for other nodes to use on the next                               
timestep. Some ROS nodes are written at the driver level, interacting directly with hardware, and                             
others are complex algorithms working only with data provided by drivers.  
 
The robot has an internal remote E-stop as well as a physical hard estop in the form of a large red                                         
button on the top of the vacuformed shell. The remote E-stop uses a 555 timer to determine the                                   
presence of a signal from the remote, and will trigger E-stop if this signal is not present, or does                                     
not change within 20 milliseconds of its previous change. The safety chain requires both the                             
remote E-stop as well as the physical E-stop to be enabled in order to operate. Triggering one                                 
Estop or the other will disable power to the motors, forcing the robot to halt operation. In the                                   
event of an emergency, the robot can be disabled by triggering the remote estop, or physically                               
pressing the big red button. After triggering an E-stop, the robot can then be interacted with                               
confidence knowing that it will not suddenly leap into motion. 
 

Software Strategy and Mapping Techniques 

 
Our vehicle’s software systems are designed to achieve the long term goal of robust,                           
low-maintenance operation. The navigation system consists of two primary parts: 
 

1. Sensors: Various sensors on board the robot. Otto implements both relative sensors (which                         
measure local velocity or acceleration) and absolute sensors (which return measurements                     
in a global frame and do not drift over time). 

 
2. Algorithms: use UKF to combine data from multiple noisy sensors measuring different                       

states of the robot. 
 
The obstacle detection job is done by exploiting the competition map. All the points shown on this                                 
occupancy map would be treated as obstacles. The robot would recursively update its own                           



position and figure out the single closest obstacle to its current position, allowing itself to                             
simultaneously travel to the next waypoint without touching any obstacle. 
  
Long term path planning currently happens by creating several manual global waypoints. These                         
waypoints exist at corners of the field, and have comparatively large acceptance thresholds. These                           
waypoints exist to guide the robot in the general direction we would like it to go. The robot is                                     
attracted to the waypoint corresponding to the next direction of travel, and repelled by its current                               
position more so the longer it occupies the same area. This means the robot will constantly seek                                 
new more optimal paths, and be biased against areas where it has been trapped previously. This                               
is how we plan to avoid dead ends. 
 
The competition field map is represented as an occupancy grid. This field map consists of                             
information coming from both the camera and the lidar. For the camera data, the first step is to                                   
do image processing. We applied perspective transformation, HSV thresholding and median filter                       
on it and later converted it into an occupancy grid, to be transformed and added to a global map                                     
of the entire competition field. 
 
For the lidar data taken from our sick LMS111, we simply convert it into an occupancy map with a                                     
polar to cartesian transformation, limited to a 20m radius around the robot. ROS transformation                           
tree data is used to easily add both of these two small and frequently updated maps to the                                   
competition map. 
 

 
 
 

Data provided by the obstacle and edge detection nodes in the competition map frame is                             
used to generates a costmap of the area around it. By solving for the optimal direction in the cost                                     
map, the robot can create local waypoints far from obstacles, which assist it in getting closer to                                 
the global waypoints. 



Our sick LMS111 and RealSense camera can also be used for odometry. Visual Odometry is                             
becoming more and more popular for its versatility and expandability, and is usually based on                             
feature tracking or dense image alignment. To perform visual odometry, we’re using the                         
algorithm RF2O, proposed by the University of Malaga at ICRA 2016, which can achieve robust                             
Planar Odometry using only Lidar information. The RF2O algorithm generally assumes the                       
environment is static and that scans are continuous. According to the literature, RF2O                         
outperforms computationally the traditional Point to Line ICP (PL-ICP) method and Polar Scan                         
Matching (PSM). One big issue with relying on lidar information for visual odometry is that a                               
typical Sick Lidar scan only provides a single strip of information. Therefore we are also using the                                 
pointcloud data from the RealSense camera for RF2O as well. 

Failure modes, Failure points and Resolutions 
 
A primary failure mode expected is for the robot to slip in wet grass or float on top of thick                                       
springy grass, it is essential that we have some means of recognizing when the robot is no longer                                   
able to achieve traction, and taking action accordingly. The robot uses optical odometry to                           
determine whether or not it has moved and by how much, and in this way it can account for                                     
errors involving loss of traction. 
 
In the event of low battery/unexpected battery drain, the robot may have operational issues. The                             
robot is capable of controlled operation for most of the batteries’ voltage availability. In the event                               
of critical low battery, the robot will continue to operate, but we will trigger a stop to ensure the                                     
robot does not pose a threat in operation. To prevent this outcome, the batteries are routinely                               
charged and checked for health so they will be ready for competition run. 
 
In the event of sensor failure, the robot has a number of redundant sensors, including multiple                               
cameras, multiple IMUs and multiple types of encoders. The UKF automatically distributes                       
weightings to the sensor input and if a sensor cuts out or produces garbage data, the UKF will tune                                     
it out to a great extent. The wheel encoders, and optical flow odometry modules perform similar                               
operations (i.e. how far did we move and in what direction) and so the failure of one will not                                     
significantly impact the result behavior of the robot. There are multiple IMUs which can cover                             
yaw data in the event one of them starts to drift significantly or one of them cuts out. Lastly there                                       
are multiple cameras for detection, and the failure of a camera, while significant, would not                             
completely halt the robots ability to navigate. 
 
Some sensors do not have duplicates such as the Novatel GPS antenna, lidar, and the downward                               
facing camera. The failure of these sensors pose critical problems to the successful operation of                             
the robot. The robot can operate for a short amount of time without good GPS data, as GPS                                   
position data is highly imprecise to begin with. The immediate operations of the robot will not be                                 
suspended in the event of such an error. However, we have occasionally in testing experienced a                               
complete crash in GPS localization. In the event of such a crash, the robot would continue to                                 
operate on lidar, IMU, and camera navigation, but would likely require E-stop as errors begin to                               
accumulate. 
 
In the event of an unrecoverable error, we will trigger a remote E-stop, and then trigger the                                 
physical E-stop , and lastly service the device. This is a last option failure recovery method and we                                   
will only resort to it when the robot can no longer sustain safe operation.  



 
In order to prevent these failure modes, we have a regimen of safety checks. Starting by checking                                 
battery voltages, and ensuring the robot has enough power to sustain operation for the required                             
course. Once this is determined to be acceptable, we will launch robot sensors to determine that                               
they are in good working order and they are receiving good data. If sensors are active and the                                   
robot successfully initialized, we will have mitigated most of the risks.  

 

Vehicle Safety Design Concepts 
 
The Otto safety system provides a triple-redundant safety check for the robot. The three                           
components are: 
 

1. Physical Emergency Stop: Red button mounted on the back of the robot. 
2. Remote Emergency Stop: Built into the Futaba remote control with a range over 100                           

meters. If the remote control is out of range or is turned off, the remote e-stop triggers and                                   
the robot ceases operation. 

3. Software Enable: The software includes a watchdog “heartbeat” measuring onboard                   
processing. The robot is only enabled when the heartbeat is active.  

 
The safety chain is implemented in hardware on a custom PCB. As shown in the circuit diagram of                                   
the wheel-relay safety chain, all three conditions (physical e-stop, remote e-stop, and software                         
enable) must be true to provide power to the wheels. When any condition is false, the robot                                 
motors no longer receiver power. 
 
 



 
 

Performance Testing to  Date 
 
UKF Testing: 
In order to design an unscented kalman filter for Otto, we first needed to characterize the various                                 
sensors which would be incorporated. To do this we placed Otto in 2 controlled environments, a                               
long hallway in Glennan building and a densely packed section of the Glennan parking lot. We                               
ran Otto in a straight line at constant speed for 10 meters in the hallway, and around a square                                     
with a perimeter of 40 meters in the parking lot, with multiple trials of each action. From these                                   
experiments, we were able to record the various sensor outputs using rosbags and compare them                             
with the known ground truth movements. 
 
To characterize the performance of each sensor, we took the recorded data from each trial and                               
isolated the sections which corresponded to known behavior, so either driving straight for 10                           
meters or turning clockwise by 90 degrees. Once these sections were isolated, we used a simple                               
calculation to determine the predicted displacement per time recorded timestep, 

x /t txdt =  total total * d  
where is the predicted displacement per recorded timestep, and are the known total  xdt               xtotal     ttotal          
distance and time period, and dt is the timestep (0.1 seconds on Otto). Knowing the predicted                               
displacement per step, we can compare each timestep with the recorded displacements using the                           
following relations, based on Otto’s non-holonomic constraints: 

(t) x(t) (t )) t xxerror = ( − x − 1 * d −  dt  
(t) (t)yerror = 0 − y  

.(t) (t)θerror = 0 − θ  
Where are the errors of each quantity at a given timestep, and x(t), y(t), and Θ(t)  , y , θxerror  error  error                              
are the sensor values at said timesteps. These relations are for Otto traveling in a straight line,                                 
similar equations can be constructed for rotational movement. For the RF2O data, all of these                             
equations are used because it returns an estimated global position in all coordinates. Due to                             



previous experience with the wheel encoders and IMUs onboard Otto, we concluded that their                           
behavior was satisfactorily linear or gaussian and did not need to be characterized. 
 
After the above sensor measurements were evaluated, code for an unscented kalman filter was                           
developed. When setting up the filter, each input sensor contributes its measurements to the                           
filter. Based on our characterizations, we adjusted each sensor for which kinds of data it was most                                 
predictable in providing. IMU’s contribute directly to rotational, and translational velocities,                     
while the wheel encoders, GPS, PX4flow, and RF2O contribute to x and y coordinates, rather than                               
differential values. We focused just on data directly output from the sensors, in the future we can                                 
also incorporate differential information so that all sensors can contribute data for most of the                             
different robot states. 
 
RealSense Testing: 
We observed that the RF2O algorithm designed for lidar works very well for lidar based                             
odometry. However, we did observe some issues with lidar only representing a thin strip of                             
information. It cannot provide the whole picture. This raises issues of detection robustness as if                             
there are obstacles at the edge of being detected. with roughness of the road, we might observe a                                   
drastically drifted odom or lost odom. One solution for this is to utilize a multi-line lidar.                               
However, the issue with multi-line lidar is that there are really few options on the market and                                 
they are inherently expensive. Therefore we started to look for alternative solutions. 
 
Intel RealSense provides a good RGBD image within 10 meters both indoor and outdoor.                           
Effectively, we can utilize the RGBD image and extract information and consider them as some                             
sort of lidar scan. We then pipe the “fake” lidar scan back to the RF2O algorithm and hence                                   
effectively, we can obtain several different lidar odometries using different features on the scene.                           
Afterwards, we input these multiple odometries into the unscented kalman filter to get a more                              
robust filtered  visual odometry. 
 
 

Initial Performance Assessments 
While the unscented kalman filter is able to perform well in feature rich environments, more                             
tuning and testing is necessary. With proper tuning we hope to overcome the performance issues                             
seen in our testing, including drift in areas with few features and the covariance failure observed                               
in some of our trials. Due to lots of inclement weather, our initial filter testing was mostly                                 
performed indoors on level ground. At the IGVC, Otto will have to navigate outside between GPS                               
waypoints and on grassy terrain. Further tuning and testing in these environments will be                           
necessary to guarantee satisfactory performance of the filter. 
 
Although the performance of the proposed RealSense visual odometry is not as accurate as we                             
expected, the loop closure test shows there are still serious drift in affect, the result gives us some                                   
confidence in this theory. We only experimented with one RealSense camera at the resolution of                             
1280x720. In theory two RealSense’s depth map can be fused together and provide a laser scan                               
consisting 2560 scans and a wider field of view. At that point, the scan result will more look like                                     
an industrial multi-line lidar. However, we didn’t proceed with this option because fusing two                           
depth map together is very resource intensive and defies our purpose of minimal computational                           
power use. 



In addition, all testing of this project is conducted indoors. Though indoor is generally considered                             
a more contained environment, but due to the building’s special reflective coating in the hallway                             
as well as glass panel on the wall, it actually introduced more error and noise to the system than                                     
the outdoor tests. 
 
Furthermore, the odometry data is mostly self-contained, without any global reference such as                         
AMCL or SLAM. There is no other sensor information for sensor fusion such as IMU or wheel                                 
encoder. Although RF2O was designed for robust odometry, considering we are not providing it                           
sufficient data, it is reasonable to have error on the result. 
 
Finally, the hallway scenario is actually a tricky setting as it has few unique features required for                                 
robust odometry. Based on our expected environments, the theory of using RealSense’s depth                         
map for RF2O processing is  workable. 
 
 
 
 
 
 
 


