

Contents

1 Introduction 2

2 Team Organization 2

3 Innovations 3

4 Mechanical Design 4
4.1 Introduction . 4
4.2 Chassis Design . 4
4.3 Manufacturing of the bot . 6

5 Electrical Design 7
5.1 Introduction . 7

5.1.1 Safety PCB . 7
5.1.2 Power Distribution . 7
5.1.3 Battery Level Indicator . 8
5.1.4 Signal and Power Isolation for Roboteq . 8
5.1.5 LED Driver . 8
5.1.6 Evaluation of PCB . 8
5.1.7 Minimizing EMI Radiations . 8
5.1.8 Safety . 9
5.1.9 Miscellaneous . 9

5.2 Power Consumption . 9
5.3 Motor Interface . 10
5.4 Wireless Joystick . 10
5.5 Emergency Stops . 10

6 Software Strategy 11
6.1 Introduction . 11
6.2 Perception . 11
6.3 Processing . 12
6.4 Planning . 13
6.5 Pursuit . 15
6.6 Simulation . 15
6.7 Interoperability . 15

7 Initial Performance Assessments 16

8 Failure Modes 17

9 Cost Estimation 17

10 Acknowledgements 17

1

1 Introduction

Team Abhiyaan is a group of 15 interdisciplinary students enrolled in undergraduate as well as postgraduate

engineering programs of Indian Institute of Technology (IIT) Madras. Fueled by common passion for autonomy,

we work in Center For Innovation (CFI), a 24x7 Student Innovation Lab in IIT Madras. We have considered

all the failures and shortcomings that Kernel had faced in IGVC 2018 and reassessed our thought process and

brainstormed to come up with novel and innovative ideas. Virat is our third prototype manufactured for the

purpose of participating in IGVC and this design report serves to document all the details. Virat is superior

than its predecessor Kernel 2.0 in terms of both performance and reliability. Virat is powered by state of the

art Artificial Intelligence techniques surpassing its previous version by a large margin.

2 Team Organization

Figure 1: Team Structure

The team is organized into 4 modules: Mechanical, Elec-

tronics, Software and Management; based on the exper-

tise and domain knowledge that is required in building

the prototype and striking sponsorship deals for compo-

nents and logistics. Modules have clear cut roles and

responsibilities and many team members contribute to

multiple modules . The team is overseen by a faculty

advisor and two team heads. The team heads coordi-

nate between each modules, organize meetings, evaluate

progress and report to the faculty advisor. Each mod-

ule has a head and is responsible for progress within the

module. Module heads report progress to the team heads

and each other. The Management team looks after all

non-technical tasks including talent acquisition, public

relations, strategic industrial relations etc. The Mechan-

ical module has members working in Design, Simulation

and Manufacturing of the prototype. It overlaps with

the Software and Electronics team in the area of Control

systems and Mechatronics. The Electronics team deals with the electronic circuitry, sensor data acquisition

& signal processing and actuation. They overlap with the Software team in the area of embedded systems

and micro-controller programming. The software team works with the development of software solutions for

Autonomous Navigation and Inter-operability.

2

3 Innovations

Figure 2: Innovations in Virat

• Conformance with SAE JAUS

Virat is conforms to the Joint Architecture for Unmanned Systems(JAUS) standards set by the Society

of Automotive Engineers (SAE).

• Object Detection Using Camera

We use inputs from the camera to detect regions where there is high probability for an object to be. This

information helps removal of false detections of lanes. This also helps in removal of striped barrels and

other objects from the camera frame.

• Deep Learning Based Lane Detection

We developed lane detection algorithms using state of the art Deep Learning and Artificial Intelligence

techniques. This prooved to be more robust and stable than all previous versions.

• Multiple Pathplanners

The vehicle can toggle between the following path-planning algorithms before every run.

– RRT* Informed

– A*

– Dijkstra

Rapidly exploring Random Tree (RRT) is an exploration based path-planning algorithm. It offers efficient

re-planning with dynamic obstacles. A* and Dijkstra were already implemented in the previous version.

• Improved Pure Pursuit

We use a dynamically varying goal directed algorithm (Pure Pursuit) in the controller module. It computes

3

short-term goals, plans a smooth path for the vehicle to reach it and generates the differential drive

velocities based on the trajectory and vehicle kinematics. The algorithm was improved to take care of

edge cases which the previous version (Kernel 2.0 IGVC 2018) was unable to handle.

• Offline Teleoperation

The vehicle can be remotely controlled using a compatible joystick even if the on-board computer is off

or in sleep mode.

• Battery Monitor

Virat has an inbuilt battery health monitor which gives a notification on the onboard computer if the

battery level drops below a threshold value.

• Safety PCB

A separate PCB that distributes power to various sensors from the mother board is designed to maximize

the ease of handling of multiple sensors.

• Size Optimization

Unlike last year’s bot which was quite big, we have optimized the size to be just above the minimum

required dimensions. This will make movement easier, allow for smaller turning radius and will lead to

reduction in weight. At the same time, we have not compromised on space for placing components and

devices.

4 Mechanical Design

4.1 Introduction

Figure 3: 3D model of the bot

The primary objective of mechanical module of Team Abhiyaan was

to build an efficient bot considering both mechanical and electrical as-

pects. While designing the bot we concentrated on bot’s structural

rigidity, weight optimization, low center of gravity for increased stabil-

ity, serviceability, aesthetics and compliance with rules. We also tried

to overcome various problems faced by the previous year’s bot.

4.2 Chassis Design

Mechanical designing consists of chassis design and analysis, material

selection , motor and gear combination, 3D modeling of parts and assembly. This year’s bot has three wheels,

two wheels connected to motor in the rear and one dual castor wheel setup on the front side.

• Modularity: The design was made from scratch to include the new changes. Keeping transportation con-

straints in mind, the chassis is made modular by dividing it in two parts, namely, front and rear portions.

Mechanical fasteners and welding were used to join the individual members in the portions respectively.

Allowance for sensor mounting and device placement was considered according their requirements while

designing. We got constant feedback from the software and electrical modules for the same during the

design phase.

4

• Modeling: Autodesk Fusion 360 was used for modeling of the bot and to create manufacturing drawings.

The chassis, all the sensors, motor assembly, wheels and bot covering were modeled and assembled on

the software. The rear portion was made by a combination of aluminum sheet and beams and the front

one with a combination of aluminum strut profiles and beams. We also made sure that the bot looked

aesthetically pleasing and incorporated some stylish designs while modeling. We designed the bot in

Fusion 360 according to the rules and then manufactured it.

• Material Selection: It was decided to use aluminum for the bot frame due to its relatively low weight

for its strength and cheaper cost compared to other materials. The chassis is the structure which bears

overall load of the bot and it needs to be strong and rigid enough to carry this load. Initially it was

planned to use beams to manufacture the rear chassis but experience from previous years required us to

reduce weight and dependence on welding and hence we went with Al sheet metal of thickness 4mm. For

the front portion, aluminum struts from Modular Assembly Technology were used for their versatility and

weight to strength ratio.

• Wheel and Motor Assembly This time, we used better driving wheels which have a greater width

as a result of which we get much better traction.As opposed to last year, we have used only one dual

castor wheel and that too made of rubber and with inbuilt bearings to reduce vibrations and increase

smoothness while driving. The driving wheels at the rear of the bot are attached to the aluminum frame

by means of bearing and fasteners which provides a reliable connection to the main body. Aluminum was

selected for manufacturing of motor mounts. The motor mounts carry a large percentage of stress from

the wheels and house expensive motors making their structural integrity of paramount importance. Thus

it was decided to use bearing plates since it provides extra strength against larger bending torques even

though it commands a higher weight. The tires are attached to the body via a well distributed assembly

which solved last year’s problems with connection and bending of wheels. Castor wheels are mounted

with the help of an adjustable mount whose height can be varied slightly if needed.

• Motor and Gear combination: The possible motor types and gear ratio are selected by calculating

the torque required for driving the vehicle at maximum required speed. Total effective effort can be given

as:

T =
TTE ∗D

2 ∗ n
(1)

where, T = torque per wheel, TTE = Total tractive effort, D = Diameter of powered wheel.

TTE = RR+GR (2)

where, TTE = Total tractive effort, RR = Force necessary to overcome rolling resistance, GR = Force

required to climb an inclination.

RR = M ∗ g ∗ Crr (3)

where, M = Total weight of the vehicle, g = gravity, Crr = Surface friction.

GR = M ∗ g ∗ sin(θ) (4)

5

where, θ = Maximum inclination

ω =
2V

D
∗ 60

2π
(5)

where, ω = Angular velocity of wheels.

For M = 50kg, g = 9.81 m/s2, Crr = 0.055 (grass), θ =15 and D = 254 mm (10 inch):

RR = 27.06N , GR = 127.34N , TTE = 154.4N , T = 9.8044Nm

Therefore,

Vmax = 2.23m/s(5mph)⇒ ωmax = 167.67RPM

Vmin = 1.34m/s(3mph)⇒ ωmin = 100RPM

According to above results, following combination of motor and gear chosen:

S No Specification unit Value

1 Nominal Voltage V 24

2 Nominal Current A 10.8

3 No load speed RPM 5950

4 Nominal Torque mNm 405

S No Specification unit Value

1 Reduction - 66:1

2 Max. continuous torque Nm 30

3 Mass inertia gcm2 16.7

4.3 Manufacturing of the bot

Figure 4: Front portion manufacturing and Total Chassis.

• Process Planning - The bot is divided into two parts,front and rear berth. The rear berth was manu-

factured first followed by motor to wheel coupler and then the front portion was manufactured.

• Manufacturing - The aluminum chassis was manufactured at the IIT-M Central Workshop and a few

other workshops around Chennai. For high precision, CNC machines were used. For the sheet metal

components, laser-cutting and press brakes were used. Wherever aluminum beams were to be welded,

tig welding was carried out using highly skilled labor. We also used 3-D printing for manufacturing

some sensor mounts. A strict timeline for manufacturing was followed to devout to troubleshooting and

reiterating the design.

• Waterproofing - Virat can be operated in the event of light rains as all the electrical and software

components have been covered with suitable waterproofing material. GPS and the LIDAR body are

waterproof by themselves and hence, are left open.

6

5 Electrical Design

5.1 Introduction

The electrical circuitry of Virat is an improved revision of the previous one. It includes a custom designed

central Printed Circuit Board that coordinates and caters to all features of the vehicle. The design is more

safer and efficient, hence increasing the runtime of the vehicle by a considerable amount. We implemented a

distributed power system this year that uses a single battery. We also developed a compact and customized

Printed Circuit Board to cater to all features of the bot. TIVA TM4C123GXL is the micro controller used.

Motors and motor drivers have been calibrated in a better way to reduce odometry errors to a large extent.

Figure 5: Electrical Flow diagram.

5.1.1 Safety PCB

Figure 6: Components of PCB.

The main components and sensors which include GPS, LIDAR,

Router, Roboteq motor controller, NUC and the USB Hub are

connected to their respective power supply via a fuse and switch,

in a PCB separate from the main one. These are then connected

to the main PCB. This is done to provide additional safety to

these components, and also for easier switching of required com-

ponents, while testing the bot.

5.1.2 Power Distribution

The primary power for all systems is provided by the designed Printed Circuit Board. All the components in the

vehicle are powered by a single source of 25.9V, 46.8 Ah Lithium ion battery. The PCB supplies 3.3V, 5V, 12V,

19V and 24V to the required components. Different buck converter ICs are used from efficient stepping down

7

of voltages. These ICs turn on and off using PWM. Thus by using the desired duty cycle, we get appropriate

power supply with an efficiency of more than 95% in conversion of voltages. This is better than the Linear

Voltage Regulators used last year which were not energy efficient. ICs used for power distribution are

1. TPS54202 - For converting 24 volt input to 5 volt output. This 5 volt is used for powering other IC’s and

for powering SC189

2. TPS54202 - For converting 24 volt input to 12 volt output. This 12 volt is used for powering relay and

router

3. TPS54302 - For converting 24 volt input to 19 volt output. This 19 volt is used for powering NUC.

4. SC189 - For converting 5 volt input to 3.3 volt output. 5 volt is output of TPS54202 and output 3.3

voltage is used to power XBEE and SI8621.

5.1.3 Battery Level Indicator

We process the data required to calculate the battery voltage level as analog readings using the TIVA micro-

controller, and apply a moving average filter on it to smoothen the spikes and noise. The battery voltage levels

will then be sent as messages to the ROS system from PCB. So, in case the battery levels go below 22V, all

controls from software would be stopped to prevent damage to the components.

5.1.4 Signal and Power Isolation for Roboteq

No path must be created between the ground terminal of the Input Output DB15 Connector of Roboteq and

ground terminal of the main power supply. In case the controller’s ground terminal is disconnected but power

terminal is still connected, high current may flow through controller which may damage the controller. Thus

the signal and power should be isolated. We use RE0505S to power isolation and to create Isolated continuous

power supply for input/output connector of Roboteq. Thus they create an electrically isolated supply from the

main power supply from the battery and works like a secondary battery. SI8621 is used to isolate 3.3 V signals

data transmission signals. SI8620 isolates 5V encoder channel signals.

5.1.5 LED Driver

LEDs are current controlled devices. Hence the LED driver AL8860 maintains constant current. The IC can

take upto 1.5A and the inductor used regulates it to 300mA. The input Supply is up to 40V. By changing the

frequency, the LED can be made blinking or solid depending on manual or autonomous mode of Virat.

5.1.6 Evaluation of PCB

Several test points have been placed around the PCB for troubleshooting any problem. LED indicators green

in color has been used to indicate power transmission whereas red LEDs are used to indicate data transmission.

5.1.7 Minimizing EMI Radiations

1. As the LED Driver switches on and off at a higher frequency, an alternating magnetic field is created

which leads to production of electromagnetic radiation. These waves affects the IMU data, NUC or any

sensitive electronics. Thus the magnetic field is shielded by using ferromagnetic material.

8

2. Loops in the PCB act as inductor coils and enhance electromagnetic interference. Thus the area of loops

is minimized to reduce the EMI radiation.

3. Thin ground wires have been used to prevent back flow of EMF and flow to other components since it

has higher resistance.

4. Noise generation during communication has been reduced by keeping the communication lines away from

noise generation circuits and keeping them near ground.

5. Schottky diode is used for fast switching of relays and it also has very less voltage drop. Ferrite bead is

used to reduce the electromagnetic interference generated due to fast switching of relays

5.1.8 Safety

1. Resettable Fuses are installed in the PCB which provides resettable overcurrent protection. Once the

circuit is broken for higher currents, it makes the circuit again after a small time interval.

2. Buck Converters have short-circuit protection. Thus the maximum current won’t go above a specified

limit in any case in PCB.

3. A diode is placed to prevent plugging input terminals in the reverse polarity.

4. If the input voltage is less than 24 volt, the power circuit is cut off which provides protection against low

voltage.

5.1.9 Miscellaneous

1. Relays are operated by providing signals from TIVA through ULN2003 Darlington Transistors.

2. Output voltages of three terminals can be chosen between 5V, 12V, 24V by populating the corresponding

resistor.

3. The TIVA board can be powered either through PCB or through USB while priority is given to USB by

using a diode.

5.2 Power Consumption

Figure 7: Power Consumption
Chart.

Virat uses a Lithium-ion battery of rating 25.9V-46.8Ah with total ca-

pacity of 1200Wh. The Battery has a built-in battery monitoring sys-

tem (BMS) for cell balancing, over-voltage, under-voltage and short-circuit.

As the figure shows, the Lithium-ion battery provides 24V to the Li-

DAR, Motor Controller, GPS and Buck converter that converts 24V to

19V to power up the NUC, 12V to power up the Router and LED, 5V

to power up the TIVA-board and 3.3V to power up the XBEE. It also

provides the required voltage for powering up the DC to DC buck con-

verter ICs, Relays, Led Driver IC etc. Having a single source for ev-

erything makes Virat more compact and simple. The maximum esti-

mated power consumption including consumptions by each component,

DC-DC conversion losses and technical losses (including Heat losses) is

9

680W.

Estimated Runtime considering Total Capacity divided by Max

Maximum power consumption = estimated power consumption = 1.76 hr

The runtime of 1.76 hours is when the bot is under maximum power consumption. In normal running cases,

we had a runtime of over 4 - 5 hours during testing period. The batteries takes about 2 hours to be completely

charged. Virat uses Lithium ion batteries having more volumetric as well as specific energy densities compared

to last year’s Li-Po batteries. This reduces payload as well as storage space. All battery connections are made

by using XT-60 connectors with appropriate power ratings.

5.3 Motor Interface

Figure 8: Motor Interface.

Virat uses the Roboteq SDC2160 2x20A high performance dual channel

brushed DC motor controller with HEDS-5540 quadrature encoders. The

controller is operated by Robot Operating System (ROS) through serial

communication. It includes an elite 32-bit microcomputer and quadrature

encoder input to perform motion control algorithms in closed loop speed

mode. Closed loop speed modes ensure that the motor(s) will run at a

precise desired speed. It collects the motor‘s feedback from the encoder

through digital input pins of the controller which utilizes PID loop control

to improve the precision of speed. This controller has internal memory which

is able to hold configuration settings that controls operation of motors.

5.4 Wireless Joystick

Figure 9: Flow of Data.

A wireless joystick has been designed for controlling the bot manually when it is not in ‘autonomous’ mode.

The joystick is an analog 2-axis thumb device. Data is transmitted through XBEE S2C which has an operating

range of 2000 feet. The wireless Joystick can also switch between manual and autonomous mode. It could also

stop the bot in case of an emergency.

5.5 Emergency Stops

The following are the implementation of emergency stops in Virat:

• Mechanical E-Stop - Hardware Controlled

• Wireless E-Stop - Hardware Controlled

10

• JAUS Emergency message - Software Controlled

The motor power is connected through the RF module on the bot. This RF Module helps to control the circuit

wireless by switching it ON/OFF using a remote control and has a range up to 100 meters. This serves as

the Wireless E-stop, added to the Mechanical E-stop (Push-button) on the vehicle. Both the Wireless E-Stop

and the Mechanical E-Stop turn off the power of only motor instead of turning off the entire vehicle and

it’s components which may cause damage to NUC, Router and other electronic devices. Both these devices

are hardware controlled. The vehicle can also be entered in emergency mode through software control using

appropriate Joint Architecture for Unmanned Systems(JAUS) transmissions by a controlling agent. When Virat

receives an emergency message through a JAUS message, the velocity of the vehicle is immediately set to zero

and the vehicle enters an emergency state. A ‘clear emergency’ message has to be transmitted through JAUS

for the vehicle to return to normal state.

6 Software Strategy

Virat’s software stack is built on the Robot Operating System(ROS) and runs on Linux. ROS offers simple

interfaces with sensors through nodes, topics and services to help manage the hardware abstraction and low-

level control. Moreover, ROS is very popular and it has a large and active community. There are ever-growing

contributions and the APIs are well documented which accelerated the development of our software stack. It

is scalable, provides graphs of processes for easy debugging and allows control of the robot through multiple

networked machines.

Virat uses state of the art techniques like Artificial Intelligence and Deep learning for perception.

6.1 Introduction

Figure 10: Role of Software Stack.

We obtain noisy data from the environment at every instant of

time. Our goal is to process and filter this noisy data in real time

and take optimal actions that will yield better results in the long

run. The actions that we choose in turn affect the environment.

Our software stack is designed to be modular so that any com-

ponent of the stack can be replaced independent of the other

components. This allows for major changes and replacements in

the code-base with minimal change to the existing code. We also

developed our own algorithms that are robust and can be cus-

tomized to suit our needs.

Our navigation stack can be sub divided into Perception, Pro-

cessing, Planning and Pursuit.

6.2 Perception

Perception includes getting data about the surrounding environment. Virat uses a 2D Light Detection And

Ranging (LiDAR) as a range sensor. The LiDAR gives data about the location of the immediate obstacle in

every direction from the bot. This helps in determining the location of barrels and other obstacles. Virat has 2

forward facing cameras slightly inclined to the left and right. Optical data is used for lane keeping. The wheel

11

Figure 11: Sensors and Perception in Virat

encoders give information on how much each wheel has moved from the start. This information can be used to

track the position of the vehicle. We also have an Inertial Measurement Unit (IMU) to get the orientation of

the vehicle. The IMU also acts as an accelerometer.

6.3 Processing

Mapping and Obstacle Avoidance

For indoor regions, the GPS data is insufficient for accurate localization. So we use a 2D LiDAR to perform

Simultaneous Localization And Mapping (SLAM). It scans the environment horizontally and laser scans are

fused with odometry data to map the surroundings. In outdoor regions, localization is performed using Extended

Kalman Filter and the obstacles are detected using laser scans. An occupancy grid is constructed using this

information. Information about lanes and potholes are also added to the map.Localization is essential for getting

accurate pose estimates of the robot. The robot must be able to locate itself in a particular frame of reference

and must be able to keep track of its state as it moves. Since we have to localize in a sparsely populated

outdoor environment, SLAM is not a good choice as the features are sparse. Hence we resort to using GPS

coordinates (latitude and longitude) as the major source of location data. We also get pose estimates from the

wheel encoders which track the odometry of the robot. However we observe much more drift and increase in

covariance of the wheel odometry data and hence we use the GPS as the primary source of position data. The

IMU helps in getting accurate orientation and angular acceleration data which can be fused together with the

GPS position data to get an accurate pose estimate of the robot. The IMU also offers us data about linear

acceleration however we observe this to be noisy and hence discount this data. We fuse all the sensor data

using Extended Kalman Filter which uses a non linear model to propagate the system state. Although vanilla

KF which uses a linear model has been theoretically proven to converge unlike EKF, the latter performed much

12

Figure 12: Lane Detections (Raw outputs from the network) illustrated in the blue channel. Test Image From:
SeDriCa, Indian Institute of Technology Bombay, IGVC 2017 Winning Run

better in our case.

Lane Detection

The vehicle has to detect white lanes on green grass. We use a Fully Convolutional Neural Network to segment

out lanes in the images. The architecture of the network is custom designed to obtain best results and to

reduce the time for inference. The network is trained with images of lanes from IGVC from the past. The

architecture was implemented in Tensorflow and integrated with ROS. The image was pre-processed using

histogram equalization. This is done to nullify any effects arising due to the different white balance in cameras.

The output is then resized to 512x512 and fed to the neural network. The network uses a stride of 2 and does

not use max-pooling as opposed to the convention. This is because having a stride of 2 approximates the result

of a convolution operation with stride one and max-pooling with kernel size 2x2, with significantly lower amount

of computation (nearly 1/4th of the original computational expense). Padding with zeros were done to make

the output have the same size as that of the input. Transpose convolutions (aka Deconvolutions) were used for

image generations. Rectified Linear Units (ReLUs) were used as activation functions in all layer except the last

where sigmoid was used to squish the output values between 0 and 1. The output is a 512x512 matrix with

each pixel representing the probability of that pixel being in a lane.

We notice that the network has even learned to differentiate between sky and lanes. We also see that no striped

barrels are detected as lanes. White potholes can also be detected by the Network.

6.4 Planning

Path planning deals with the problem of finding the optimal path from start state to goal. There are two

types of planners viz.Global Planners,Local Planners. Local Planners deal with finding optimal path over short

distances in order to avoid dynamic obstacles whilst the Global Planner finds the overall optimal path from

13

Figure 14: Dijkstra Path Planning.
Purple cells indicate the cells
visited before finding an optimal path.

Figure 15: A* Path Planning.
Purple cells indicate the cells
visited before finding an optimal path.

start to goal. The Local Planner that we are using is integrated with the Pure Pursuit Controller(see 6.5).

Figure 13: RRT* Informed Path
generation

RRT(Rapidly exploring Random Trees) can efficiently deal with un-

seen obstacles without the need to re-run the algorithm multiple times. RRT

takes in cost of each grid given by the costmap and gives the optimal path

by growing a tree towards the goal. Only a part of the tree is removed

whenever an obstacle is encountered and the forest of trees thus formed are

recombined into one tree by random growth of vertices. RRT finds the so-

lution to single query problems efficiently but RRT* extends RRT to find

the optimal path but asymptotically and in doing so finds the optimal path

from a given state to every other possible state within the planning domain.

This is inefficient for a single-query problem. Informed RRT* intelligently

chooses only a subset of these possible states and finds the optimal path. This subset is chosen such that

inclusion of any state outside this set does not significantly improve the solution. The states in this subset are

described by a prolate hyperspheroid(heuristic). Also for the given subset the problem converges at a faster

rate towards the optimal solution.

Dijkstra’s Algorithm finds the shortest path by expanding vertices in the graph starting with it’s initial

pose/vertex. It expands the closest unexpanded vertices in an iterative manner until it reaches the goal. Di-

jkstra’s will always find the shortest path as long as none of the edges have negative cost. This planner is the

easiest to implement and will always find the shortest path.

A* is very similar to Dijkstra’s algorithm, the only difference being that it takes into account both the exact

cost of expanding a vertex as well a heuristic cost. In each iteration is maintains a balance between the two.

It chooses the vertex with the least of the sum of exact cost and heuristic cost. A* like Dijkstra is simple to

implement and is very reliable.

14

6.5 Pursuit

Pure Pursuit Controller

The controller gives appropriate control inputs to the robot to ensure that the planned path is followed. We

use a pure-pursuit based controller to move the robot smoothly while taking its non-holonomic constraints

into account. The controller essentially tries to mimic the human driving nature by taking a point at a fixed

distance in front of the vehicle as the immediate goal. This goal changes continuously as the vehicle moves on

the planned path, traversing through a coarse set of waypoints. Once this look-ahead goal point is found, the

controller algorithm plans a smooth curvilinear path from the current position of the vehicle to this point which

is used to generate velocities to be given to the wheels for following the intended course.

6.6 Simulation

Figure 16: Simulation in Gazebo

Gazebo, an open-source platform has been used for the simu-

lations as it is highly integrated with the ROS communication

framework and the codebase also uses ROS’s latest communica-

tion framework. A simplified 3D model of the bot in the form of

URDF file was then created that adds metadata to the meshes.

The main aspects of metadata include collisions, joint limits, in-

ertia. The sensor data collected from the plugins is made avail-

able through topics to other sub-modules that we have deployed.

This allowed us to have an easy understanding of what the ve-

hicle is seeing when it encounters a situation, which facilitates

easier debugging and optimization.

6.7 Interoperability

Figure 17: JAUS-ROS Bridge

Virat conforms to the Joint Architecture for Unmanned Systems (JAUS) standards set by the Society of

Automotive Engineers. We implemented the bridge between ROS and JAUS using OpenJAUS. This bridge

acts as an interface between Virat’s JAUS components and ROS implementation. Virat’s JAUS subsystem

consists of 2 components:

15

• Platform Management Component

The platform management component implements management services such as Discovery, Liveness, Ac-

cess Control, Events and Transport (all services implemented have version 1.0). Events like report heart

beat pulse and report access control are also implemented in the Platform Management Component.

• Navigation and Reporting

The Navigation and Reporting component implements services like Management, Waypoint Driver, Way-

point List Driver, Velocity State Sensor, Local Pose Sensor and Primitive Driver other than those inherited

from the Platform Management Component.

7 Initial Performance Assessments

• Lanes and potholes are being detected upto 10 feet with nearly 140◦ field of view at more than 10fps.

• Lane Detection algorithm is able to differentiate between objects similar to lanes like striped barrels.

• Barrels and obstacles are getting detected up to 10m distance.

• The University of Michigan Benchmark(UMBmark) test, a bi-directional Square Path Experiment is used

as a dead reckoning test for localization of the bot.The bot is programmed to move in a square of side 1m

in both directions clockwise and counter clockwise.However due to uncertainity in odometry there will

be some error in final pose when compared to initial pose.Moving in both directions removes the error

due to unequal wheel diameter as we are interested in uncertainity due to GPS,Wheel Odometry and IMU.

Figure 18: UMBmark experiment

The final position is not always exactly same and in order to calculate the offset we find the centre of

gravity of the cluster of final positions.An accuraccy of 10cm is obtained using GPS,Wheel Odometry and

IMU.

• The bot is able to move and turn as per the instructions from controller.

• Ramps of an inclination of 14 degrees are covered with average speed of 1.5m/s with a payload of 5 kg.

• Runtime of Virat with nominal load was found to be 4 hours and with full load is estimated to be 1.76

hours.

• Emergency and safety features are tested for different scenarios and are found to be working.

16

8 Failure Modes

S.No. Failure Mode Resolution

1 Low frame rate for lane detection and frame

out of sync with real time.

Distribution of computational load to GPUs

2 Blind spot in front of the bot for cameras Position another camera top down or use a 3D cam-

era

3 Errors in transformation of detected lanes to

real world frame.

Use automatic ground plane detection

4 Immediate goal directly behind the vehicle &

out of sensor fields and dead end in front.

Implement higher level planner using Finite State

Machines concept to handle recovery behaviours

5 Slippage during tight turns Implement adaptive linear velocity control to reduce

speed when in tight turns and areas of higher obsta-

cle density

6 Vibrations of the camera mount leading to dis-

torted images

Implement digital image stabilization or use mechan-

ical stabilization techniques

7 Holes off-centering due to temperature change Slotted L- clamps

8 Vibrations caused by loosening of the bolts Use washers and lock nuts

9 Wobbling or bending of wheels Tighten the nuts joining the wheels to the coupler as

soon as problem is observed

10 One or more component failures Implement a health monitoring system to immedi-

ately stop the vehicle automatically to prevent dam-

age or injuries.

9 Cost Estimation

S.No. Component Retail Cost1 Team Cost1

1 Sick LMS1xx LiDAR 5000 0

2 RPLiDAR 600 600

3 Hemisphere A101 GPS 3000 0

4 Sparton AHRS-8P IMU 1500 0

5 Intel NUC 1000 0

6 Logitech Camera 150 150

7 Printed Circuit Board 70 70

8 Roboteq SDC2160 125 125

9 TIVA TM4C123GXL 15 15

10 XBEE S2C 15 15

11 Maxon Motors 937 629

12 Maxon Gears 738 508

13 Encoders 218 146

- Total 13,368 2,258

10 Acknowledgements

We would like to thank our institute IIT Madras for providing us a platform to work on our own autonomous robot and

giving us the chance to participate in IGVC 2019. We would like to thank the Center For Innovation (CFI) for supporting

us through this journey to IGVC. We would also like to thank our faculty advisor Prof. Sathyan Subbiah for guiding us

all along.

1All costs are in US Dollars

17

