The 31 ${ }^{\text {st }}$ Annual Intelligent Ground Vehicle Competition (IGVC)

AutoNav and Self Drive

May $31^{\text {st }}$ - June $3^{\text {rd }}, 2024$
Oakland University
Rochester, Michigan
http://www.igvc.org/rules.htm

New in 2024
Cyber Challenge terminated and Cyber Security added to the Design Challenge

Originality of subsystem design added to design scoring

HBCU Award added

TABLE OF CONTENTS

```
I COMPETITION INFORMATION
    I.1 TEAM ENTRIES
    I.2 VEHICLE CONFIGURATION
    I.3 PAYLOADS
    I.4 QUALIFICATION
    I.5 INDEMNIFICATION AND INSURANCE
II AUTO-NAV CHALLENGE
    II.1 OBJECTIVE
    II.2 VEHICLE CONTROL
    II.3 OBSTACLE COURSE
    II. }4\mathrm{ COMPETITION RULES & PROCEDURES
    II.5 PRACTICE COURSE
    II.6 TRAFFIC VIOLATION LAWS
    II.7 HOW COMPETITION WILL BE JUDGED
    II.8 GROUNDS FOR DISQUALIFICATION
```

III DESIGN COMPETITION
III. 1 OBJECTIVE
III. 2 WRITTEN REPORT
III. 3 ORAL PRESENTATION
III. 4 EXAMINATION OF THE VEHICLE
III. 5 FINAL SCORING
III. 6 DESIGN REPORT FORMAT - MANDATORY
IV IOP CHALLENGE on-hold for 2024
v SELF-DRIVE CHALLENGE
V.A1 TEAM ENTRIES
V.A2 VEHICLE CONFIGURATION
V.A3 QUALIFICATION
V.A4 INDEMNIFICATION AND INSURANCE
V.B1 OBJECTIVE
V.B2 VEHICLE CONTROL
V.B3 SAFETY REQUIREMENTS AND UNIT

TESTS
V.B4 SELF-DRIVE COURSE
V.B5 SELF-DRIVE COMPETITION RULES AND

PROCEDURES
V.B6 TRAFFIC VIOLATION LAWS
V.B7 HOW COMPETITION WILL BE JUDGED
V.B8 GROUNDS FOR DISQUALIFICATION
V.B9 SELF-DRIVE SCENARIOS
V.C1 OBJECTIVE
V.C2 WRITTEN REPORT
V.C3 ORAL PRESENTATION
V.C4 EXAMINATION OF THE VEHICLE V.C5 FINAL SCORING
V.C6 SELF-DRIVE DESIGN REPORT FORMAT MANDATORY
V.D. AWARDS AND RECOGNITION
V.E. PUBLICATION AND RECOGNITION
V.F1 APPENDIX A. QUALIFICATION TESTING
V.F2 APPENDIX B. FUNCTIONS TESTING
V.F3 APPENDIX C. MAIN COURSE TESTING
V.G. REFERENCES

VI CYBER CHALLENGE on-hold for 2024
VII AWARDS AND RECOGNITION
VIII 1 AUTO-NAV CHALLENGE
VII. 2 DESIGN COMPETITION
VII. 3 SELF-DRIVE CHALLENGE
VII. 4 ROOKIE OF THE YEAR AWARD
VII. 5 GRAND AWARD

VIII PUBLICATION AND RECOGNITION
IX "IGVC In Memory Of"

I. COMPETITION INFORMATION

I. 1 TEAM ENTRIES

Teams may be comprised of undergraduate and graduate students, and must be supervised by at least one faculty advisor. Interdisciplinary (Electrical, computer, mechanical, systems engineering, etc.) teams are encouraged. Students must staff each team. Only the student component of each team will be eligible for the awards. Faculty supervisor will certify that all team members are bonafide students on application form and will also provide contact information (telephone number and e-mail address) for him and the student team leader on the form. Business/Non-Engineering students are encouraged to join teams to promote marketing, sponsorships, and other program management functions. For a student to be eligible to compete as a team member, they are required to have attended at least one semester of school as a registered student between June 2022 and June 2023.

Team sponsors are encouraged. Sponsors' participation will be limited to hardware donation and/or funding support. Sponsors logos may be placed on the vehicle and may be displayed inside of the team maintenance area. Teams should encourage sponsor attendance at the IGVC.

Schools are encouraged to have more than one entry; but are limited to a maximum of three per school, and each vehicle must have a separate team of students and a design report in a defined format. See design rules for format. Each entry must be based on a different chassis and software and must be documented by a separate application form and design report, submitted in accordance with all deadlines. All entries must have a team name and each application will be accompanied with a $\$ 500.00$ non-refundable (after 1 March) registration.
Registrations will be accepted on a first come first served basis. Register early to assure a confirmed team entry. Registrations are being accepted beginning 15 October 2023 and not later than February 28, 2024, by registering online at Oakland University to provide registration URL. Questions regarding registration should be directed to OU PACE at Professional and Continuing Education (PACE) <oupace@oakland.edu

International Teams Note
International (non-United States Teams) requiring Visa invitation letters must limit team participation to a maximum of twelve students and two faculty. Changes and additions to original submission entry are not permitted after March 30th, 2024

I. 2 VEHICLE CONFIGURATION for Autonomous Navigation (AutoNav)

The AutoNav competition is designed for a small semi-rugged outdoor vehicle. Vehicle chassis can befabricated from scratch or commercially bought. Entries must conform to the following specifications:

- Design: Must be a ground vehicle (propelled by direct mechanical contact to the ground such as wheels, tracks, pods, etc. or hovercraft.
- Length: Minimum length three feet, maximum length seven feet.
- Width: Minimum width two feet, maximum width four feet.
- Height: Not to exceed 6 six feet (excluding emergency stop antenna).
- Propulsion: Vehicle power must be generated onboard. Fuel storage or running of internal combustion engines and fuel cells are not permitted in the team maintenance area
(tent/building).
- Average Speed: Speed will be checked at the end of a challenge run to make sure the average speed of the competing vehicle is above one (1) mph over the course completed. Vehicle slower than the minimum average speed will be disqualified for the run.
- Minimum Speed: There will be a stretch of about 44 ft . long at the beginning of a run where the contending vehicle must consistently travel above 1 mph . A vehicle slower than this speed is considered to "hold-up traffic" and will be disqualified.
- Maximum Speed: A maximum vehicle speed of five miles per hour (5 mph) will be enforced. All vehicles must be hardware governed not to exceed this maximum speed. No changes to maximum speed control hardware are allowed after the vehicle passes Qualification.
- Mechanical E-stop location: The E-stop button must be a push to stop, red in color and a minimum of one inch in diameter. It must be easy to identify and activate safely, even if the vehicle is moving. It must be located in the center rear of vehicle at least two feet from ground, not to exceed four feet above ground. Vehicle E-stops must be hardware based and not controlled through software. Activating the E-Stop must bring the vehicle to a quick and complete stop.
- Wireless E-Stop: The wireless E-Stop must be effective for a minimum of 100 feet. Vehicle E -stops must be hardware based and not controlled through software. Activating the E-Stop must bring the vehicle to a quick and complete stop. During the competition performance events (Autonomous Challenge and Navigation Challenge) the wireless E-stop will be held by the Judges.
- Safety Light: The vehicle must have an easily viewed solid indicator light which is turned on whenever the vehicle power is turned on. The light must go from solid to flashing whenever the vehicle is in autonomous mode. As soon as the vehicle comes out of autonomous mode the light must go back to solid.
- Payload: Each vehicle will be required to carry a 20 -pound payload. The shape and size is approximately that of an $16 " \times 8$ " x 8 " cinder block. Refer to section I. 3 Payload.

I. 3 PAYLOAD

The payload must be securely mounted on the vehicle. If the payload falls off the vehicle during a run, the run will be terminated. The payload specifications are as follows: 18 inches long, 8 inches wide, 8 inches high and a weight of 20 pounds.

I. 4 QUALIFICATION

All vehicles must pass Qualification to receive standard award money in the Design Competition and compete in the Auto Nav performance events. To complete Qualification the vehicle must pass/perform all of the following criteria.

- Length: The vehicle will be measured to ensure that it is over the minimum of three feet long and under the maximum of seven feet long.
- Width: The vehicle will be measured to ensure that it is over the minimum of two feet wide and under the maximum of four feet wide.
- Height: The vehicle will be measured to ensure that it does not to exceed six feet high; this excludes emergency stop antennas.
- Mechanical E-stop: The mechanical E-stop will be checked for location to ensure it is located on the center rear of vehicle a minimum of two feet high and a maximum of four feet high and for functionality.
- Wireless E-Stop: The wireless E-Stop will be checked to ensure that it is effective for a minimum of 100 feet. During the performance events the wireless E -stop will be held by the Judges.
- Safety Light: The safety light will be checked to ensure that when the vehicle is powered up the light is on and solid. When the vehicle is running in autonomous mode, the light goes from solid
to flashing, then from flashing to solid when the vehicle comes out of autonomous mode.
- Speed: The vehicle will have to drive over a prescribed distance where its minimum and maximum speeds will be determined. The vehicle must not drop below the minimum of one mile per hour and not exceed the maximum speed of five miles per hour. Minimum speed of one mph will be assessed in the fully autonomous mode and verified over a 44 foot distance between the lanes and avoiding obstacles. No change to maximum speed control hardware is allowed after qualification. If the vehicle completes a performance event at a speed faster than the one it passed Qualification at, that run will not be counted.
- Lane Following: The vehicle must demonstrate that it can detect and follow lanes.
- Obstacle Avoidance: The vehicle must demonstrate that it can detect and avoid obstacles.
- Waypoint Navigation: Vehicle must prove it can find a path to a single two meter navigation waypoint by navigating around an obstacle.

During the Qualification the vehicle must be put in autonomous mode to verify the mechanical and wireless E -stops and to verify minimum speed, lane following, obstacle avoidance and waypoint navigation. The vehicle software cannot be reconfigured for waypoint navigation qualification. It must be integrated into the original autonomous software. For the max speed run the vehicle may be in autonomous mode or joystick/remote controlled. Judges will not qualify vehicles that fail to meet these requirements. Teams may fine tune their vehicles and resubmit for Qualification. There is no penalty for not qualifying the first time. Vehicles that are judged to be unsafe will not be allowed to compete. In the event of any conflict, the judges' decision will be final.

I. 5 INDEMNIFICATION AND INSURANCE

Teams will be required to submit an Application Form prior to February 28, 2024. The Application Form can be downloaded from www.igvc.org.

Each Team's sponsoring institution will also be required to submit a Certificate of Insurance at the time the Application Form is submitted. The certificate is to show commercial general liability coverage in an amount not less than $\$ 1$ million.

In addition, each individual participating at the competition will be required to sign a Waiver of Claims when they arrive at site and before they can participate in the IGVC events.

NOTE: The IGVC Committee and Officials will try to adhere to the above official competition details, rules and format as much as possible. However, it reserves the right to change or modify the competition where deemed necessary for preserving fairness of the competition. Modifications, if any, will be announced prior to the competition as early as possible.

II AUTO-NAV CHALLENGE COMPETITION

All teams must pass Qualification to participate in this event.

II. 1 OBJECTIVE

A fully autonomous unmanned ground robotic vehicle must negotiate around an outdoor obstacle course under a prescribed time while maintaining a minimum of speed of one mph over a section and a maximum speed limit of five mph , remaining within the lane, and avoiding the obstacles on the course.

Judges will rank the entries that complete the course based on shortest adjusted time taken. In the event that a vehicle does not finish the course, the judges will rank the entry based on longest adjusted distance traveled. Adjusted time and distance are the net scores given by judges after taking penalties, incurred from obstacle collisions and boundary crossings, into consideration.

II. 2 VEHICLE CONTROL

Vehicles must be unmanned and autonomous. They must compete based on their ability to perceive the course environment and avoid obstacles. Vehicles cannot be remotely controlled by a human operator during competition. All computational power, sensing and control equipment must be carried on board the vehicle. No base stations allowed for positioning accuracy is allowed. Teams are encouraged to map the course and use that information to improve their performance on the course.

II. 3 Auto-Nav COURSE

The Auto-Nav Challenge is on asphalt pavement. The Course will be approximately 450 feet long inan area 120 ft wide and 100 feet deep. This distance is identified so teams can set their maximum speed to complete the course pending no prior violations resulting in run termination. Track width will vary from ten to twenty feet wide with a turning radius not less than five feet.

Outer boundaries will be designated by continuous or dashed white lines approximately three inches wide, taped on the asphalt. Track width will be approximately ten feet wide. A minimum speed will be required of one mph and will be a requirement of Qualification and verified in each run of the Auto-Nav Challenge. If the vehicle does not average one mph for the first 44 feet (30 seconds) from the starting line, the vehicle run will be ended. The vehicle will then need to average over one mph for the entire run.

Competitors should expect natural or artificial inclines (ramps) with gradients not to exceed 15% and randomly placed obstacles along the course. The course will become more difficult to navigate autonomously as vehicle progresses. Obstacles on the course will consist of various colors (white, orange, brown, green, black, etc.) of construction barrels/drums that are used on roadways and highways. Natural obstacles such as trees or shrubs and manmade obstacles such as light posts or street signs could also appear on the course. The placement of the obstacles may be randomized from left, right, and center placements prior to every run. Simulated potholes of 2 foot diameter solid white circles may be inserted. These simulated potholes must be avoided or an end of run will occur.

There will be a minimum of five feet clearance, minimum passage width, between the line and the obstacles; i.e., if the obstacle is in the middle of the course then on either side of the obstacle will be five feet of driving space. Or if the obstacle is closer to one side of the lane then the other side of the obstacle must have at least five feet of driving space for the vehicles.

The Course will be primarily sinusoidal curves with series of repetitive barrel obstacles. Two waypoint pairs for the course will be provided prior to competition. One waypoint pair will be the entrance and exit of the course in No Man's Land. The two additional waypoints in No-Man's Land will guide the vehicles to the ramp entrance in either direction.

Six (6) minutes will be allowed for course driving/negotiation.

II. 4 COMPETITION RULES \& PROCEDURES

- The competition will take place in the event of light rain or drizzle but not in heavy rain or lightning.
- Each qualified team will have up to two runs (time permitting) in each of three heats.
- Starting order will be based on order of qualification. Teams will setup on-deck in that order. Failure to be on-deck will place you at the end of the order for the run and may forfeit you final (second) run in a heat based on heat time completion.
- No team participant is allowed on the course before the team's first run, and only one student team member is allowed on the course during a run. This shall in no case be the faculty advisor.
- At the designated on-deck time, the competing team will be asked to prepare their vehicle for an attempt. On-deck teams start in the order they arrive in the starting area unless they give way to another team.
- A Starting Official will call teams to the starting line. The Starting Official's direction is final. The Starting Officials may alter the order to enhance the competition flow of entries; e.g. slower vehicles may be grouped together to allow successive running of two vehicles on the course simultaneously.
- A team will have one minute in the starting point to prep the vehicle at the starting line and point out to the Competition Judges the buttons to start and stop the vehicle,
- The Competition Judge will start the vehicle by a one touch motion; i.e. pushing a remote control button, hitting the enter key of a keyboard, a left mouse click, lifting the e-stop up, flipping a toggle switch, etc. The Competition Judge will also carry the E-Stop.
- An attempt will be declared valid when the Competition Judge initiates the start signal at the designated competing time. An attempt will continue until one of the following occurs:
- The vehicle finishes the course.
- The vehicle was E-Stopped by a judge's call.
- The team E-Stops the vehicle.
- The vehicle has not started after one minute after moving to the start line or at the judges' discretion.
- Time for each heat will be strictly observed.
- Tactile sensors will not be allowed.
- Based on the above allowable run times, if the vehicle has not completed the course in the 6 minute time period, the attempt will be ended by a judge's choice E-stop, with no additional penalty for that run.
- Each vehicle must navigate the course by remaining inside the course boundaries and navigating around course obstacles. Crossing internal lines is not allowed and will be judged an E-Stop end of run with penalty. For the following Traffic Violations, the appropriate ticket will be issued and deducted from the overall distance or time score. Refer to section II. 5 Traffic Violation Laws.

II. 5 TRAFFIC VIOLATION LAWS

	Traffic Violations	Ticket Value	E-Stop	Measurement
$\mathbf{1}$	Hold-up Traffic	End of Run	Yes	>60 secs. to 88 ft
$\mathbf{2}$	Leave the Course/Scene	-10 Feet	Yes	Yes
$\mathbf{3}$	Crash/Obstacle Displacement	-10 Feet	Yes	Yes
$\mathbf{4}$	Careless Driving	-5 Feet	No	No
$\mathbf{5}$	Sideswipe/Obstacle Touch	-5 Feet	No	No
$\mathbf{6}$	Student's Choice E-Stop	-10 Feet	Yes	Yes
$\mathbf{7}$	Judge's Choice E-Stop	0 Feet	Yes	Yes
$\mathbf{8}$	Blocking Traffic	-5 Feet	Yes	Yes
$\mathbf{9}$	Loss of Payload	0 Feet	Yes	Yes
$\mathbf{1 0}$	Too slow, did not average $\mathbf{1 m p h}$	Disqualified	No	No

- Hold-up traffic: Must maintain 1 mph , there will be a speed check at $44 / 88$ foot mark of the course, will result in end of run with time recorded
- Leave the scenelcourse: All portions of the vehicle cross the boundary. The overall distance will be measured from the starting line to the furthest point where the final part of the vehicle crossed the boundary edge.
- Crash: The overall distance will be measured from the starting line to the collision point with the obstacle.
- Careless Driving: Crossing the boundary while at least some part of the vehicle remains in bounds.
- Student E-Stop: Student e-stop is used if the team feels that there may be damaged caused to their vehicle or they know that it is stuck and want to end their time.
- Judge E-Stop: The overall distance will be measured from the starting line to the front of the vehicle or where the final/furthest remaining part of vehicle if stopped, crossed the boundary outside edge.
- Obstacle Displacement: Defined as displacing permanently the obstacle from its original position. Slightly rocking/Tilting an obstacle with no permanent displacement is not considered obstacle displacement. An obstacle that rocks or tilts significantly but with no displacement will still be considered a end of run. Judges calls are final.
- Blocking Traffic: Vehicles stopping on course for over one minute will be E-Stopped and measured.
- Loss of Payload: If the payload falls of the vehicle the run will be ended.
- Too Slow: If the vehicle does not maintain 1 mph minimum average speed limit throughout the course this run is disqualified.

II. 6 HOW COMPETITION WILL BE JUDGED

- A team of judges and officials will determine compliance with all rules.
- Designated competition judges will determine the official times, distances and ticket deductions of each entry. At the end of the competition, those vehicles crossing the finish line will be scored on the time taken to complete the course minus any ticket deductions. Ticket values will be assessed in seconds (one foot = one second) if the vehicle completes the course within the run time.
- The team with the adjusted shortest time will be declared the winner.
- In the event that no vehicle completes the course, the score will be based on the distance traveled by the vehicle minus the ticket deductions. The team with the adjusted longest distance will be declared the winner.
- For standard award money consideration, entry must exhibit sufficient degree of autonomous mobility by completing the Auto-Nav course. If a tie is declared between entries, the award money will be split between them.
- If your vehicle is overtaken by a faster vehicle you will be commanded to stop and your time will be recorded and allowed to be restarted with remaining time after the faster vehicle passes. Total distance will be assessed at the 6 minute mark of runtime(driving) from start.

II. 7 GROUNDS FOR DISQUALIFICATION

- Judges will disqualify any vehicle which appears to be a safety hazard, degrades the course or violate the safety requirements during the competition.
- Intentional interference with another competitor's vehicle and/or data link will result in disqualification of the offending contestant's entry.
- Damaging the course or deliberate movement of the obstacles or running over the obstacles may result in disqualification.
- Actions designed to damage or destroy an opponent's vehicle are not in the spirit of the competition and will result in disqualification of the offending contestant's entry.

III. DESIGN COMPETITION for AutoNav and Self Drive

All teams must participate in the Design Competition and submit design report in mandatory format.

III. 1 OBJECTIVE

Although the ability of the vehicles to negotiate the competition courses is the ultimate measure of product quality, the officials are also interested in the design strategy and process that engineering teams follow to produce their vehicles. Design judging will be by a panel of expert judges and will be conducted separate from and without regard to vehicle performance on the test course. Judging will be based on a written report, an oral presentation and examination of the vehicle.

Design innovation is a primary objective of this competition and will be given special attention by the judges. Innovation is considered to be a technology (hardware or software) that has not ever been used by this or any other vehicle in this competition. The innovation needs to be documented, as an innovation, clearly in the written report and emphasized in the oral presentation.

III. 2 WRITTEN REPORT

The IGVC report (15 page maximum) shall follow a modified version of the American Astronautical Society (AAS) paper format that is used by the Association for Unmanned Vehicle Systems International (AUVSI). The report must follow the outlined format provided in section III. 6 (DESIGN REPORT FORMAT - MANDATORY) located at the end of this Written Report section. Each vehicle must have a complete report in defined format below of its own (a report cannot cover more than one vehicle). All reports, both for new vehicles and for earlier vehicles with design changes, must include a statement signed by the faculty advisor certifying that the design and engineering of the vehicle (original or changes) by the current student team has been significant and equivalent to what might be awarded credit in a senior design course.

Participants are required to submit an electronic copy in PDF format along with a scanned copy of the statement in PDF format by May 15, 2024. Everything must be e-mailed along with any questions to IGVCquestions@yahoo.com. Reports arriving after that date will lose 10 points in scoring for each day late, statements arriving after that date will lose 5 points in scoring for each day late. Teams are encouraged to submit reports even several weeks early to avoid the last minute rush of preparing vehicles for the competition, and there will be no penalty for last minute changes in the vehicle from the design reported. The electronic copy of the report will be posted on the competition's web site in PDF format after the completion of the competition.

The paper should present the conceptual design of the vehicle and its components. Especially important to highlight are any unique innovative aspects of the design and the intelligence aspects of the vehicle. Also included must be descriptions of:

Electronics	Design Planning Process
electrical system	signal processing
Actuators	plan for path following (both solid \& dashed lines)
software strategy	failure point \& mode
Sensors	plan for control decisions
Computers	system integration plan
Mapping	high speed operations

Design of the lane following and obstacle detection/avoidance systems must be specifically described. Along with how the vehicle uses mapping techniques to perceive and navigate through its environment. Describe how the system uses GPS for waypoint navigation and localization.

Components acquired ready-made must be identified, but their internal components need not be described in detail. The steps followed during the design process should be described along with any use of Computer-Aided Design (CAD). How considerations of safety, reliability, and durability were addressed in the design process should be specifically described, as well as problems encountered in the design process and how they were overcome. Identification of Failure Points and Modes of hardware is required. Furthermore, description of how failure points are addressed and resolved if they should occur during the days of the competition. The analysis leading to the predicted performance of the vehicle should be documented, specifically:

- Speed
- Ramp climbing ability (Self-Drive N/A)
- Reaction times
- How the system uses GPS for waypoint navigation and localization
- Battery life
- Distance at which obstacles are detected
- How the vehicle deals with complex obstacles including switchbacks and center islands dead ends, traps, and potholes)
- How the team identifies and addresses vehicle failure points and modes (Not an FMEA)
- Accuracy of arrival at navigation waypoints
- Comparison of these predictions with actual trial data is desirable.

Although cost itself is not a factor in judging (these are considered research vehicles), the report should include a cost estimate (not counting student labor) for the final product if it were to be duplicated. A breakdown of the cost by component is helpful.

The team organization and the names of all members of the design team, with academic department and class, should be included along with an estimate of the project's total number of personhours expended.

Vehicles that have been entered in IGVC in earlier years and have not had significant changes in design are ineligible in either the design or performance events. Vehicles that have been changed significantly in design (hardware or software) from an earlier year are eligible, but will require a completely new design report treating both the old and new features, thus describing the complete vehicle as if it were all new.

Judges will score the written reports as follows:	Maximum Points
1. Conduct of the design process and team organization (Including decision-making \& software development)	50
2. Failure points identification and resolution methods to be used if this failure occurs. (Not an FMEA)	100
3. Quality of documentation (English, grammar, completeness, and style)	50
4. Effective innovation represented in the design (as described above)	150
5. Description of mapping technique	100
6. Description of mechanical design	100
7. Description of electronic design	100
8. Description of software strategy	150
9. Description of systems integration Descriptions to include: lane following, obstacle detection/ avoidance, and waypoint navigation (GPS or other)	150
10. Originality by subsystem Platform By wire Sensors Controls Electronic	150

11. Efficient use of power and materials	50
12. Attention given to safety, reliability, and durability and failure modes	50
Total	$\mathbf{1 2 0 0}$

III. 3 ORAL PRESENTATION

The technical talk should relate the highlights of the written report described above and include any updates of the design since the written report. Audio or video tape presentations of the text are not allowed, but graphic aids may be presented by video, slide projection, computer projection, overhead transparencies, or easel charts. The presentation must be made by one or more student members of the team to the judges and other interested members of the audience and should last not more than 10 minutes. A penalty of 5 points will be assessed for each minute or fraction thereof over 11 minutes. After the presentation, judges only may ask questions for up to 5 minutes. The audience should be considered as a senior management group of generally knowledgeable engineers upon whom the project is dependentfor funding and the team is dependent for their employment. Scoring will be as follows:

Judges will score the oral presentations as follows:	Maximum Points
1.Clear, well planned and understandable explanation of the	
innovations	50
2.Logical organization and subject knowledge of the talk	50
3. Effective use of graphic aids	30
4. Articulation and eye contact during presentation	40
5. Demonstrated simulation of vehicle control in performance events	10
6. Response to questions	10
7. Salesmanship	10
Total	$\mathbf{2 0 0}$

Effective use of graphic aids includes not blocking the view of the screen by the presenter and simple enough graphics that are large enough to read (block diagrams rather than detailed circuit diagrams). Articulation refers to the clarity and loudness of speaking. Eye contact refers to speaking to the audience and judges (not reading notes or screen or looking above audience heads). Response to questions means short answers that address only the question. Salesmanship refers to the enthusiasm and pride exhibited (why this vehicle is the best).

Participants are responsible for providing their own visual aids and related equipment (the vehicle itself may be displayed). A computer-connected projector will be made available. Projectors may also be supplied by the participants.

During the oral presentation, the following question period and the examination of the vehicle, team members sitting the audience may participate by assisting the oral presenters, but at no time is the faculty advisor to participate in this part of the design competition.

III. 4 EXAMINATION OF THE VEHICLE

The vehicle must be present and will be examined by the judges preferably immediately after the oral presentation or at another convenient time the time during the competition. Software is not included in this judging. Judging will be as follows:

Judges will score the vehicle examinations as follows:	Maximum Points
1. Packaging neatness, efficient use of space	20
2. Serviceability	20
3. Ruggedness	20
4. Safety	20
5. Degree of original content in the vehicle (as opposed to ready-made)	50
6. Style (overall appearance)	20
Total	$\mathbf{1 5 0}$

The vehicle must be present and will be examined by the judges after the oral presentation or at another convenient time during the competition. Software is not included in this judging.

Judging will be as follows:

Scoring Criteria	Presented	Passed	Penalty Points	
	4 wheels, front and rear bumpers, fire extinguisher			
	4 manual E-stops			
	1 actuator easily accessible and labeled			
	no design elements harmful to surroundings			
Navigation System	GPS			
	IMU			
	Etc.	camera(s)	lidar(s)	
	radar(s)			

	Ultrasonic			
	Infrared			
Safety	audible and visible warning devices in RUN mode			
	rear brake lights work in autonomous mode			
	wireless E-stop system with stop/restart of the vehicle			
Defore start	5-10 seconds pause after entering into RUN mode and before moving			

Table 6: Vehicle Examination Scoring Sheet

III. 5 FINAL SCORING

The number of points awarded by the individual judges will be averaged for each of the 23 judging areas above, and these results will be offered to each participating team for their edification. The total of the average scores over all 23 areas (max 1300) will be used to determine the ranking.

When two (or three) teams of judges are used (due to a large number of entries) each judging team will determine the top three (or two) winners in their group, and the resulting six contestants will participate in a runoff of oral presentations and vehicle examinations judged by all judges to determine an overall Design Winner. The six teams will be judged in random order.

For the Finals competition four criteria from the written report judging will be added to the normal oral presentation scoring shown above for preliminary judging. Thus, the Finals Oral presentation scoring will have maximum points as below:

Judges will score the final presentations as follows:	Maximum Points
1.Clear explanation of the innovations	50
2. Description of mapping technique	30
3. Description of Electronic Design	30
4. Description of Software Strategy	30
5. Description of System Integration	30
6. Logical organization of the talk	50
7. Effective use of graphic aids	25
8. Articulation	25
9. Demonstrated Simulation of Vehicle Control	10
10. Response to questions	10
11. Salesmanship	10
Total	$\mathbf{3 0 0}$

The vehicle examination scoring will be the same as in the preliminary judging, as shown above.

III. 6 AutoNav \& Self Drive DESIGN REPORT FORMAT - MANDATORY

1. Title Page

- University/College Name
- Vehicle/Team Name
- Vehicle Photo/Sketch/Symbol
- Date Submitted
- Team Captain's Name and E-Mail
- Team Members Names and E-Mails
- Faculty Advisors Name and Statement of Integrity

2. Conduct of design process, team identification and team organization

- Introduction
- Organization
- Design assumptions and design process

3. System architecture of your vehicle

- Identify significant mechanical, power, and electronic components
- Identify the safety devices
- Identify significant software modules
- Document how these items are connected and interact in your vehicle

4. Effective innovations in your vehicle design

- Identify and describe the key innovation(s) in your vehicle that sets it apart from other vehicles
- Describe how you arrived at the innovation(s)

5. Description of mechanical design

- Overview
- Description of the significant mechanical components
- Decisions on frame structure, housing, structure design
- Suspension
- Weather proofing

6. Description of electronic and power design

- Overview
- Description of the significant power and electronic components
- Power distribution system capacity, max. run time, recharge time, safety
- Electronics suite, including computers, sensors, motor controllers
- Mechanical and wireless ESTOP systems

7. Description of software system

- Overview
- Describe sensor processing, sensor fusion, object classification, etc., to extract the items of interest around the vehicle (the current scene)
- Describe how the current scene data is combined with older scene data to build a representation of the area around the vehicle (the world model)
- Describe operating modes used in your vehicle (e.g., GPS following vs lane following), including what causes the vehicle to enter and exit each mode
- Describe how the system determines where the vehicle will go next (the trajectory)
- Describe how vehicle motion is generated and monitored from the trajectory
- Additional creative concepts

8. Cyber Security Analysis using RMF

Consider the case of a rival team disrupting your robot's software in the pit area

- Describe the NIST Risk Management Framework (RMF) process to show your understanding
- Model the threats and analyze their impact
- Select cyber controls that will protect against the high impact threats
- Describe how you would implement and test these controls

9. Analysis of Complete Vehicle

- Describe lessons learned during construction and system integration
- Identify top hardware failures that would prevent competition success and your mitigations
- Describe your software testing, bug tracking, and version control processes
- Describe your SIL virtual environment simulation testing process (e.g., Gazebo)
- Describe physical testing to date (mechanical, electronic, indoors, real world, etc.) and identify key differences in actual performance compared to predictions

10. Initial Performance Assessments How is your vehicle performing to date

-

V.C6 Additional SELF-DRIVE DESIGN REPORT FORMAT MANDATORY

1. Mandatory Unit Tests up to date (see V.B3 section 4)

- Unit test 1: Emergency stop
- Unit test 2: Emergency stop remote
- Unit test 3: Speed limit test
- Unit test 4: Right Lane boundary is crossed.
- Unit test 5: Left Lane boundary is crossed.
- Unit test 6: Object detection
- Unit test 7: Backing up operation. Speed in reverse should never exceed 2 mph (0.89 mps).

IV.

Self Drive Challenge the purpose of Self Drive is to develop student,

 faculty and university skills and experience which encompasses those required to develop automotive smart driving cars or defense intelligent vehicle systems compatible with current roadways and future intelligent highway systems. Those capabilities include camera vision systems, lane following obstacle and pedestrian avoidance, roadway and parking driving maneuvers, road network navigation, road sign understanding and other traffic functions. Components and subsystems currently used in smart driving vehicles are the preferred approach.

V.A1 TEAM ENTRIES

Teams in accordance with 1.1

V.A2 VEHICLE CONFIGURATION

1.2.1 The Self-Drive competition is designed for FMVSS-500/EU Quadricycle type electrical vehicles (EV) equipped with automotive drive-by-wire systems. The primary Side by Side 2-Person EV vehicles are John Deere, Cub Cadet, Honda, Kawasaki, Arctic Cat, Polaris, Yamaha, Kubota.

Figure 1: FMVSS-500 Vehicle Example - Polaris GEM e2

Teams may build their own drive-by-wire kits or use off the shelf drive-by-wire solutions sold by various companies such as TORC Robotics, Dataspeed, AutonomousStuff and Clearpath Robotics.
1.2.2 Design Specifications. Entries must conform to the following specifications :

- Design: Side by Side 2-person four-wheel ground vehicle
- Type of Vehicle: Electrical, no gas
- Maximum Length: 115 in (as reference, Polaris Gem e2 is 103 in, Renault Twizy is 91 in)
- Maximum Width: 60 in (as reference, Polaris Gem e2 is 55.5 in , Renault Twizy is 47 in)
- Maximum Height: 75 in (as reference, Polaris Gem e2 is 73 in, Renault Twizy is 57 in)
- Maximum Weight: 1500 lbs
- Maximum Speed: Speed is limited to 5 mph in 2022 as safety features of Self-Drive course are developed.
- Mechanical E-stop Location: The E-Stop button must be a push to stop, red in color and a minimum of one inch in diameter. It must be easily identifiable and activate safely, even if the vehicle is moving. It must be located inside the cabin, as well as outside on sides and rear of vehicle. Vehicle E -Stops must be hardware based and not controlled through software. Activating the E-Stop must bring the vehicle to a quick and complete stop.
- Wireless E-Stop: The wireless E-Stop must be effective for a minimum of 100 feet. Vehicle E-stops must be hardware based and not controlled through software. Activating the E-Stop must bring the vehicle to a quick and complete stop. During the competition performance events the wireless E stop will be held by the Judges.
- Safety Light: the vehicle must have easily identified brake lights red in color and reverse lights yellow in color. A strobe light must be mounted on roof and activated when the vehicle is under robotic control. During an autonomous mode the light must be blinking and otherwise be turned off.

V.A3 QUALIFICATION

On the first day of competition all vehicles must pass Qualification to receive standard award money in the Self-Drive Design Competition and compete in Self-Drive performance events. During the Qualification the vehicle must be put in autonomous mode to verify the mechanical and wireless E-Stops and to verify minimum speed, lane following, obstacle avoidance and waypoint navigation. The vehicle software cannot be reconfigured for waypoint navigation qualification, and must be integrated into the original autonomous software. For the maximum speed run, the vehicle may be in autonomous mode or joystick/remote controlled. Judges will not qualify vehicles that fail to meet these requirements.

Teams may fine tune their vehicles and resubmit for Qualification. There is no penalty for not qualifying the first time. Vehicles that are judged to be unsafe will not be allowed to compete. In the event of any conflict, the judges' decision will be final.

To complete Qualification the vehicle must pass or perform all of the following criteria:

- Length: The vehicle will be measured to ensure that length does not exceed specifications.
- Width: The vehicle will be measured to ensure that width does not exceed specifications.
- Height: The vehicle will be measured to ensure that height does not exceed specifications.
- Weight: The vehicle weight shall not exceed 1500 lb .
- Mechanical E-stop: The mechanical E-stop will be checked for locations:
- inside the vehicle at the instrument panel.
- outside the vehicle located on two sides and rear.
- Wireless E-Stop: The wireless E-Stop will be checked to ensure that it is effective for a minimum of 100 feet.
- Passenger(s) Safety: seat belts and helmets are required.
- Safety Light:
- The Safety Light should be located on the roof of the vehicle.
- The Safety Light is on and solid when vehicle is powered up or comes out from autonomous mode.
- The Safety Light is flashing when vehicle is running in autonomous mode.
- Speed:
- minimum speed 1 mile per hour.
- maximum speed 5 miles per hour.
- Maximum speed in reverse is 2 miles per hour.
- Lane Following: The vehicle must demonstrate that it can detect and follow lanes.
- Obstacle Avoidance: The vehicle must demonstrate that it can detect and avoid obstacles.
- Waypoint Navigation: Vehicle must prove it can find a path to a single two meter navigation waypoint by navigating around an obstacle.

During the Qualification the vehicle must be put in autonomous mode to verify the mechanical and wireless E -stops and to verify minimum speed, lane following, obstacle avoidance and waypoint
navigation. The vehicle software cannot be reconfigured for waypoint navigation qualification. It must be integrated into the original autonomous software. For the max speed run the vehicle may be in autonomous mode or joystick/remote controlled. Judges will not qualify vehicles that fail to meet these requirements. Teams may fine tune their vehicles and resubmit for Qualification. There is no penalty for not qualifying the first time. Vehicles that are judged to be unsafe will not be allowed to compete. In the event of any conflict, the judges' decision will be final.

Please see section VI.1. Appendix A: Qualification Testing for further information.

V.A4 INDEMNIFICATION AND INSURANCE see section I. 5

V.B1 OBJECTIVE

A fully autonomous unmanned ground robotic vehicle must negotiate around an outdoor obstacle course under a prescribed time while maintaining a minimum of speed of one mph over a section and a maximum speed limit of five mph, remaining within the lane, and avoiding the obstacles on the course. Judges will rank the entries that complete the course based on shortest adjusted time taken. In the event that a vehicle does not finish the course, the judges will rank the entry based on longest adjusted distance traveled. Adjusted time and distance are the net scores given by judges after taking penalties, incurred from obstacle collisions and boundary crossings, into consideration.

V.B2 VEHICLE CONTROL

Vehicles must be unmanned and autonomous. They must compete based on their ability to perceive the course environment and avoid obstacles. Vehicles cannot be remotely controlled by a human operator during competition. All computational power, sensing and control equipment must be carried on board the vehicle. No base stations allowed for positioning accuracy is allowed. Teams are encouraged to map the course and use that information to improve their performance on the course.

V. B3 SAFETY REQUIREMENTS AND UNIT TESTS

1. Overview

The Self Drive Safety Requirements had been derived from "Automated Driving Systems 2.0: A vision for safety", published by U.S. Department of Transportation [1]. The safety guidelines are aimed at guiding Self-Drive teams to analyze, identify, and resolve safety considerations prior to deployment at the Self-Drive Proving Ground.

2. Scope and Purpose

This compliance is mandatory and required for teams to participate.

3. Safety Elements

3.1 System Safety

The design and validation processes include a hazard analysis and safety risk assessment for vehicle overall design. Design decisions shall address risks that could impact safety-critical system functionality.

Design safety considerations should include:

- Design architecture
- Sensors
- Actuators
- Communication Failure
- Potential software errors
- Reliability
- Potential inadequate control
- Undesirable control actions
- Potential collisions with environmental objects and other road users
- Potential collisions that could be caused by vehicle's actions
- Leaving the roadway
- Loss of traction or stability
- Violation of traffic laws
- Deviations from normal (expected) driving practices

All design decisions shall be tested, validated, and verified as individual subsystems and as part of the entire vehicle architecture. It is suggested to document all changes, design choices, analysis, associated testing and etc.

3.2 Operational Design Domain (ODD)

Roadway Type: local road with 2 lanes - 10 ft per lane, 10 ft minimum turning radius
Geographic Area: Self-Drive proving ground, flat asphalt paved area with some slopes at OaklandUniversity

Speed Range:

- Speed limit - 5 mph
- Speed in Reverse - 2 mph

Environmental Conditions:

- Weather: sunny, cloudy, rainy
- Daytime

3.3 Object and Event Detection and Response (OEDR)

The vehicle is expected to operate in normal and pre-crash scenarios.

Normal Driving relates to:

- Keeping the vehicle in lane
- Obeying traffic laws (as outlined in the Self-Drive manual)
- Responding to barrels and mannequins (stopping and/or avoiding)

Hazardous Driving relates to:

- Vehicle's control loss
- Crossing-path crashes
- Lane change/merge
- Road departure
- Backing up
- Parking maneuvers

3.4 Fallback (Minimal Risk Condition)

Self-Drive teams are encouraged to have a documented process for transitioning to a minimal risk condition or safe state when a problem is encountered, or a vehicle cannot operate safely. Detections may include the following features: vehicle has malfunctioned, operating in a degraded state or operating outside of ODD.

3.5 Tester and Judge Safety

- All judges must wear orange reflective vests
- Observing judges must maintain safety distance from the Vehicle Under Test
- No standing forward or behind the vehicle on the test track. Minimum side distance observation is 20 ft .
- Vehicle Testing Procedure: trained team member shall be seated at the driver's seat and be proficient at vehicle shutdown during malfunction. The judge shall be seated at the passenger's seat. The second judge, holding the remote E-stop, will observe vehicle from the test ground. Either judge must activate E-stop (manual or remote) if vehicle starts to perform outside of the scope of the function or route, or if the vehicle exhibits danger for environment.
- Judges will practice shutdown before vehicle tests begin

3.6 Human Machine Interface

The vehicle shall be capable of informing the human operator or occupant through various indicators, such as warning displays, blinking lights or sounds, that the system is:

- Functioning properly
- Currently engaged in Autonomous Mode
- Currently "unavailable" for use
- Experiencing a malfunction; and/or
- Requesting control transition from the vehicle to the operator

3.7 Crashworthiness

1. Occupant Protection

- Occupants must wear helmets
- Seat belts should be buckled up during the test
- Doors or side vehicle webbing will protect students and judges from extending outside of the vehicle envelope. Doors or webbing must be easily opened, released for occupant exit.

2. Surroundings at the test track

- Vehicle must apply safe-following behavior when approaching other vehicles behind in a traffic lane, and maintain safe-following distance
- Vehicle must apply safe check-and-go behavior when pulling around a stopped vehicle, pulling out of parking spot, moving through intersections, and in situations where collisions are possible

3.8 Post-Incident Vehicle Behavior

- Turn off the system (disengage electrical power)
- Move vehicle off the test track to the safe location

3.9 Data Recording

During the run, the log file must be recorded. The recorded data must be immediately available upon judges' request.

The minimum logged data must include:

- Timestamps
- Vehicle Speed
- Braking
- Steering angle or yaw rate
- Detected Object (relative to your system)
- Maneuver related input (relative to your system)

4. Mandatory Safety Unit Tests

For each test, provide time plot documenting vehicle movement.

4.1 Requirements

1. Test in autonomous mode
2. All vehicle speeds are in m / s
3. Stopping time is in mps (meters per second)
4. All other time is in seconds

4.2. Unit Tests

Unit test 1: Emergency stop

Provide plot of speed vs time

Unit test 2: Emergency stop remote

Provide plot of speed vs time

Unit test 3: Speed limit test

Provide plot of speed vs time. Accelerate until speed limit of $5 \mathbf{m p h}$ is reached. Plot should continue at least for 20 seconds after the speed limit had been reached. Test your system with the following speeds:

1) Speed is 3 mph (1.34 mps)
2) Speed is $5.2 \mathrm{mph}(2.28 \mathrm{mps})$
3) Speed is $6.0 \mathrm{mph}(2.68 \mathrm{mps})$

Unit test 4: Right Lane boundary is crossed. Apply brakes if line had been crossed.
Provide the following plots:

1) Plot speed vs time
2) Plot lateral velocity vs time

Unit test 5: Left Lane boundary is crossed. Apply brakes if line had been crossed.
Provide the following plots:

1) Plot speed vs time
2) Plot lateral velocity vs time

Unit test 6: Object detection

Apply brakes if the object is at the certain distance.
Provide the following plots:

1) Plot speed vs time
2) Plot speed vs distance to object, brake active

Unit test 7: Backing up operation. Speed in reverse should never exceed 2 mph (0.89 mps).

Please test the system with the following speeds:

1) Speed limit is 1 mph
2) Speed limit is 3 mph

Provide the following plot:

1) Plot speed in reverse vs time

V.B4 SELF-DRIVE COURSE

Figure 2: Self-Drive Course Parking Lot 37, Oakland University

V.B5 SELF-DRIVE COMPETITION RULES AND PROCEDURES

- All Self-Drive practice will be performed on a separate practice course, The official course is reserved for only
official scored runs.
- Access to the official course is timed and limited to official runs only.
- The competition will take place in the event of light rain or drizzle but not in heavy rain or lightning.
- Each qualified team will have up to two runs (time permitting) in each of three heats.
- Starting order will be based on order of qualification. Teams will setup on-deck in that order. Failure to be on-deck will place you at the end of the order for the run and may forfeit you final (second) run in a heat based on heat time completion.
- No team participant is allowed on the course before the team's first run, and only 3 student team members are one student teammembor is allowed on the course during a run. This shall in no case be the faculty advisor. The faculty advisor is allowed to be on the course during the practice time.
- At the designated on-deck time, the competing team will be asked to prepare their vehicle for an attempt. On-deck teams start in the order they arrive in the starting area unless they give way to another team.
- A Starting Official will call teams to the starting line. The Starting Official's direction is final. The Starting Officials may alter the order to enhance the competition flow of entries; e.g. slower vehicles may be grouped together to allow successive running of two vehicles on the course simultaneously.
- A team will have one minute to prepare the vehicle at the starting line and point out to the Competition Judges the buttons to start and stop the vehicle.
- The Competition Judge will start the vehicle by a one touch motion; i.e. pushing a remote control button, hitting the enter key of a keyboard, a left mouse click, lifting the e-stop up, flipping a toggle switch, etc. The Competition Judge will also carry the wireless E-Stop.
- An attempt will be declared valid when the Competition Judge initiates the start signal at the designated competing time.

An attempt will continue until one of the following occurs:

- The vehicle finishes the course.
- The vehicle was E-Stopped by a judge's call.
- The team E-Stops the vehicle.
- Six minutes have passed after the vehicle run has started for the Self-Drive Course.
- The vehicle has not started after one minute after moving to the start line or at the judges' discretion.
- The full vehicle crossed over the lane.
- The barrel was displaced during the run.
- Time for each heat will be strictly observed.
- Tactile sensors will not be allowed.
- Based on the above allowable run times, if the vehicle has not completed the course in the 6 minute time period, the attempt will be ended by a judge's choice E-stop, with no additional penalty for that run.
- Each vehicle must navigate the course by remaining inside the course boundaries and navigating around course obstacles. Crossing internal lines is allowed with penalty of 25 points.
- For the following Traffic Violations, the appropriate ticket will be issued and deducted from the overall distance or time score. Refer to V.B6 Traffic Violation Laws.
- Hands should be visible and off the vehicle's steering wheel at all times during run time.

V.B6 TRAFFIC VIOLATION LAWS

	Traffic Violations	Ticket Value Points	E-Stop	Measurement
1	Hold-up Traffic	End of Run	Yes	>60 secs. to 88 ft
2	Lane Excursion	-25	Yes	Yes
3	Crash/Obstacle Displacement	End of Run	Yes	Yes
4	Sideswipe/Obstacle Touch	-25	No	No
5	Student's Choice E-Stop	-10	Yes	Yes
6	Judge's Choice E-Stop	-0	Yes	Yes
7	Blocking Traffic	-5	Yes	Yes
8	Too slow, did not average 1 mph	Disqualified	No	No

Table 1: Traffic Violation Laws

- Hold-up traffic: An attempt to fix the issue on the spot, withholding an opportunity for other teams to run
- Lane Excursion: A portion of the vehicle crosses a lane. The penalty is applied only once per segment of the course. The number of excursions per segment is recorded.
- Crash/Obstacle Displacement: The barrel or another obstacle was fully displaced from its original position.
- Sideswipe/Obstacle Touch: The barrel was touched without being displaced.
- Student E-Stop: Student e-stop is used if the team feels that there may be damaged caused to their vehicle or they know that it is stuck and want to end their time.
- Judge E-Stop: The overall distance will be measured from the starting line to the front of the vehicle or where the final/furthest remaining part of vehicle if stopped, crossed the boundary outside edge.
- Blocking Traffic: Vehicles stopping on course for over one minute will be E-Stopped and measured.
- Too Slow: If the vehicle does not maintain 1 mph minimum average speed limit throughout the course this run is disqualified.

V.B7 HOW COMPETITION WILL BE JUDGED

- A team of judges and officials will determine compliance with all rules.
- Designated competition judges will determine the official times, distances and ticket deductions of each entry. At the end of the competition, those vehicles crossing the finish line will be scored on the time taken to complete the course minus any ticket deductions. Ticket values will be assessed in seconds (one foot $=$ one second) if the vehicle completes the course within the run time.
- The team with the adjusted shortest time will be declared the winner.
- In the event that no vehicle completes the course, the score will be based on the distance traveled by the vehicle minus the ticket deductions. The team with the adjusted longest distance will be declared the winner.
- In the event that two or more teams had completed the course, the team with the better time score will be declared the winner.
- The scoring criteria is based on the weighted combination of Functions Testing (54 \% weight) and completed Self-Drive course (46 \% weight).Please see "Table 8: Self-Drive Cumulative Scoring System Example" for further details.

V.B8 GROUNDS FOR DISQUALIFICATION

- Judges will disqualify any vehicle which appears to be a safety hazard or violate the safety requirements during the competition.
- Intentional interference with another competitor's vehicle and/or data link will result in disqualification of the offending contestant's entry.
- Damaging the course or deliberate movement of the obstacles or running over the obstacles may result in disqualification.
- Actions designed to damage or destroy an opponent's vehicle are not in the spirit of the competition and will result in disqualification of the offending contestant's entry.

V.B9 SELF-DRIVE SCENARIOS

All tests shall be conducted on the paved test track with an open sky environment. The course will be two lanes wide and each lane will have a width of 10 eight ft . No other vehicles or unauthorized personal shall be present when the tests are active. The team's representative shall be seated at the driver seatand the test judge shall be seated as a passenger. The judge shall hold the remote e-stop in his/her hands.

After passing Qualification Testing (Appendix A), the team is ready for Self-Drive Functions Testing (Appendix B) and Main Course (Appendix C).

The following signs and obstacles may be present on the track during Functions Testing and Main Course.

Sign / Obstacle	Dimensions
"Road Closed"	24" H x 30" W minimum height from ground is 5 feet
"One Way"	12" H x 36" W minimum height from ground is 5 feet
"Stop"	$24 " \mathrm{H} \times 24 \mathrm{H} \mathrm{H}$ minimum height from ground is 5 feet
"No Turns"	24" H x 24" H minimum height from ground is 5 feet
Mannequin	$71.7^{\prime \prime}$ height, $18.1^{\prime \prime}$ width shoulder to shoulder, $37.4^{"}$ chest, 29.9" waist, $37.8^{\prime \prime}$ hips
Barrel(s)	$39.7 \mathrm{FH} \times 23.5 \mathrm{~W} \mathrm{~W}$ Weight: 8 lbs
Pothole	2' diameter solid white circle or plastic mirror

Table 2: Traffic Signs and Obstacles specifications
The location of the barrels on the course will be marked with the duct's tape.
The evaluation will be completed with two judges who will track the vehicle through each test. Evaluation points and comments will be marked in the Self-Drive Evaluation Worksheet. After the test completion, the test score will be reviewed with a team representative. The Judge(s) and a team representative will initial the evaluation sheet upon finished discussion.

V.C1 Design OBJECTIVE See Sec III

Although the ability of the vehicles to negotiate the competition courses is the ultimate measure of product quality, the officials are also interested in the design strategy and process that engineering teams follow to produce their vehicles. Design judging will be by a panel of expert judges and will be conducted separate from and without regard to vehicle performance on the test course. Judging will be based on a written report, an oral presentation and examination of the vehicle.
Design innovation is a primary objective of this competition and will be given special attention by the
judges. Innovation is considered to be a technology (hardware or software) that has not ever been used
by this or any other vehicle in this competition. The innovation needs to be documented, as an innovation, clearly in the written report and emphasized in the oral presentation.

V.D AWARDS AND RECOGNITION

All schools are only eligible to win award money once per Self-Drive; if more than one team from the same school places in the event, only the highest placing team will be placed in a standing and receive money for Self-Drive.

The scoring criteria is based on the weighted combination of Functions Testing (54% weight) and completed SelfDrive course (46% weight).
Please see the example below:

Results	Team 1	Team 2	Team 3 -	Team 4
Functions testing place	3	1	2	4
Function testing weighted (54\%)	12.32	15.4	13.86	10.78
Self-drive course place	1	2	3	4
Self-drive course weighted (46\%)	14.6	13.14	11.68	10.22
FINAL SCORE WEIGHTED =	26.92	28.54	25.54	21
FINAL PLACE	3	1	2	4

Table 8: Self-Drive Cumulative Scoring System Example

Awards See Section VII

t
 V.E PUBLICATION AND RECOGNITION

Internal recognition of all participating teams through Self-Drive publications.
Videos of the competition event will be distributed to sponsors, media and the public. All design reports, articles, videos and pictures will be posted on the IGVC website www.igvc.org

Name	Editor(s)
Jerry Lane, Jane Tarakhovsky, Andrew Kosinski	$2017-$
	2024

Table 11: Self-Drive Rules Editors

All questions and concerns should be e-mailed to IGVCquestions@yahoo.com

V.F1 APPENDIX A. QUALIFICATION TESTING

Test Type	Test ID	Name	\# of Runs	Time	Penalty Points	Comments
Qualification	Q.1	E-Stop Manual				
Qualification	Q.2	E-Stop Wireless				
Qualification	Q.3	Lane Keeping (Go Straight)				
Qualification	Q.4	White Lines Detection				
Qualification	Q.5	Left Turn				
Qualification	Q.6	Right Turn				

Table 12: Qualification Test Data Sheet

Qualification testing has unlimited number of trials available to participating teams.

Qualification Test Descriptions

Test Q. 1 E-Stop Manual

1. Test Goal

This test is intended to evaluate safety features of Manual E-Stop.

Figure 3: Qualification Testing. E-Stop Manual

2. Test Setup

The following items shall be placed on the road:

- Barrel 1 on the side of the road to indicate a starting point at which vehicle is stationary
- Barrel 2 on the side of the road to indicate the position where E-Stop button is pressed
- Barrel 3 on the side of the road to indicate the maxim distance for the vehicle to come to the complete stop. The distance between Barrel 2 and Barrel 3 is 14 feet

3. Test Script

1. Begin test run
2. Judge pushes 'start' button
3. Vehicle takes off from full stop at Barrel 1
4. Vehicle maintains the target speed
5. Judge manually pushes E -Stop at Barrel 2
6. Vehicle comes to full stop before reaching Barrel 3.
7. End test run
8. Evaluation

Pass Criteria - vehicle is able to stop before reaching Barrel 3

Test Q. 2 E-Stop Wireless

1. Test Goal

This test is intended to evaluate safety features of Wireless E-Stop

Figure 4: Qualification Testing. E-Stop Wireless
2. Test Setup

The following items shall be placed on the road:

- Barrel 1 on the side of the road to indicate a starting point at which vehicle is stationary
- Barrel 2 on the side of the road to indicate the position where E-Stop button is pressed
- Barrel 3 on the side of the road to indicate the maxim distance for the vehicle to come to the complete stop. The distance between Barrel 2 and Barrel $\mathbf{3}$ is 14 feet

3. Test Script
4. Begin test run
5. Judge pushes 'start' button
6. Vehicle takes off from full stop at Barrel 1
7. Vehicle maintains the target speed (between $4-5 \mathrm{mph}$)
8. Judge manually pushes E-Stop at Barrel 2
9. Vehicle reaches full stop before reaching Barrel 3.
10. End test run
11. Evaluation

Pass Criteria - vehicle is able to stop before reaching Barrel 3

Test Q. 3 Lane Keeping (Go Straight)

1. Test Goal

This test is intended to evaluate if the vehicle is able to stay within lane boundaries, without wheels crossing the line or driving on the line.

Figure 5: Qualification Testing. Lane Keeping. Go Straight
2. Test Setup

The following items shall be placed on the road:

- Barrel 1 on the side of the road to indicate a starting point at which vehicle is stationary
- Barrel 2 about 50 ft away to indicate an ending point.
- A duct tape's mark placed 3 ft from the Barrel 2

3. Test Script
4. Begin test run
5. Judge pushes 'start' button
6. Vehicle takes off from full stop at Barrel 1
7. Vehicle maintains the target speed (between $4-5 \mathrm{mph}$)
8. Vehicle reaches full stop within 3 ft (+-2 inches) from the Barrel 2
9. End test run
10. Evaluation

Pass Criteria - vehicle stays within lane boundaries without wheels crossing the lines. Vehicle reaches full stop within 3 ft (+- 2 inches) from Barrel 2.

Test Q. 4 White Lines Detection

1. Test Goal

This test is intended to evaluate detection of white lines using traditional Machine Vision algorithms. There are NO PENALTIES for crossing or moving over a line. A GUI interface with extracted white lines MUST be present during a run. This test could be performed as a stationary test per judges discretion.

Figure 6: Qualification Testing. White Lines Detection

2. Test Setup

The following items shall be placed on the road:

- Barrel 1 to indicate a starting point at which vehicle is stationary

3. Test Script
4. Begin test run
5. Judge pushes 'start' button
6. The white lines must be present on the screen.
7. End test run
8. Evaluation

Pass Criteria - GUI interface is present during the run, correct identification of the white lines in front of the vehicle

Test Q. 5 Left Turn

1. Test Goal

This test is intended to evaluate if a vehicle is able to make a left turn across the traffic, merge into expected lane and drive within this lane until an obstacle is detected.

Figure 7: Qualification Testing. Left Turn
2. Test setup

The following items shall be placed on the road:

- Barrel 1 to indicate a starting point at which vehicle is stationary. The Barrel 1 could be placed near the stop bar, or several feet away from the stop bar per judges' decision.
- Barrel 2 to indicate an ending point. The barrel is placed about 30 ft away from the stop bar in the right lane

3.Test Script

1. Begin test run
2. Judge pushes 'start' button
3. Vehicle takes off from full stop at Barrel 1
4. Vehicle maintains the target speed (between $3-5 \mathrm{mph}$)
5. Vehicle turns left across the traffic and merges into correct lane
6. Vehicle maintains the target speed (between $3-5 \mathrm{mph}$)
7. Vehicle reaches full stop within 5 ft from the Barrel 2
8. End test run
9. Evaluation

Pass Criteria - vehicle is able to turn left, merge into correct lane and stop without hitting darrel or crossing boundaries

Test Q. 6 Right Turn

1. Test Goal

This test is intended to evaluate if the vehicle is able to make a right turn, merge into the lane and drive within a lane until an obstacle is detected.

Figure 8: Qualification Testing. Right Turn

2. Test Setup

The following items shall be placed on the road:

- Barrel 1 to indicate starting point at which vehicle is stationary. The Barrel 1 could be placed near the stop bar, or several feet away from the stop bar per judges' decision.
- Barrel 2 to indicate an ending point. The barrel is placed about 30 ft away from the stop bar in the right lane

3. Test Script
4. Begin test run
5. Judge pushes 'start' button
6. Vehicle takes off from full stop at Barrel 1
7. Vehicle maintains the target speed (between $3-5 \mathrm{mph}$)
8. Vehicle makes right turn and merges into correct lane
9. Vehicle maintains the target speed (between $3-5 \mathrm{mph}$)
10. Vehicle reaches full stop within 5 ft from the Barrel 2
11. End test run
12. Evaluation

Pass Criteria - vehicle is able to turn right, merge into correct lane and stop without hitting abarrel or crossing boundaries

V.F2 APPENDIX B. FUNCTIONS TESTING

Functions Testing consists of the following independent tests, outlined in the table below. There are 3 trials available for each function, with the maximum score of 100 points per function. The team is allowed to keep the best score out of 3 attempts. The team could choose to complete any function in random.

Test Type	Test ID	Name	\# of Runs	Time	Penalty Points	Comments
I. Traditional Machine Vision Tests						
Function	1.1	Pedestrian Detection				
Function	1.2	Tire Detection				
II. Traffic Sign Tests						
Function	II. 1	Stop Sign Detection				
III. Intersection Tests						
Function	III. 1	Lane Keeping				
Function	III. 2	Left Turn				
Function	III. 3	Right Turn				
IV. Parking Tests						
Function	IV. 1	Parking. Pull Out				
Function	IV. 2	Parking. Pull In				
Function	IV. 3	Parking. Parallel				
V. VRU (Vulnerable Road User) Tests						
Function	V. 1	Unobstructed STATIC Pedestrian Detection				
Function	V. 2	Obstructed DYNAMIC Pedestrian Detection				
Function	V. 3	STATIC Pedestrian Detection. Lane Changing				
Function	V. 4	Obstacle Detection. Lane Changing				
VI. Curved Road Evaluation Tests						
Function	VI. 1	Curved Road Evaluation. Lane Keeping				
Function	VI. 2	Curved Road Evaluation. Lane Changing				
VII. Other Tests						
Function	VII. 1	Pothole Detection				
Function	VII. 2	Merging				

Table 13: Function Testing Scoring Sheet

Traditional machine vision and signs detection tests require GUI interface with displayed results during the test. The Stop Sign detection test shall display a relevant classification as "Stop Sign" or "Unknown"

I. Traditional Machine Vision Tests

The goals of the traditional Machine Vision tests are to foster object detection primarily based on shape and color. Traditional machine vision and signs detection tests require GUI interface with displayed results during the test.

Test FI. 1 Static Pedestrian Detection

1. Test Goal

This test is intended to evaluate detection of a mannequin using traditional Machine Vision algorithms. A mannequin wears ORANGE construction vest. A GUI interface with extracted orange blob MUST be present during a run. There are NO PENALTIES for crossing or moving over a line.

Figure 9: Machine Vision Tests. Static Pedestrian Detection
2. Test Setup

The following items shall be placed on the road:

- Barrel 1 to indicate starting point at which vehicle is stationary

3. Test Script
4. Begin test run
5. Judge pushes 'start' button
6. The extracted orange blob is present on the screen.
7. End test run
8. Evaluation

Fail Criteria - no GUI interface is present during the run, incorrect identification of the shape/object
Penalties - no penalties for crossing or moving over the lines, in case if vehicle is moving during the test

Test FI. 2 Tire Detection

1. Test Goal

This test is intended to evaluate detection of a small item present in a current lane using traditional Machine Vision algorithms. A GUI interface with extracted shape of a tire MUST be present during a run. There are NO PENALTIES for crossing or moving over a line.

Figure 10: Machine Vision Tests. Tire Detection

2. Test Setup

The following items shall be placed on the road:

- Barrel $\mathbf{1}$ to indicate starting point at which vehicle is stationary
3.Test Script

1. Begin test run
2. Judge pushes 'start' button
3. The extracted tire is present on the screen
4. End test run
5. Evaluation

Fail Criteria - no GUI interface is present during the run, incorrect identification of the tire Penalties - no penalties for crossing or moving over the lines, if vehicle is moving during the test

II. Traffic Sign Tests

Test FII. 1 Stop Sign Detection

1. Test Goal

This test is intended to evaluate Stop Sign classification detection and accuracy. Any type of algorithm could be used for this test. Before test, a RANDOM picture might be put on top of a STOP sign. A forgery sign could be red in color with random letters, be a different color with same letters, or be a different picture. Examples used in the previous years: "Soup" and "IGVC" signs. A GUI interface shell display a relevant classification as "Stop Sign" or "Unknown". There are NO PENALTIES for crossing or moving over a lane.

Figure 11: Functions Testing. Stop Sign Detection

2. Test Setup

- Barrel $\mathbf{1}$ to indicate starting point at which vehicle is stationary
- 3 different "Stop" signs are being tested randomly

3. Test Script

1. Begin test run
2. The $1^{\text {st }}$ judge inside of the vehicle pushes a 'start' button
3. The extracted sign is shown on the screen with a correct identification
4. The $2^{\text {nd }}$ judge removes a current sign, and puts a new "stop" sign. It could be a fake or a real sign.
5. The extracted sign is shown on the screen with a correct identification
6. The $2^{\text {nd }}$ judge removes a current sign, and puts a new "stop" sign. It could be a fake or a real sign.
7. End test run
8. Evaluation

Fail Criteria - no GUI interface is present during the run, incorrect identification of any of 3 signs, keyboard touching between the sign changes. To pass the test, all 3 signs must be correctly identified.
Penalties - no penalties for crossing or moving over the lines, if vehicle is moving during the test

III. Intersection Tests

The goals of the Intersection tests are to evaluate vehicle's ability to maneuver at a road intersection.

Test FIII.1. Lane Keeping

1. Test Goal

This test is intended to evaluate if the vehicle is able maneuver within lane boundaries, without wheels crossing the line or driving on the line. Additionally, this test evaluates if the vehicle stops at the "Stop" sign at the intersection, goes straight through intersection, and stops before an obstacle placed on the road.

Figure 12: Intersection Tests. Lane Keeping

2. Test Setup

The following items shall be placed on the road:

- Barrel 1 to indicate a starting point at which vehicle is stationary
- 'Stop' sign
- Barrel 2 to indicate an ending point
- Duct tape's dashed line to indicate 30 cm from the perpendicular line

3.Test Script

1. Begin test run
2. Judge pushes 'start' button
3. Vehicle takes off from full stop at Barrel 1
4. Vehicle maintains the target speed (between $4-5 \mathrm{mph}$)
5. Vehicle reaches full stop within 30 cm from perpendicular white line next to the "Stop" sign. A vehicle's bumper should be within two lines at the time when a vehicle reaches full stop.
6. Vehicle takes off from full stop
7. Vehicle maintains the target speed (between $4-5 \mathrm{mph}$)
8. Vehicle reaches full stop within 3 ft the Barrel 2
9. End test run
10. Evaluation

Fail Criteria - crosses white parallel lines, crosses perpendicular white line, stops further than 30 cm from a perpendicular line
Penalties - hits barrel at the end of the run (25 points), stops further than 3 ft from the barrel (10 points)

Test FIII.2. Intersection Testing. Left Turn

1. Test Goal

This test is intended to evaluate if a vehicle is able to stop at the 'Stop' traffic sign, make a left turn across the traffic, merge into expected lane and drive within this lane until an obstacle is detected.

Figure 13: Intersection Testing. Left Turn

2. Test Setup

The following items shall be placed on the road:

- Barrel 1 to indicate a starting point at which vehicle is stationary
- 'Stop' sign
- 'One Way' sign
- Barrel 2 to indicate an ending point
- Duct tape's dashed line to indicate 30 cm from the perpendicular line

3. Test Script
4. Begin test run
5. Judge pushes 'start' button
6. Vehicle takes off from full stop at Barrel 1
7. Vehicle maintains the target speed (between $4-5 \mathrm{mph}$)
8. Vehicle reaches full stop within 30 cm from perpendicular white line next to the "Stop" sign. A vehicle's bumper should be within two lines at the time when a vehicle reaches full stop.
9. Vehicle takes off from full stop
10. Vehicle turns left across the traffic and merges into correct lane
11. Vehicle maintains the target speed (between $4-5 \mathrm{mph}$)
12. Vehicle reaches full stop within 3 ft from the Barrel 2
13. End test run
14. Evaluation

Fail Criteria - crosses white parallel lines, crosses perpendicular white line, makes a wrong turn, stops further than 30 cm from a perpendicular line Penalties - hits barrel at the end of the run (25 points), stops further than 3 ft from the barrel (10 points)

Test FIII.3. Intersection Testing. Right Turn

1. Test Goal

This test is intended to evaluate if a vehicle is able to stop at the 'Stop' traffic sign, make a right turn, merge into the lane and drive within a lane until an obstacle is detected.

Figure 14: Intersection Testing. Right Turn

2. Test Setup

The following items shall be placed on the road:

- Barrel 1 to indicate a starting point at which vehicle is stationary
- 'Stop' sign
- Barrel 2 to indicate an ending point
- Duct tape's dashed line to indicate 30 cm from the perpendicular line

3. Test Script
4. Begin test run
5. Judge pushes 'start' button
6. Vehicle takes off from full stop at Barrel 1
7. Vehicle maintains the target speed (between $4-5 \mathrm{mph}$)
8. Vehicle reaches full stop within 30 cm perpendicular white line next to the "Stop" sign. A vehicle's bumper should be within two lines at the time when a vehicle reaches full stop.
9. Vehicle takes off from full stop
10. Vehicle turns right and merges into correct lane
11. Vehicle maintains the target speed (between $4-5 \mathrm{mph}$)
12. Vehicle reaches full stop within 3 ft from the Barrel 2
13. End test run
14. Evaluation

Fail Criteria - crosses white parallel lines, crosses perpendicular white line, makes a wrong turn, stops further than 30 cm from a perpendicular line Penalties - hits barrel at the end of the run (25 points), stops further than 3 ft from the barrel (10 points)

IV. Parking Tests

Test FIV. 1 Parking. Pull Out

1. Test Goal

This test is intended to evaluate if a vehicle is able to reverse out (or pull out) of the representativeparking space. The direction of pull out (right-turn-pull-out or left-turn-pull-out) is selected by the judges. The same direction is repeated for all 3 attempts.

Figure 15: Parking. Pull Out

2. Test Setup

The following items shall be placed on the road:

- Barrel 1 to indicate a starting point at which vehicle is stationary
- Barrel 2 to indicate an ending point

3. Test Script

1. Begin test run
2. Judge pushes 'start' button
3. Vehicle takes off from full stop at Barrel 1
4. Vehicle slowly pulls out from the parking spot
5. Vehicle reaches full stop within 3 ft from the Barrel 2
6. End test run
7. Evaluation

Fail Criteria - vehicle crosses solid white lines
Penalties - hits barrel at the end of the run (25 points), stops further than 3 ft from the barrel (10 points)

Test FIV.2. Parking. Pull In

1. Test Goal

This test is intended to evaluate if a vehicle is able to pull into a representative parking space. The direction of pull in (right-turn-pull-in or left-turn-pull-in) is selected by the judges. The same direction is repeated for all 3 attempts.

Figure 16(a,b): Functions Testing. Parking. Pull In

2. Test Setup

The following items shall be placed on the road:

- Barrel 1 to indicate starting point at which vehicle is stationary

3. Test Script
4. Begin test run
5. Judge pushes 'start' button
6. Vehicle takes off from full stop at Barrel 1
7. Vehicle slowly pulls into the parking spot
8. Vehicle reaches full stop. It should be fully in the box without crossing any lines
9. End test run
10. Evaluation

Fail Criteria - vehicle crosses solid white lines

Test FIV.3. Parking. Parallel

1. Test Goal

This test is intended to evaluate if a vehicle is able to parallel park into the representative parking space. The direction of parallel parking (to the right or to the left) is selected by the judges. The same direction is repeated for all 3 attempts.

Figure 17: Functions Testing. Parking. Parallel

2. Test Setup

The following items shall be placed on the road:

- Barrel $\mathbf{1}$ to indicate starting point at which vehicle is stationary

3. Test Script
4. Begin test run
5. Judge pushes 'start' button
6. Vehicle backs off from full stop at Barrel 1
7. Vehicle slowly pulls into the parking spot
8. Vehicle reaches full stop. It should be fully in the box without crossing any lines.
9. End test run
10. Evaluation

Fail Criteria - vehicle crosses solid white line

V. VRU (Vulnerable Road User) and Obstacle Tests

Test FV. 1 Unobstructed STATIC pedestrian detection

1. Test Goal

This test evaluates ability of Ego vehicle to stop if a pedestrian is detected within boundaries of a current lane.

Figure 18: Functions Testing. Unobstructed Static Pedestrian Detection

2. Test Setup

The following items shall be placed on the road:

- Barrel 1 to indicate a starting point at which vehicle is stationary
- Mannequin

3. Test Script
4. Begin test run
5. Judge pushes 'start' button
6. Vehicle takes off from full stop at Barrel 1
7. Vehicle maintains the target speed (between $4-5 \mathrm{mph}$)
8. Vehicle reaches full stop within 5 ft from the Mannequin
9. End test run
10. Evaluation

Fail Criteria - fails to stop 5 ft from the mannequin, or hits mannequin
Penalties - hits barrel at the end of the run (25 points), stops closer than 5 ft from the Mannequin (10 points)

Test FV. 2 Obstructed DYNAMIC pedestrian detection

1. Test Goal

This test evaluates ability of Ego vehicle to stop if an obstructed by barrel pedestrian (mannequin) suddenly starts crossing an Ego's vehicle lane.

Figure 19: Functions Testing. Obstructed Dynamic Pedestrian Detection
2. Test Setup

- Barrel 1 to indicate a starting point at which vehicle is stationary
- Barrel 2 placed in adjacent lane, with Mannequin behind it
- Barrel 3 to indicate an ending point
- Mannequin

3. Test Script
4. Begin test run
5. Judge 1 inside an Ego's vehicle pushes 'start' button
6. Vehicle takes off from full stop at Barrel 1
7. Vehicle maintains the target speed (between $3-5 \mathrm{mph}$)
8. Judge 2 rolls out Mannequin from behind Barrel 2 and stops Mannequin in Ego's vehicle lane
9. Vehicle reaches full stop within 5 ft from the Mannequin
10. Judge 2 pulls back Mannequin behind Barrel 2
11. Vehicle takes off from the full stop
12. Vehicle maintains the target speed (between $3-5 \mathrm{mph}$)
13. Vehicle reaches full stop within 3 ft from the Barrel 2
14. End test run
15. Evaluation

Fail Criteria - fails to stop 5 ft from the mannequin, or hits mannequin
Penalties - hits barrel at the end of the run (25 points), stops closer than 5 ft from the Mannequin (10 points)

Test FV. 3 STATIC Pedestrian Detection. Lane Changing

1. Test Goal

This test imitates a situation of a broken vehicle in a current lane with STATIC pedestrian standing in FRONT of barrel(s) in the same lane as Ego vehicle. Ego vehicle must slow down, and safely change into an adjacent lane.

Figure 20: Functions Testing. Pedestrian Detection. Lane Changing

2. Test Setup

There will be a distance of approximately 85 ft between the mannequin/barrel when mannequin will start crossing the road.
The following items shall be placed on the road:

- Barrel $\mathbf{1}$ to indicate starting point at which vehicle is stationary
- Mannequin to indicate obstacle
- Barrels $\mathbf{1}$ and $\mathbf{2}$ to indicate a broken vehicle in a current lane
- Barrel 3 to indicate end of a run

3. Test Script
4. Begin test run
5. Judge pushes 'start' button
6. Vehicle takes off from full stop at Barrel 1
7. Vehicle maintains the target speed (between $3-5 \mathrm{mph}$)
8. Vehicle detects Mannequin
9. Vehicle performs safe transition into the next lane 10 ft away from the Mannequin
10. Vehicle maintains the target speed in the new lane (between $3-5 \mathrm{mph}$)
11. Vehicle reaches full stop within 3 ft from the obstacle (Barrel 3)
12. End test run
13. Evaluation

Fail Criteria -hits mannequin, crosses white solid line
Penalties - hits barrel at the end of the run (25 points), lane change completed closer than 10 feet from the obstacle (10 points)

Test FV4. Obstacle detection. Lane Changing

1. Test Goal

This test evaluates Ego vehicle's ability to safely change lane if a stationary object is present within a current lane.

Figure 21: Functions Testing. Obstacle Detection. Lane Changing

2. Test Setup

The following items shall be placed on the road:

- Barrel 1 to indicate a starting point at which vehicle is stationary
- Barrel 2 to indicate obstacle
- Barrel 3 to indicate an ending point

3. Test Script
4. Begin test run
5. Judge pushes 'start' button
6. Vehicle takes off from full stop at Barrel 1
7. Vehicle maintains the target speed (between $3-5 \mathrm{mph}$)
8. Vehicle detects obstacle (Barrel 2) and safely moves into the next lane
9. Vehicle maintains the target speed in the new lane (between $3-5 \mathrm{mph}$)
10. Vehicle reaches full stop within 3 ft from the obstacle (Barrel 3)
11. End test run
12. Evaluation

Fail Criteria -hits Barrel 2, crosses white solid line
Penalties - hits Barrel 3 at the end of the run (25 points), lane change completed closer than 10 feet from the obstacle (10 points)

VI. Curved road Evaluation Tests

The minimum inside curve radius is 10 meters (32.8084 feet).

Test FVI. 1 Curved Road Evaluation. Lane Keeping

1. Test Goal

This test is intended to evaluate Ego vehicle's ability to stay in the lane on a curved road, and be able to stop at the obstacle within a current lane. This test consists of 4 possible case scenarios: driving in right lane on the left curve, driving in left lane on the left curve, driving in right lane on the right curve and driving in left lane on the right curve. Any of above scenarios could be chosen at judges' discretion.

Figure 22: Functions Testing. Curved Road Evaluation. Lane Keeping
2. Test Setup

The following items shall be placed on the road:

- Barrel 1 to indicate a starting point at which vehicle is stationary
- Barrel 2 to indicate an ending point

3. Test Script

1. Begin test run
2. Judge pushes 'start' button
3. Vehicle takes off from full stop at Barrel 1
4. Vehicle maintains the target speed (between $3-5 \mathrm{mph}$)
5. Vehicle reaches full stop within 3 ft from the Barrel 2
6. End test run
7. Evaluation

Fail Criteria - crosses white solid line
Penalties - hits barrel at the end of the run (25 points), stops further or closer than 3 ft to the Barrel 2 (10 points)

Test FVI. 2 Curved Road Evaluation. Lane Changing

1. Test Goal

This test is intended to evaluate if a vehicle is able to perform a lane change on the curved road if obstacles are detected. This test consists of 4 possible case scenarios: changing right lane on the left curve, changing left lane on the left curve, changing right lane on the right curve and changing left lane on the right curve. Any of above scenarios could be chosen as this year's test.

Figure 23: Functions Testing. Curved Road Evaluation. Lane Changing

Figure 24: Types of Curved Road Evaluation scenarios

2. Test Setup

The following items shall be placed on the road:

- Barrel 1 to indicate a starting point at which vehicle is stationary
- Barrel 2 to indicate an obstacle in current lane
- Barrel 3 to indicate an ending point

3. Test Script
4. Begin test run
5. Judge pushes 'start' button
6. Vehicle takes off from full stop at Barrel 1
7. Vehicle maintains the target speed (between $3-5 \mathrm{mph}$)
8. Vehicle detects obstacle (Barrel 2), and safely moves into the next lane
9. Vehicle maintains the target speed in the new lane (between $3-5 \mathrm{mph}$)
10. Vehicle reaches full stop within 3 ft from the obstacle (Barrel 3)
11. End test run
12. Evaluation

Fail Criteria - crosses white solid line, hits Barrel 2
Penalties - hits Barrel 3 at the end of the run (25 points), stops further or closer than 3 ft to the Barrel 2 (10 points)

VII. Other Tests

Test FVII. 1 Pothole Detection

1. Test Goal

This test is intended to evaluate Ego vehicle's ability to detect a pothole and safely change lane.

Figure 25: Functions Testing. Pothole Detection

2. Test Setup

The following items shall be placed on the road:

- Barrel 1 to indicate a starting point at which vehicle is stationary
- Pothole (2 feet diameter solid white circle or plastic mirror)
- Barrel 2 to indicate an ending point

3. Test Script
4. Begin test run
5. Judge pushes 'start' button
6. Vehicle takes off from full stop at Barrel 1
7. Vehicle maintains the target speed (between $4-5 \mathrm{mph}$)
8. Vehicle detects pothole and safely moves into the next lane
9. Vehicle maintains the target speed in the new lane (between $4-5 \mathrm{mph}$)
10. Vehicle reaches full stop within 3 ft from the Barrel 2
11. End test run
12. Evaluation

Fail Criteria - run over the pothole
Penalties - hits barrel at the end of the run (25 points), stops further or closer than 3 ft to the Barrel 2 (10 points)

Test FVII. 2 Merging

1. Test Goal

This test is intended to evaluate if a vehicle is able to perform a merge onto a representative highway.

Figure 26: Functions Testing. Merging without Waypoints
2. Test Setup

The following items shall be placed on the road:

- Barrel 1 to indicate a starting point at which vehicle is stationary
- Barrel 2 to indicate an ending point

3. Test Script
4. Begin test run
5. Judge pushes 'start' button
6. Vehicle takes off from full stop at Barrel $\mathbf{1}$
7. Vehicle maintains the target speed (between $3-5 \mathrm{mph}$)
8. Vehicle merges into the next lane
9. Vehicle maintains the target speed (between $3-5 \mathrm{mph}$)
10. Vehicle reaches full stop within 3 ft from the obstacle (Barrel)
11. End test run
12. Evaluation

Fail Criteria - crosses white lines
Penalties - hits barrel at the end of the run (25 points), stops further or closer than 3 ft to the barrel (10 points)

V. F3 APPENDIX C. MAIN COURSE TESTING

Main Test Description

1. Test Goal

This test is intended to evaluate if a vehicle is able to follow lane, change lane, detect and avoid obstacles, detect signs, merge into loop and park at the specified locations. During the official run, any sensor fusion combination is acceptable to detect any static/dynamic obstacles and signs. Fake signs might be present on the course.

At least two waypoints will be present on the course.
[TBD]
Figure 27: Main Course Testing Location, Oakland University

2. Test Setup

The following items shall be placed on the road:

- Small and/or large barrels to indicate starting and ending point of the course
- Barrels on the course
- Mannequin
- Signs
- Pothole
- Tire

3. Test Script

TBD
4. Evaluation

Name:					
Item	Functions		Attempted	Passed	Penalty Points
1	Speed within limits				
2	Lane Keeping	wheels completely within marked boundaries of travel lane			
	Lane Changing	moves completely to next lane			
3		keeps safe distance from obstacle during the change			
4	Pedestrian Detection	static pedestrian			
		unobstructed pedestrian			
		obstructed pedestrian			
5	Obstacle/Vehicle Detection	stationary vehicle			
		moving ahead vehicle			
		crossing vehicle			
6	Merging	5-10 seconds delay before merging			
		passed 2 or more GPS waypoints			
7	Left Turn	10 sec delay			
8	Right Turn				
9	Intersection detection/logic				
10	Stop sign/ cross lines detection				
11	Pothole detection				
12	Tire detection				

Table 14: Overall Test Performance Scoring Sheet

V.G REFERENCES

[1]. "Automated Driving Systems 2.0: A vision for safety". U.S. Department of Transportation, NHTSA, September 2017
https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/13069a-ads2.0 090617 v9a tag.pdf

VI. AWARDS AND RECOGNITION

All schools are only eligible to win award money once per event (Auto-Nav Challenge, Design Competition and Self-Drive Challenge); if more than one team fromthe same school places in the same event, only the highest placing team will beplaced in a standing and receive money for that event.

VII. 1 AUTO-NAV \& SELF DRIVE CHALLENGE COMPETITION

Award Money

(Vehicle must complete AutoNav course autonomously and Self Drive vehicle must perform all functions and full course autonomous) AutoNav

$1^{\text {sI }}$ Place	$\$ 3,000$
$2^{\text {vU }}$ Place	$\$ 2,000$
$3^{\text {KU }}$ Place	$\$ 1,500$
$4^{1 \mathrm{II}}$ Place	$\$ 1,000$
$5^{1 \mathrm{H}}$ Place	$\$ 750$
$6^{\text {TH }}$ Place	$\$ 500$

Nominal Award Money
(AutoNav must attain one ramp waypoint in No Man;s Land \& Self drive Vehicle must qualify and successfully complete Function Tests 1-4)

$1^{\text {SI }}$ Place	$\$ 1,000$	
$2^{\text {NU }}$ Place	$\$$	800
$3^{\text {KU }}$ Place	$\$$	600
$4^{1+\mathrm{H}}$ Place	$\$$	500
$5^{\text {TH }}$ Place	$\$$	400
$6^{\text {TH }}$ Place	$\$$	300

SELF DRIVE CHALLENGE COMPETITION

Award Money

(Vehicle must complete All functions and entire Self Drive course autonomously
autonomous)

$$
\begin{array}{ll}
1^{\text {SI }} \text { Place } & \$ 2,000 \\
2^{\text {vU }} \text { Place } & \$ 1,500 \\
3^{\text {KU }} \text { Place } & \$ 1,000
\end{array}
$$

Nominal Award Money
Self drive Vehicle must qualify and successfully complete Function Tests 1-4)

$1^{\text {SI }}$ Place	$\$ 1,000$
$2^{\text {IVU }}$ Place	$\$ 800$
$3^{\text {KU }}$ Place	$\$ 800$

VII. 1 VEHICLE DESIGN COMPETITION

Design Competition Standard Awards
Dr. William G. Agnew Awards

	Auto Nav	Self Drive
$1^{\text {SI }}$ Place	$\$ 2,000$	1000
$2^{\text {IVU }}$ Place	$\$ 1,500$	750
$3^{\text {HU }}$ Place	$\$ 1,000$	500
$4^{1 \text { IH }}$ Place	750	-------
$5^{\text {TH }}$ Place	$\$ 500$	------
$6^{\text {TH }}$ Place	$\$ 250$	------

Nominal Award Money
(Vehicle did not pass Qualification)

	Auto Nav	Self Drive
$1^{\text {SI }}$ Place	$\$ 600$	600
$2^{\text {IvU }}$ Place	$\$ 500$	500
$3^{\text {IU }}$ Place	$\$ 400$	400
$4^{I T}$ Place	$\$ 300$	----
$5^{I H}$ Place	$\$ 200$	----
$6^{\text {TH }}$ Place	$\$ 100$	----

VII. 2 ROOKIE-OF-THE-YEAR AWARD

The Rookie-of-the-Year Award will be given out to a team from a new school competing for the first time ever or a school that has not participated in the last five competitions (for this year the team would be eligible if they haven't competed since the 2012 IGVC). To win the Rookie-of-the-Year Award the team must be the best of the eligible teams competing and perform to the minimum standards of the following events. In the Design Competition you must pass Qualification, in the AutoNav Challenge you must pass the Rookie Barrel and in the IOP Challenge you must be compliant. The winner of the Rookie-of-the-Year Award will receive $\$ 1,000$ in award money; in the case the minimum requirements are not met the best of the eligible teams competing will receive $\$ 500$.

VII. 3 GRAND AWARD

Two sets of Grand Award trophies will be, presented to the top three teams that perform the best overall in both AutoNav and Self Drive (combined with design scores per below).

Standard Grand Award Points*

Challenge AN or SD	First	Second	Third	Fourth	Fifth	Sixth
AutoNav-Self Dr	24	20	16	12	8	4
Design	12	10	8	6	4	2

Nominal Grand Award Points**

Challenge	First	Second	Third	Fourth	Fifth	Sixth
AutoNav-Self Dr	12	10	8	6	4	2
Design	6	5	4	3	2	1

* For Standard Grand Award Points, the team must complete the Auto-Nav \& Self Drive courses
For the Standard Design Competition points the vehicle must qualify in Auto Nav or Self Drive
** For Nominal Grand Award Points in each Challenge, the team must qualify to be eligible in the Auto-Nav or Self Drive Challenges and have their vehicle present for the Design Competition.

VII. 4 HBCU Top Flight AWARD

New $\$ 1000$ award to the top performing HBCU student team with combined performance and design scores in either AutoNav or Self Drive, minimum of three HBCU schools competing.

VIII PUBLICATION AND RECOGNITION

International recognition of all participating teams through AUVSI publications.
Videos of the competition event will be distributed to sponsors, media and the public. All design reports, articles, videos and pictures will be post on the IGVC website www.igvc.org.

Name	Years as Editor
Jerry Lane, Jane Tarakhovsky \& Andrew Kosinski	$2018-2024$
Jerry Lane \& Andrew Kosinski	$2014-2018$
Bernard Theisen	$2013-2014$
Jerry Lane	$2011-2013$
Bernard Theisen	$2006-2010$
Greg Gill	$2005-2006$
Bernard Theisen	$2004-2005$
Dan Maslach	$2003-2004$
Bernard Theisen	$2001-2003$
Stephen W. Roberts	$2000-2001$
Scot Wheelock	$1999-2000$
Geoff Clark	$1998-1999$
G. Edzko Smid	$1997-1998$
Candy McLellan and G. Edzko Smid	$1996-1997$
Jerry Lane, Paul Lescoe and Ka C. Cheok	$1992-1996$

IGVC Rules Editors
All questions and concerns should be e-mailed to IGVCquestions@yahoo.com.

IX "IGVC In Memory Of"

$\underline{\text { Paul Lescoe }}$	TARDEC Robotics Engineer	IGVC Co-Founder \& Co-Chair
$\underline{\text { Dr.James Overholt }}$	TARDEC Chief Roboticist	IGVC Judge \& Official
$\underline{\text { Dr. Nattu Natajaran }}$	UMD Professor	IGVC Faculty
$\underline{\text { Wayne Wheelock }}$	Former TARDEC Director	IGVC Design Judge
$\underline{\text { Dr William G. }}$	Former GM Research Lab Director	IGVC Design Challenge, Navigation Challenge, and Follow the Leader Challenge Founder
$\underline{\text { Hank Lewandowski }}$	IGVC supporter	Printed IGVC T and Official shirts 1992-2001

28 September 2023 version

