

1

Contents

1 Introduction ... 2

2 Team Organization .. 2

3 Design Process ... 2

4 Hardware ... 3

4.4 Hardware Innovations ... 4

4.2 Vehicle Dynamics & Encoder Localization ... 5

4.3 Sensors ... 6

4.4 Computing ... 8

5 Software .. 8

5.1 LIDAR Filtering ... 9

5.2 Vision Filtering ...10

5.3 Mapping the Environment ...11

5.4 Reactive Algorithm ..12

5.5 Waypoint Generation ..12

5.5 Software Innovation ..13

6 Predicted Performance of Vehicle: .. 13

6.1 Speed and Ramp Climbing ...13

6.2 Reaction time ..14

6.3 Battery life ...14

6.4 Distance at which obstacles are detected ...14

6.5 Autonomous Performance ...15

6.6 Navigation Performance ...15

7 Conclusion: .. 15

2

1 Introduction

This paper describes the 2009 Franklin W. Olin College of Engineering Intelligent Ground Vehicles Competition

entry: Brian. Brian is an intelligent ground vehicle specializing in road following, GPS navigation, and obstacle

avoidance. The team at Olin designed, constructed, and tested Brian starting in February 2009 and ending May 16th,

2009. This paper describes the vehicle’s design as well as the methodologies used to develop it.

2 Team Organization

The Olin College IGVC team has five members, all of whom are sophomores. There are only two formalized

positions: team captain and financer. The team captain manages team progress while the financer tracks the team’s

expenditures and completes necessary paper work. Given the short time frame in which the team had to complete

the design and implementation of the robot, we could not make a full recruiting effort. However, we are able to

leverage the talents of our team and our flat organizational structure to quickly fulfill objectives. The team is

composed of two electrical engineers, one mechanical engineer, one systems engineer, and one software engineer.

Using these natural talents, we are able to distribute tasks in order to meet major milestones. We use a work in

progress – or WIP – method to distribute labor. On a two week basis we define a list of sub-tasks whose

completion fulfills those weeks overall objectives. We then assign each task to a specific team member, who places

his or her tasks on our lab’s WIP board. Each person has three task categories on the board: to do, in progress,

and complete. This aid allows the team leader and members to monitor progress and ensure that work is

distributed evenly throughout the semester. It also clearly defines expectations and responsibilities for each team

member.

3 Design Process
In order to make design decisions, our team follows an iterative process. Because of

our relative inexperience in building intelligent vehicles, we begin each major

decision with a concerted research effort. Each team member reads papers from

previously successful IGVC teams and other robotics research universities. We

then compare possible solutions in a decision matrix that compare each idea’s

merits on their effectiveness at achieving their goal and their ease of

implementation. Based upon this comparison, a method is adopted and a unique

metric for testing that solution’s effectiveness is developed. In order to Figure 1: The final SolidWorks
model of Brian.

3

implement the proposed design, we begin with the creation of a computer simulation and then make physical

prototypes. Simulation is done using SolidWorks and Comsol for mechanical design and LabVIEW for software

development. After implementation, if our approach passes required benchmark testing, we move on. If not, a

new solution was implemented and tested. To augment this iterative process, our team also holds community-wide

design reviews each month to seek feedback from professors and students. This invaluable, outside feedback leads

to major design revisions that improve robot function.

 In this iterative process we make decisions based on the following set of values, defined at the beginning

of the season.

 Brian will serve as research platform for other students in Olin Intelligent Vehicles Lab as well as our

future IGVC mechanical platform. As a result, our highest priority was creating a simple, robust robot

that would allow for extensive future software development.

 Second, we hoped to minimize the cost of robot production. To do this we mostly used components

our college already owned or parts donated by sponsors.

 Finally, we wanted to create a design that could be implemented in four months, allowing us to

qualify for the 2009 IGVC. As a result, we favored designs that we could implement quickly, allowing

ample time for systems integration, debugging, and testing.

 These guiding values and our design processes led to the hardware and software decisions that are

outlined in sections 4 and 5 of this document.

4 Hardware

The 2009 Olin College IGVC entry, Brian, incorporates several innovations in both selection and implementation

of hardware. The hardware design adopted by the Olin IGVC Team is outlined in this section. First, we introduce

a basic description of Brian’s physical systems. Brian is a retrofitted Chimp Human Transport Vehicle from Doran

Electric Vehicles. The only remaining systems from the original vehicle are the undercarriage frame, the drive

wheels, the axles, and the front drive motor. All other fabrication and design were done in house at Olin College.

The chassis is made of 6020 aluminum square tubing and plate and connected using galvanized steel mounting

brackets. The entire system weighs three-hundred-sixty pounds. All of the vehicle’s major components are listed in

the following bill of expenditures.

Part Cost to Team Estimated Cost

Point Grey Digiclops Stereovision System $0 $9000

SICK LMS291-S05 LIDAR $0 $6000

4

Doran Electric Vehicles Chimp Human Transport1 $0 $3195

Dell Latitude D620 $0 $2000

SmallPC SC525-P24 $0 $1300

Sensoray 626 Analog & Digital I/O $0 $660

Ublox Odometry Enabled GPS $0 $600

Galil MSA-12-80 Motor Controller (quantity 2) $0 $360

Pittman GM14904S016-R1Motor with Encoder $350 $350

Autec Wireless Emergency Stop $0 $340

Fastcom 422/2-ISA $0 $300

Pitman GM9236S027-R1 $260 $260

Mechanical Emergency Stop Button (quantity 2) $240 $240

Weatherproof Encoder $0 $225

Aluminum Stock $180 $180

Rosewill RC-602 Firewire Card $0 $15

Total
$1,030 $25,025

4.4 Hardware Innovations

Hardware innovations on Brian come from both the selection of components and their utilization. When selecting

sensors for Brian the Olin IGVC Team created redundant systems that more robustly avoid a wider range of

obstacles. By using both the Point Grey System and SICK LIDAR to detect obstacles, Brian compensates for both

sensors’ points of failure.

 The other major hardware innovation was how these sensors are mounted. To begin, we examine the

mounting, and resulting actuation, of the Point Grey System.

The camera mounts to a seventy-inch sensor mast. However,

instead of statically fusing the mast to the chassis, it is tied to

the steering column with a universal joint, as shown in

Figure 2. The universal joint allows two key advantages.

First, it points the camera in the same direction that the

front wheel points. The camera has a narrow ninety degree

viewing angle, while the robots front wheel can move to a

steering angle of forty five degrees. If the camera were

statically mounted, the robot would only see obstacles and

lines to the inside of the wheel when taking steep, forty-five

degree turns. Thus, by rotating the camera, Brian always sees the maximum viewing area of the ground he is about

1Includes two Chairman AGM-12100T Deep Cycle Lead Acid Batteries and one Curtis 1228 controller

Figure 2: The universal joint used to turn our camera to
face towards the front wheel's direction of travel.

5

to cross over. We also use the universal joint to gain another key advantage. This joint transforms the camera’s axis

of rotation to be perpendicular to the ground plane. This both makes our transforms easier to understand, and

means we have more consistent camera data. Thus, by tying the camera to the front wheel’s actuation via the

universal joint, we are able to better detect lines and obstacles during vehicle turns.

 The other primary outward facing sensor, the LIDAR, is also actuated. The LIDAR’s placement provides

an ability key to this year’s competition: pothole detection. By mounting the sensor facing down toward the

ground plane, we are able to detect the two inch

potholes that must be avoided as per 2009 IGVC

rules. Additionally, by actuating the LIDAR head,

we give Brian a higher level of function. The

actuated LIDAR can be used to adjust our

scanning angle during a competition run. This

allows Brian to increase or decrease his scanning

range based on proximity to desired target. In the

future, the addition of oscillation will make Brian a

more flexible research platform. Actuating the

head allows rapid testing of different head

positions. This also allows for continuous

oscillation. When combined with higher processing speeds, this motion can yield a three dimensional LIDAR

image.

 Additionally, the method of oscillating the LIDAR is advantageous. The system uses a four bar linkage. As

a result, constant rotation of the attached motor in one direction simply oscillates the LIDAR head up and down

through a range of adjustable values. This both makes constant oscillation easier, while also ensuring that software

failure does not crash this expensive sensor into the chassis. By using a four bar linkage, the LIDAR has a fail safe

mode and can oscillate without reversing motor direction.

4.2 Vehicle Dynamics & Encoder Localization

To understand Brian’s motion, we use the model of vehicle dynamics outlined in this section. Brian is a human

transport tricycle with a single velocity-controlled front drive wheel. The front drive wheel’s steering angle

actuation is position controlled using a Pittman motor. As a result, Brian’s motion is nonholonomic. To describe

this nonholonomic motion, we developed a mathematical model, whose constants are defined in Figure 4. The

robot’s change in global heading, Δφ, can be modeled by

Figure 3: The four bar linkage used to actuate the LIDAR.

6

where ΔS is the change in distance traveled by the front

wheel, θ is the steering angle of the vehicle, and L is the

distance between the front and rear axle of the vehicle.

Using this, we can determine the distance traveled over

time

where r is the turning radius of the vehicle.

Finally, from this we derive the change in global position

as:

and

where Δx and Δy are the change of the robots global

position in the Cartesian coordinates (x,y). With this

information, we have both a mathematical model that proactively controls robot motion and retroactively

determines the robot position. This model converts wheel odometry to a precise robot localization over relatively

small distances.

4.3 Sensors

The sensors onboard Brian are divided into three separate classes: localization, object detection, and line detection.

Brian localizes using five sensors: three quadrature encoders, one Hall effect sensor, and one ublox GPS. The

encoders measure rotational position of the motors powering the LIDAR tilt, drive wheel, and the steering angle.

These values can be used to estimate vehicle position based on the mathematical models outlined in section 4.2.

However, these sensors only measure change in position, not absolute position. As such, they must begin properly

zeroed. The mechanical design of the LIDAR head allows for easy manual zeroing, as the four bar linkage gives

the LIDAR an obvious minimum position. The drive motor does not require zeroing, as it is velocity controlled.

The steering angle control motor requires both the most accurate zero and has the most difficult to find zero

position. To mitigate error generated by inaccurate steering motor zeroing, we installed a Hall effect sensor. The

Pittman motor used to position control Brian’s steering angle connects directly to a large sprocket that turns the

steering column via a chain linkage. The Hall effect sensor is mounted directly below this sprocket. This, in

concert with a sprocket-mounted magnet, allows Brian to accurately zero his front motor position which in turn

creates more accurate odometry localization.

Figure 4: Measurements that are used to describe Brian's
vehicle dynamics: the steering angle is θ, the turning radius
is r, the distance between rear and front axle is L, the
robot heading within the global reference frame is φ, and
the global position (from the center of the rear axle) is
(x,y).

7

 In addition to localizing using encoder informed wheel odometry, Brian uses a ublox Encoder Enabled

GPS to localize globally. This unit has a relatively cheap GPS chip. However, it does have one key advantage. The

system not only localizes using readings from GPS satellites, it also incorporates odometry from wheel encoders

and an onboard accelerometer. These sensor inputs are synthesized in the ublox using a Kalman Filter to create a

single localization. This both increases the accuracy of the unit and keeps the unit from losing localization during

periods of GPS outage.

 Brian detects objects using two outward facing sensors: the SICK LMS291-S05 LIDAR and the Point

Grey Digiclops Stereovision System. The SICK uses the flight time of emitted 905nm ultraviolet light pulses to

calculate the distance to nearby objects. It returns a distance to nearest obstacle at every one degree increment in

the range of angles shown in Figure 5. The instrument is currently calibrated to measure obstacles at a range of up

to thirty-two meters with an individual measurement tolerance of ±1mm. Using algorithms described in our

software section – section 5 – we are able to differentiate between range measurements representing the ground

plane and range measurements representing obstacles.

 The Point Grey Stereovision System uses images from three different cameras to find the disparity

between similar pixels in each image. This disparity in pixel location results from parallax. This is used to create a

disparity map of a single image. This disparity map has an inverse relationship with distance that can be used to

calculate a point cloud of pixels. Each point has a location in three-

dimensional space and a corresponding color value. Again, using

algorithms outlined in our software section – section 5 – we are able

to separate points which represent the ground plane from points

which represent obstacles. Thus, we have two, redundant obstacle

detection sensors. This design feature compensates for sensor

imperfections to detect a higher range of object materials. Any

material that does not reflect 905nm ultraviolet light cannot be

detected by the LIDAR. Likewise, the Point Grey camera cannot

generate a disparity map of highly uniform colors because it cannot

differentiate distinct pixels. If only a single sensor was used to

detect obstacles, our robot would fail either in cases of non-

ultraviolet-reflective materials or uniformly colored materials.

However, by introducing a redundancy, our robot is able to detect

obstacles made of a much wider range of materials.

 Our final sensor class is the line sensing class. To sense lines, we again use the Point Grey Digiclops

Stereovision System. By removing obstacles found using the disparity maps, we are left with an image of only the

ground plane. Using this data subset we find lines using the algorithms described in section 5. By only searching

for lines in the ground plane, we are able to ignore line-like features on obstacles themselves. The team also

Figure 5: The red area shows the range of angles
scanned by the LIDAR (180 degrees in total),
while the navy section shows the area captured by
the Point Grey when the front wheel is pointed
forward. The Purple is the area scanned by both
when the front wheel is pointed forward.

8

attempted to introduce redundant line sensing by observing the energy of reflected LIDAR beams. Materials that

absorb LIDAR’s 905nm ultraviolet light more readily can be differentiated from materials that are highly reflective.

Unfortunately, the energy of waves reflected of white painted grass cannot be differentiated from the energy of

waves reflected of unpainted grass.

4.4 Computing

Computing onboard Brian is distributed between two computers. The first is a SmallPC brand rugged PC with a

2.4GHz Intel Pentium IV processor. The second is a Dell Latitude D620 laptop with a 2.16 GHz Intel Core II

Duo Processor. These computers were selected due to their no cost availability. Both machines run Windows XP

professional and are programmed using National Instruments’ LabVIEW software. The two computers

communicate via TCP/IP through a datasocket server hosted on the Dell. The Dell handles all image acquisition

through a Rosewill RC-602 PCMCIA FireWire card. Images are processed on the laptop – as described in section

5 – in order to create an array of all points identified as lines and objects by the Point Grey System. These points

are in Cartesian coordinates with the origin located in the camera’s frame of reference. This array is then passed to

the datasocket server. A separate machine is required for the Point Grey System because of the computationally

intense nature of stereo vision image processing. Additionally, the laptop provides an easily stored and easily

accessed onboard monitor for field testing and debugging.

The small PC reads from the datasocket server to incorporate vision data into cognition code. The

SmallPC acquires and processes data from all other instruments onboard Brian. The PC utilizes three PCI slots to

communicate a FASTCOM 422/2-ISA serial port, Sensoray 626 Analog & Digital I/O, and a Linksys LNE100TX

Etherfast LAN Card. These cards are used to control motors, receive user button input, read encoder values,

communicate with the LIDAR, read from the GPS, and access the Dell’s datasocket server.

5 Software

Brian was programmed in LabVIEW for two major reasons. First, LabVIEW’s extensive libraries made interfacing

with hardware trivial. Also, from Professor David Barrett’s prior experience of, we knew people without

programming experience could learn the language in under a week. This was crucial, as only one member on the

team entered with LabVIEW programming experience. Using LabVIEW allowed us to quickly learn a common

programming language and rapidly deploy our design.

The software architecture used onboard Brian exploits the advantages of a reactive paradigm. The reactive

paradigm of navigation differs from the canonical sense, plan, and act paradigm by removing the planning stage of

the algorithm. Instead, the robot uses a simple algorithm to react to the environment around it. First we will

describe the software Brian uses to sense the world in the following three subsections, then we will describe the

algorithm that Brian uses to act, and finally we will discuss the advantages of a reactive paradigm for competing in

the IGVC.

9

5.1 LIDAR Filtering

As described in section 4.2, the LIDAR returns

measurements to the nearest obstacle for a 180 degree arc segment in front of the

robot. This data must be processed to determine which data points represent obstacles and

which points merely represent the ground plane. The 2009 IGVC rules stipulate that the ground

will never exceed a fifteen percent grade. Our filter is based off assumptions made as a result of

this rule. If we assume that the ground has a constant fifteen-percent grade incline in all

directions – the maximum allowable incline – the result is a conical plane like the one

illustrated in Figure 6. Any data point that lies above that plane must – as per the

challenge rules – be an obstacle. We assume that all points

below this plane are ground. With this algorithm, Brian can

detect an obstacle with a height of six-inches or larger at a range

beyond his forty-inch turning radius. This approach allows

Brian to detect and pass obstacles with a height greater than

six inches without slowing down. Because the head can

oscillate, we can also detect an obstacle of a height of just over two inches at a range of nineteen inches in front of

the robot. While this does not allow passing without stopping – as twenty inches is within Brian’s turning radius –

it does allow us to avoid collisions with even small obstacles. This filter has one primary advantage: speed. Brian

can very quickly compare LIDAR data point with a pre-calculated value in a lookup table to determine whether or

not the point is an obstacle.

 While this method allows us to detect obstacles, it does not help avoid potholes. To do this, the data

filtered out as part of the ground plane can be processed. The data is first transformed into Cartesian coordinates

in the LIDAR’s frame of reference. Next the data points are processed in order. The altitude of each point is

subtracted from the point that followed it in the scan. If the difference is found to be two inches ±0.5 inches, then

that point is placed in a memory array. If the slope between a point and the point that follows it is negative, the

point’s location is placed into the array with a negative altitude, while pairs with a positive slope receive a positive

altitude. When all points with proper slopes are placed into the array, an algorithm described by the following

Turing Machine can be used to find which points in that array are part of a pothole.

1. Read altitude value of the first input point.

2. If it is positive, remove it from the array and go to Step 1, else continue.

3. If the second point in the array is negative, remove the first point and go to step one, else continue.

4. If the distance over the ground plane between first and second points is between 1.5 and 2.25 feet apart,

both points are part of a pot hole. Remove them from the array and record them as part of a pothole.

5. If the memory array has one or fewer elements, terminate, else go to Step 1.

Figure 6: The red cone is a visualization of a 15% grade
increasing in all directions around the robot. Brian assumes that
any point reflected to the LIDAR above that plane is an object.

10

This ensures that a falling edge is followed by a rising edge. Also, it makes sure the distance between edges is at

least one and a half feet and no more than two and a quarter feet – based on our knowledge of the challenge rules

stipulating two foot potholes. We do not allow smaller diameter pothole cross sections to be detected because

random noise generated by variance in grass height could then appear to be pothole. This will place two line

segments in our occupancy grid, and not the pot hole’s full circle. However,

due to our obstacle avoidance algorithm’s tendency to avoid obstacles with a

large clearance, Brian will still avoid the entire pothole (the specifics of the

algorithm will be discussed in section 5.4).

5.2 Vision Filtering

The goal of our vision filter is to find obstacles and lines on the

ground. We accomplish this through two main filters: the first determines

where the ground plane is, and the second determines what pixels on the

ground plane correspond to the white or yellow lines.

The first filter is used to determine what the ground plane is and

eliminate any other obstacles. As was mentioned earlier, the Point

Grey camera returns a disparity value for every pixel that is inversely

proportional to the distance from the camera. Because the camera

maintains the same height and angle with the ground plane, the plane

of the ground (excluding obstacles) should always have roughly the

same disparity map. This flat map is shown in Figure 7. When

obstacles, such as barrels, are added to the camera’s field of view, the

disparity map changes

accordingly, as the

obstacle locations have higher disparity values (as visible in Figure 9).

A standard ground plane disparity map is subtracted from the current

disparity map from the camera. After this subtraction occurs, the only

remaining positive values are obstacles. Two filters are then applied.

The first removes the ground plane and retains the obstacles, which are

then added to the global obstacle certainty array. The second removes

the obstacles and retains the ground plane. Some morphological post-

processing is then done to clean up the image, and a ground plane mask

is created. This mask is applied to the color image to return only the

ground (Figure 8).

Figure 7: A disparity map of a level, flat ground
plane (note some deviation in the ground is
visible to the upper right as we could not find a
completely flat patch of ground).

Figure 9: Disparity map showing some obstacle
in the way.

Figure 8: This figure shows the image after the
obstacles have been filtered out. Note that while the
filter is effective, it does miss the edges of the
obstacles.

11

The second main filter is used to determine where the painted white lines are. We approached this filter

using two different methods. The first was a simple blue filter. This was modestly effective because there is a

large quantity of blue in white lines, but very little in green

grass. Issues arose with this filter, however, because it

required sitting with the robot looking at the lines and

adapting the filter values whenever the lighting conditions

changed, which is decidedly not robust. To create a more

robust filter, we adopted a hue and lightness filter. Both of

these filters are adaptive to the image, creating threshold

values based off the average HSL values of the entire image

and the standard deviation of each. This filter removes the

most abundant color from the image, which makes the filter

generally effective in a variety of different lighting conditions and on a multitude of different ground types (grass,

asphalt, etc.). The results can be seen in Figure 10.

5.3 Mapping the Environment

In order to make sense of data received by instruments, it is placed into a global occupancy grid, represented by a

two dimensional array. Each cell of this two-dimensional array corresponds to a three-by-three inch area of the

race course. While three-dimensional data of each obstacle or line point is known by the robot, and used to detect

the points placed in the occupancy grid, the altitude dimension can be disregarded in this case. This is a valid

assumption because the race course never exceeds a fifteen-percent grade. Assuming a flat world in our data

storage method introduces a maximum error of 1.3 inches at the ranges of zero to ten feet scanned by our sensors.

Placing data into the occupancy grid can be done by subtracting the point’s transformation into the global

reference frame from the robots position in the global reference frame. Because this result is in inches, modularly

dividing the coordinates by three determines the data’s position in the occupancy grid (as shown in the following

equation).

Once the location within the global occupancy grid is determined, we increment the corresponding array cell. In

our data representation, we differentiate between lines and objects by storing their data points in two different

occupancy grids.

 In order to keep track of obstacles and lines detected at previous cycles of computation, the occupancy

grid arrays retain their values across cycles of computation. Instead of overwriting the value of cells with previously

detected obstacles and lines, the value of the cells are incremented. Because our camera captures a 360x240 pixel

image at the same 10Hz rate as our LIDAR – which only captures 180 pixels per scan – we must increment data

Figure 10: This figure shows the location of the lines in
the image.

12

for these two instruments differently. Any data point found by the LIDAR is incremented at a rate two orders of

magnitude larger than the rate of increase for the camera. This creates a certainty value that is proportional to the

magnitude of each cell in the array. However, over time, imperfect localization erodes the accuracy of data

correlation over large distances. That is to say within the occupancy grid, the distance between currently sensed

objects and objects sensed long ago is not an accurate correlation. As a result, in addition to having a memory of

old previously sensed locations, our occupancy forgets over time. Every five computation cycles, we decrement

each cell in the array the equivalent of one LIDAR data point increment. This means that over time, if an obstacle

or line is not continually detected, Brian becomes less certain it exists, until he forgets it was ever there at all.

5.4 Reactive Algorithm

With occupancy grids described in section 5.1, the robot applies a simple algorithm to determine its action. Both

lines and obstacles must be avoided. Thus for our reactive paradigm, we generate a third occupancy grid. This grid

is the sum of both the line and obstacle arrays. Each cell in the resulting occupancy grid exerts a virtual force on

the robot. This force is summed over all cells as defined in the following equation, where F is the total force, k is a

tuned constant, c is the certainty value of the cell within the occupancy grid, d is the distance between the cell and

the robot, and m and n are the number of rows and columns in the occupancy grid respectively.

The direction of this force determines the heading of the vehicle, while the magnitude of the resultant vector

determines the robot speed. In order to decrease computation time, this algorithm is not actually applied to the

entire occupancy grid. Instead, we apply the operation to a subset of the array. Due to the inverse squared

relationship of distance, we know that any obstacle or line at a range of more than five feet exerts a negligible force

on the robot. Thus, we only apply the calculation to a 41x41 element sub array, centered at the robot’s current

location.

5.5 Waypoint Generation

Clearly, force described in the previous section pushes our robot away from lines and obstacles. However, the

robot needs to move to a destination, not just away from lines and obstacles. To achieve this, we add constant

forces that push the robot towards our desired goal. In the navigation challenge, this is done by adding a single,

constant magnitude force vector in the direction of the next GPS waypoint. This pulls the robot towards the

waypoint, until it comes close to an obstacle or line. At that point, the force of the obstacle subsumes the force of

the waypoint due to the shrinking magnitude of obstacle’s the distance squared term. This repulsive force remains

the primary determining factor in robot motion until the obstacle is cleared, the distance term grows, and the

waypoint’s attractive force subsumes the shrinking obstacle forces.

13

In order to direct the robot during the autonomous challenge, a sand piling method is used. The robot

places a strong, constant repulsive force in the array cell the robot occupied three seconds ago. This helps propel

the robot forward, and also helps the robot escape local minima. A local minima is a location on the course in

which all the virtual forces push the robot toward a single point that is not the desired waypoint. After three

seconds of being stuck at a minima, the robot has a force at its current location that pushes it out of the minima.

The additional forces added to direct the robot are stored in an array separate from the occupancy grid as they are

treated differently by the memory. These constant directive forces are added after calculating the sum of the

occupancy grid forces.

5.5 Software Innovation

 Brian’s primary software innovation is his use of the reactive paradigm. The reactive approach offers a few

key advantages. The first is speed. Based off of this year’s rules, as well as investigation of past IGVC courses, the

team knew that there would be a single closed path for the autonomous challenge. This means that advanced

decisions about branching and avoiding dead ends would not have to be considered by our robot. This encourages

a simple, robust solution to the problem. While there is only one path through the course, there are certainly more

and less optimal driven courses through that path. Our algorithm pushes Brian to the center of the lane, instead of

closely rounding corners on a more optimized course. However, in reading previous design reports, we quickly

found the processing demands of computing optimal paths affected robots’ top speeds. Finding the optimal path

reduces the rate at which a robot can make decisions, and thus, lowers its top speed. This is most evident in our

robot’s course update rate, which occurs at 10Hz. This is about two times faster than traditional sense, plan, act

algorithms – as compared to a robot with similar computing power, such as Princeton’s Kratos. This allows our

robot to travel a suboptimal path at the top allowable speed. This has two advantages; first, we were able to near

double our top speed. While the suboptimal path may be longer, it is not twice as long. Additionally, the

suboptimal path takes a wider berth around obstacles. This means there is a greater allowance for error in sensor

readings and localization. Thus, by using a reactive paradigm we are able to both increase the rate at which we

cover ground and decrease the probability of us running into obstacles and lines.

6 Predicted Performance of Vehicle:

6.1 Speed and Ramp Climbing

Our Doran Chimp base vehicle is a personal transportation unit designed to carry a 300lb rider at 11mph on a flat

surface. The additional electric and mechanical systems on the vehicle are equivalent to a 180 pound person.

Therefore, we are well within the specification of the original vehicle, and qualitatively expect a comparable

performance. We have never had problems with the base vehicle being unable to carry our load. Our structural

system even retains the original rider support, allowing for the sidetracked team member to ride the robot.

14

Quantitatively, the motor on the base vehicle is a 1.3 Horsepower 24V brushed DC motor, geared up by a

3:1 ratio. At full throttle with a rolling resistance of .065 (accepted value for a tire on grass), the theoretical

maximum speed of the vehicle is 8mph for a flat surface and 2.5mph for a 15% uphill grade. In accordance with

competition rules, we have hardware limited our main motor controller to 4.5 mph.

In general, we have kept our robot’s speed software limited to 3mph for algorithm development, and have

discovered that our algorithm efficiency is the critical speed limiting factor, rather than the restrictions of the base

vehicle. A fast algorithm therefore directly correlates to a faster competition run speed, the primary impetus for

our reactive algorithm paradigm.

6.2 Reaction time

Our cognition loop runs at 10Hz, meaning that our

reaction time is limited more by the mechanical

system than the software. While the computer is able

to react to a new obstacle in 0.1 seconds, the steering

system can theoretically slew 45º in 0.28 seconds,

slowed by an estimated 5.2 Nm load on the steering

motor (a Chairman AGM-12100T).

6.3 Battery life

The batteries installed on the robot are the original

Group 27, 115 amp-hr., deep-cycle lead-acid batteries

from the Chimp base vehicle. Doran Vehicles

claims that a Chimp can travel for 30 miles on a

single charge, which translates to 2.7 hours of continuous usage of the drive motor. We have worked on the robot

for 10 hours of on-off usage on a full charge of battery. Ultimately, we have few worries about our battery

capacity during competition.

6.4 Distance at which obstacles are detected

The obstacle detection distance is highly important, especially for a reactive system, because acting on an obstacle

too soon or too late can cause unnecessary avoidance or collisions. Our LIDAR is mounted 75cm off the ground

and tilted at a 15º angle, so our robot detects obstacles less than 2.8m in front of it. This may seem small, but with

our 1.01m steering radius and 10Hz cognition loop, this detection distance provides more than enough time to

avoid obstacles. However, one of our goals between now and competition is to increase our travel speed, so the

LIDAR angle may change to adjust this reaction time.

Our Point Grey Digiclops stereoscopic camera is mounted at a 30º angle off the vertical, 1.8m from the

ground, with an approximate 90º field of view. This gives us obstacle detection from the horizon line to 10cm in

front of the robot.

Figure 11: Obstacle detection ranges for various sensors.

15

6.5 Autonomous Performance

Our algorithms for both the autonomous and navigation courses use the same obstacle avoidance method to guide

the robot. Our autonomous algorithm for switchbacks and islands is a “sand piling” method, where the robot

uses its position a few seconds before to guide the direction it needs to go, avoiding obstacles and lines along the

way. By tuning that time parameter, we can optimize the robot for different situations. For example, using a

previous position from a long time ago will guide the robot down straight path with many obstacles, rather than a

winding path with fewer obstacles. We will be using our on-site testing runs to tune this parameter for the

competition course. Testing has proven this method to be rather robust for switchbacks and islands; however, it

performs poorly on long dead ends.

6.6 Navigation Performance

Our uBlox GPS is our most troublesome (and cheapest) sensor. The current GPS performance is a 2m radius

watch circle, which is just barely enough to navigate the valley waypoints effectively. Accordingly, we do not use

the GPS for localization, but instead only update the waypoint locations in the robot’s internal map. Our obstacle

avoidance algorithm is extremely robust given static waypoints; therefore, we predict efficient travel between

waypoints but only 2m accuracy upon arrival.

7 Conclusion:

This paper outlines the design and implementation of Brian, a fully autonomous vehicle created for the 2009

Intelligent Ground Vehicles Competition. Five undergraduates at the Franklin W. Olin College of Engineering

made Brian in four months. In the process we learned about engineering design and gained significant problem-

solving experience through the realization of a complex, interdisciplinary project. We would like to thank National

Instruments and Olin College for their support, as well as Professor David Barrett for his guidance. We believe

that Brian represents an innovative design in the IGVC and hope to be competitive in the 2009 competition.

	img-516120519-0001.pdf
	final paper.pdf

