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1 Team Overview

The Princeton IGVC team consists of members of Princeton Autonomous Vehicle Engineering (PAVE),
Princeton University’s undergraduate student-led robotics research group. Our team builds upon PAVE ’s
experience in robotics competitions, including participation in the 2005 DARPA Grand Challenge [1], the
2007 DARPA Urban Challenge [9] and the 2008 Intelligent Ground Vehicle Competition (IGVC) [2]. Our
team placed third overall and won rookie-of-the-year in the 2008 IGVC, placing 1st, 4th and 6th in the
Design, Navigation and Autonomous challenges, respectively. Argos, our entry in the 2009 IGVC, is an
all-new robot based on improvements from 2008. We believe that Argos and the Princeton Team will once
again be competitive in the 2009 IGVC.

Our team is made up of undergraduate students from several engineering and non-engineering departments1.
We maintained a simple organizational structure, as shown in Figure 1. Team members were grouped
into hardware or software teams according to their area of expertise. The hardware group is responsible
for all physical aspects of the robot, including design, fabrication, sensor selection, electronics, electrical
wiring and computer hardware. The software group is responsible for algorithm design and programming
implementation. Primary tasks include sensor processing, intelligent navigation schemes and robust feedback
control systems. To oversee these groups, we dedicated two student team leaders to specialize in project
management and logistics.

Hardware Group 

Gordon Franken ’09, MAE  CAD Design 

Alex Tait ’12, ELE    Electronics 

Eric Starr ’12, MAE    Chassis 

Richard Harris ’10, MAE   Drivetrain 

Derrick Yu ’10, ELE    Assembly 

Barbara Hendrick ’12, MAE  Fabrication 

Solomon Abiola ’12, PHY  Computers 

Project Manager 

Richard Harris ’10, MAE 

Logistics Manager 

Alex Tait ’12, ELE 

Software Group 

Jonathan Mayer ’09, WWS  Navigation 

Chris Baldassano ’09, ELE  Vision/State Est. 

Tony Zhu ’11, ELE  Navigation 

Brenton Partridge ’12, ELE  Vision/Navigation 

 

Figure 1: Team Organization Diagram

2 Design Process

Our primary goal in designing our robot was to improve on the largely successful design of our 2008 IGVC
entry, Kratos. Our overall design process followed the steps outlined in Figure 2. In the initial phase, we
analyzed the requirements for the project along with the strengths and shortcomings from last year’s design
to create a set of desired design objectives. Given these design objectives, we determined a feature set for
Argos based on our knowledge and expertise. These systems were then modeled or simulated using computer
software tools. To minimize wasteful spending and fruitless development time, the required components were

1ELE = Electrical Engineering, MAE = Mechanical and Aerospace Engineering, PHY = Physics, WWS = Woodrow Wilson
School of Public Policy and International Affairs
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acquired only after successful computer simulations. Each system was tested individually, then integrated
and tested as a whole. If a system’s actual performance did not adequately meet its design objective, redesign
was necessary. Systems that met their objectives were deployed, though their performance is continuously
monitored.

 
Analyze Design ImplementSimulate Acquire Test Deploy

Figure 2: Flowchart of Design Process

The rules and requirements for the 2009 IGVC are very similar to those of the 2008 competition, so most of
our overall design objectives remain the same as enumerated in last year’s tech paper [2]. In analyzing our
performance during 2008, we identified the following elements of our system that needed improvement:

Hardware

1. Drivetrain was underpowered and noisy

2. Wheels had tendency to slip on the grass

3. Physical layout of the robot had large
moment of inertia

4. Robot was not water-resistant and offered
little protection for internal components

5. Overheating inside the robot led to
component failure

Software

1. Camera field of view was insufficient for
lane and obstacle detection

2. Wheel slip contributed to significant
errors in heading estimate

3. Path planning failed when lanes were not
sufficiently detected

4. Path planner generated non-optimal/
unnecessarily tight paths around obstacles

5. Path following algorithm cut corners,
causing the robot to hit objects

This technical paper divides the discussion of our robot design into two parts: Hardware (Section 3) and
Software (Section 4). In each section we discuss the improvements we made to address the shortcomings
of our 2008 entry. Argos combines the features that worked well in 2008 with improvements made to our
previous design, resulting in a robotic platform that outperforms its predecessor in every respect.

3 Hardware

To address the shortcomings in the mechanical design of our 2008 entry, we decided to build a completely
new robot from the ground up. In doing so, we were able to address all of the hardware design flaws listed in
Section 2 and make several other innovations. We examine the redesign of the robot’s drivetrain and chassis
in Section 3.1, and changes to our electrical system are discussed in Section 3.2. We discuss our sensors and
electronics in Sections 3.3 and 3.4. An overall list of components used on Argos and their costs is shown in
Table 1.

3.1 Mechanical Design

Argos has a width of 31”, a length of 37”, a height of 69.5”, and a weight of 280 pounds without payload.
It is based on a three wheel chassis with two drive wheels and a leading caster. This setup keeps both
drive wheels in contact with the ground on sloped or uneven terrain, does not cause the drive wheels to slip
when turning, and is always stable. The two fixed, powered wheels provide a zero turning radius enabling
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Item Actual Cost Team Cost
Gladiator Technologies G50 gyroscope∗ $1,000 $0
HemisphereGPS A100 GPS receiver $1,500 $0
Honeywell HMR3000 digital compass $850 $0
US Digital E6 rotary encoder (2x) $500 $0
Videre Design STOC-15 stereo camera $1,660 $1,660
NPC T64 motor (2x) $256 $256
IFI Robotics Victor 885 motor controller (2x) $440 $440
Drivetrain components $525 $525
Raw material for chassis $1,388 $1,388
Miscellaneous hardware $340 $340
Labjack UE9 data acquisition card $500 $0
Computer components $1,082 $1,082
Tempest TD-22 battery (6x) $388 $388
IOTA DLS-27-25 battery charger $295 $295
Samlex SDC-08 DC-DC Converter $75 $75
Linksys WRT54G wireless router (2x) $75 $0
R/C radio system $350 $350
Total: $11,224 $6,799

∗Denotes donated item. All other zero-cost items were reused from Kratos in 2008.

Table 1: List of Costs for Building Argos

maximum mobility and holonomic path planning. The drive wheels have a diameter of 12”; along with the
10” caster, Argos has roughly 4” of ground clearance. On top of the chassis is the sensor tower, which
holds various sensors as well as the required emergency-stop button. A region above the caster was designed
specifically to hold and secure the payload. In keeping with our design process, the entire robot was modeled
with Autodesk Inventor 2008 CAD software prior to any construction. Inventor allows for rapid component
modeling and assembly. It also tracks mass data for each component so the overall weight, center of mass
and moments of inertia of the robot were known before fabrication. As can be seen from Figure 3, the final
robot bears close resemblance to the CAD model.

(a) CAD Model (b) Actual Robot

Figure 3: Visualizations of Argos

3.1.1 Drivetrain

Last year’s drivetrain was underpowered, so Kratos accelerated slowly and could not reach the maximum
allowed speed. We made a decision to switch to a 24-volt electrical system to accommodate a new set of
motors that could deliver more power at lower electrical currents. Following our design process from last
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year [2], we started by estimating the mechanical power requirements of three driving scenarios: full speed
forward on grass, turning in place on grass, and driving up a 10◦ incline. We selected a pair of NPC T64
motors rated at 1.6 horsepower each, which is more than enough to meet our needs. The T64’s have the
following specifications:

Vn = 24 V (nominal voltage)
Is = 110 A (stall current)
τs = 93.21 N-m (stall torque)
ωf = 25.475 rad/s (no-load speed)
If = 4.707 A (no-load current)

Using these parameters, we ran numerical simulations using the standard DC motor equations to calculate
speed, power, and efficiency as functions of output torque. Based on the calculated angular speeds at which
the motors achieve peak efficiency and our desired speed of 5 mph, we determined we needed a gear ratio
of 3:4 for the sprocket and chain drive connecting the motors and drive wheels. To alleviate the problem of
our wheels slipping on grass we optimized the layout of components (discussed below in Section 3.1.2) and
upgraded the tires to ones with knobby treads that would better grip the thick grass. After fabrication, we
applied an open loop step function to the motors and verified that their experimental response agreed with
our simulated predictions (Figure 4).
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Figure 4: Open Loop Step Response

3.1.2 Chassis

The chassis consists almost entirely of 80-20 extruded aluminum bars and 1/4” clear polycarbonate sheets.
Though we recycled much of the raw material for the frame from Kratos, the entire chassis itself was
completely redesigned to address the design flaws in the 2008 robot. In an effort to reduce the footprint
of the robot to make it more compact and maneuverable, the we included two levels in the chassis design.
This bilevel frame allows more components to be located closer to the drive wheels, allowing Argos to have
a lower moment of inertia. Furthermore, we increased the height of the sensor tower, providing the camera
a better perspective to detect lanes. All of our sensors, discussed in Section 3.3, are vertically aligned over
the drive wheel axes so that they share the same reference frame on the robot. Argos’ frame contains only
square vertices, which are easily sealed with exterior panels. To protect the internal components from the
elements the joints on the outer panels are sealed. However, to prevent overheating issues encountered at
last years’ competition, Argos is equipped with ventilation ports and exhaust fans.
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3.2 Electrical Design

To support Argos’ new drive motors, we designed a 24-volt electrical system to efficiently provide adequate
power and enough runtime for extended testing. Though the robot is only required to operate for 6 minutes
during the competition, we decided to store enough energy to operate for at least 45 minutes. A summary
of power usage is shown in Table 2. Factoring in the nominal power draw, desired running time, and battery
inefficiencies at high current draw, we determined that we needed a battery bank with a capacity of 132
amp-hours. Few 24-volt batteries are available with sufficient capacity, so our design uses two 12-volt battery
banks in series to generate a 24-volt source.

Voltage Device Peak Power Nominal Power Idle Power
24 Drive Motors 5,280 1,180 0
24 Motor controllers 7.04 2.48 2.48
24 Computer 450 300 60
12 Router 6 4.8 3
12 Access Point 6 4.8 3
12 GPS 2 1.8 1.8
12 Compass 0.6 0.42 0.16
12 Warning Light 15 10 0
5 LabJack 0.8 0.58 0.43
5 Encoders 0.86 0.58 0.58
5 Gyroscope 0.33 0.25 0.25
5 E-Stop R/C Link 1 0.5 0.5

Total 5,755 1,396 72

Table 2: Power Requirements for Argos (all power listed in Watts)

Our initial electrical design aimed to reuse the three 12-volt batteries and 12-volt battery charger from 2008.
We designed a switching circuit employing two high-current relays that would put all three of our batteries
in parallel for charging, and switch one of the batteries into series for 24-volt operation (Figure 5). 12-volt
electronics were always run off of the center terminal, even when charging.

 5/14/2009 19:39:12   /Users/Alex/Documents/eagle/IGVC Battery Charger/battery arrangement.sch (Sheet: 1/1)

PAVE-IGVC
12,24V Battery Supply
12V Battery Charger
v. 2

Charge

Charge

Relay 1

Relay 1

Relay 2

Relay 2

From Charger

To Robot

Line In

Figure 5: Switching Power Circuit

During early testing, we observed that Argos was experiencing sporadic power failures. We determined that
the problem originated from uneven discharging of the batteries while connected in series. When switched
into parallel, even a 1 volt difference in battery voltages caused excessive current to flow through the system,
ultimately damaging our charger. The electrical system was redesigned so that no switching is needed.
Argos now has six 12-volt batteries in a series-parallel configuration and one 24-volt charger. To ensure
that all 12-volt banks charge evenly, the center terminal is equilibrated at exactly half of total voltage by a
resistive voltage divider. This divider maintains the long-term health of our battery system and contributes
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negligible parasitic power loss. An 8-amp DC-DC converter was added to provide 12-volt power for most of
the components; a 5-volt, 5-amp DC-DC converter provides regulated power for the electronics. Figure 6
shows the final power storage and distribution setup of Argos’ electrical system.

 5/15/2009 22:42:19   /Users/Alex/Documents/eagle/IGVC Battery Charger/battery arrangement 2.sch (Sheet: 1/1)
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Figure 6: Electrical System

3.3 Sensors

Argos uses a single environmental sensor, a Videre stereo-on-chip (STOC) color camera with a baseline of
15 cm. Experience with Kratos informed our decision to use a relatively inexpensive stereo optical sys-
tem. Its ability to detect both obstacles and lanes avoids error-prone frame of reference transformations for
multiple sensors. The Videre camera improves upon Point Grey’s Bumblebee2 (used on Kratos) with an
embedded Field Programmable Gate Array (FPGA) that performs the highly parallelizable algorithms nec-
essary to compute a three-dimensional point cloud. In addition to significantly decreasing general computing
requirements, STOC raises limits on resolution and refresh rate, improving the effective detection range and
reaction time of the robot, respectively. Although processing requires additional data be transferred over
the camera’s IEEE1394 interface, the query for a stereo map, computation on the FPGA, and response
occurs on the order of one hundredth of a second. The camera’s wide baseline allows for an even greater
detection range, and 2.5 mm lenses widen the field of view, enabling Argos to maneuver more accurately
around obstacles.

To sense Argos’ state we employ an array of absolute and differential sensors. Argos is equipped with
the same HemisphereGPS receiver, US Digital wheel encoders, and Honeywell digital compass used by its
predecessor and described in last year’s technical paper [2]. The combination of GPS and wheel encoder data
provide high-precision, low-drift position and speed data. The compass provides noisy heading data; at high
speed it is corrected by GPS data. In last year’s competition we computed the yaw rate of the robot using
differential wheel speeds; we found this approach produced significant error under wheel slip conditions,
however. To correct for slippage, Argos incorporates a Gladiator G50 MEMS gyroscope to directly measure
the instantaneous yaw rate. The gyroscope has a range of ±350◦/s, and outputs an analog voltage.

3.4 Electronics and Computer Hardware

In the interest of developing a simple and robust system, we aimed to minimize the use of custom electronics
and circuitry. A LabJack UE9 provides Argos’ computer systems with a single interface to all low-level
electronic sensors and outputs; speed and position of the drive wheels are measured from the wheel encoders
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using on-board 4x quadrature counting, and the Gladiator G50 gyroscope is connected via 14-bit analog
inputs. The UE9 also produces pulse width modulation (PWM) signals to control the Victor 885 motor
controllers, while digital I/O lines control the warning siren and read in run/pause/disable commands from
the external emergency stop (E-Stop) radio.

The only custom circuitry on Argos (not including power distribution) are the electronics in the emergency
stop (E-Stop) system, which assure safety of operation through parallel manual and wireless pathways.
Pushing a red button mounted on the back of the tower or flicking a switch on the independent, handheld
wireless transmitter will activate the E-Stop system. When the E-Stop is activated the control signals to
both motors are disconnected, causing the robot to come to an immediate stop. A new 2.4 GHz spread-
spectrum wireless radio generates significantly less noise and encounters less interference than the 75 MHz
analog hobby radio used on Kratos, and can be directly connected to the motor controllers to allow human
operability even with computer failure.

By offloading a portion of the stereo image processing to the Videre camera’s dedicated FPGA, Argos is able
to operate with a single on-board computer, resulting in significant weight, cost, and energy savings over
Kratos. We built a new quad-core computer with an Intel Core i7 CPU at 2.66 GHz, 6 GB of RAM, and
an 80 GB hard drive. We are able to capture the performance benefits of additional processor cores through
our multiple-process software architecture, discussed in Section 4.1. The computer draws DC power directly
from the 24-volt system with a 450W ATX power supply, eliminating the need for an AC inverter and thereby
saving weight and increasing energy efficiency. Shock-isolating feet beneath the computer enclosure prevent
damage to the sensitive components within. A pair of 802.11g wireless routers simultaneously allow clients
to access Argos’ systems wirelessly and, when in range of an accessible wireless network, provide Internet
access to the onboard computer and clients. This combination also allows Argos’ computer to be remotely
accessed over the Internet whenever in range of a wireless network (including the majority of the Princeton
campus), and supports interfacing with JAUS systems via Ethernet or WiFi.

4 Software

Argos’ software employs the same paradigm as Kratos, consisting of independent asynchronous processes
linked through our publish/subscribe messaging framework, IPC++. Individual software modules implement
JAUS compliance (Section 4.1), provide sensor input and processing (Section 4.3), estimate pose (Section
4.2), plan a desired path (Section 4.4), and accomplish path following and speed control (Sections 4.5 and
4.6). A holistic diagram displaying module roles and message contents is displayed in Figure 7. Substantial
innovations were made in all software aspects, particularly in our approach to navigation.

4.1 Computing Platform

Argos’ computer runs the Windows Server 2008 operating system, which improves upon Windows Server
2003 (used on Kratos’ computers) by incorporating support for the High Precision Event Timer (HPET)
included on modern motherboards. This allows for timers with millisecond accuracy and sub-millisecond
jitter as opposed to Server 2003’s 10-15 ms accuracy and 2-3 ms jitter. Driver incompatibilities require
a 32-bit version of the operating system, but our software is implemented to take advantage of 64-bit
processing in the future. All software is written in platform-independent C++ using the Visual Studio IDE
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Figure 7: Diagram of Software Architecture

for ease of development. The Newmat and wykobi libraries provide linear algebra and geometry functionality
respectively, and the Qt library and Designer allow for rapid multi-platform GUI development.

We continue to employ IPC++, an object-oriented wrapper of Carnegie Mellon’s Inter-Process Communi-
cation (IPC) platform [10], as our underlying robotics framework. Each software component runs as an
independent program connected to a central server; message publishing and subscription, serialization, and
timing are all accomplished transparently.

Implementing JAUS interoperability is straightforward with IPC++; an additional process translates be-
tween external JAUS messaging and internal IPC++ messaging. For JAUS query messages, the process
replies with the latest update of the robot’s state. For JAUS control messages, such as start/stop and set
waypoints, the translator simply sends the appropriate equivalent message over IPC++.

4.2 State Estimation

Argos’ state estimation module uses a square root central difference Kalman filter (SRCDKF) [11] to fuse
all of the state sensor (compass, GPS, wheel encoders, gyroscope) data and maintain an optimal estimate of
several key variables that define the state of the robot. The SRCDKF, also used last year, is a sigma point
filter that uses a deterministic set of points to represent a multivariate Gaussian distribution over states and
measurements. This year’s major modification is the addition of an explicit yaw rate estimate, ω, which is
used during the state update step of the filter to help predict the vehicle’s heading. Last year, we simply
estimated this term as

ω(t) =
vl(t)− vr(t)

b
,

where vl(t) is the left wheel speed in m/s, vr(t) is the right wheel speed in m/s, and b is the wheel base in
meters. This estimate was often poor, however, since the wheels would slip frequently on the field, especially
when turning.

We appended our previous state vector to account for gyroscope data, and arrived at a seven variable state
vector that explicitly includes the yaw rate:
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x = [x, y, θ, δ, ω, vr, vl]
T
,

where x is the vehicle x coordinate in meters in a Cartesian local frame, y is the vehicle y coordinate in
meters, θ ∈ [0, 2π) is heading, δ ∈ [0, 2π) is the bias between magnetic compass heading and true GPS
heading, ω is the yaw rate of the vehicle, vr and vl are the right and left wheel ground speeds in m/s. The
measurement model for the gyroscope, used in the prediction step of the filter, is given by

ygyroscope(t) =
(
ω(t) + γ

)
,

where γ is a Gaussian random variable corrupting the gyroscope measurement.

The Gaussian noise variables were estimated by analyzing the long-term behavior of the sensors’ signals while
at rest. In all cases except the wheel encoders, the Gaussian random variable is an accurate representation
of the sensor noise; for the encoders it serves as an approximation to the finite, discrete noise corrupting
the digital pulse train. The addition of the gyroscope into state estimation is intended to guard against
severe errors in heading estimate resulting from wheel slip that we observed during 2008. We anticipate the
improved state estimation will demonstrate accuracy and robustness to unreliable data better than in the
previous year.

4.3 Vision

Aside from slight modifications to accommodate the Videre stereo camera and its STOC capabilities, our
obstacle detection algorithm (which performed flawlessly in 2008) is unchanged: we examine a point cloud
for protrusions from the ground plane, and report them as obstacles [3].

Our lane detection system, on the other hand, inconsistently detected markings at last year’s competition.
We kept the basic algorithm structure, originally developed for the DARPA Urban Challenge, in which
filtered images representing white content, yellow content, pulse width, and stereo obstacles are fused into a
heat map which is then searched for lines [3]. However, both the filter and fusion steps have been updated.

First, to counteract sensitivity to shadows and ambient light conditions, new white and yellow filters were
developed that operate in hue-saturation-value space [12]. The new white filter calculates separate brightness
thresholds for high and low saturation image components to assure shadowed markings will still be detected
and to avoid false positives in bright conditions. The new yellow filter, meanwhile, thresholds the image
relative to its maximum yellow hue to similarly provide robustness against lighting conditions.

Second, we implemented a localist perceptron neural network to replace the “binary and” fusion step previ-
ously employed [6]. The network architecture consists of a single pixel output unit, with sigmoid activation,
connected to a 5x5 input grid of local pixels from the filtered images. We trained the network for 10,000
iterations on randomly selected pixels from logged images with the delta rule, then compared performance
to “binary and” fusion on a test set of images. While daytime performance was relatively unchanged, we
found an over 30% increase in detection rate for low-light images. Argos’ consequent ability to operate in the
early morning and late in the day increases its window of operational effectiveness and provides additional
time for testing.
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4.4 Navigation

Argos maintains the three-pronged approach to navigation employed by its predecessor: the robot’s envi-
ronment is represented by a cost map incorporating obstacle and lane data, a desired waypoint is selected,
and a path planner calculates an optimal trajectory for achieving the waypoint.

4.4.1 Cost Map Generation

The goal of cost map generation is to synthesize noisy state, obstacle, and lane marking sensory inputs into
a reliable, high resolution two-dimensional grid of the world. We retain the basic architecture from last year
by assigning continuous costs, calculated with a moving average, to a global map of 10 cm x 10 cm grid cells
[3]. As did its predecessor, with every vision update Argos generates a local cost map of obstacles and lanes
immediately in front of the robot, then merges this local map into the global map. A “footprint” cost map is
employed for path planning, in which each cell evaluates to the sum costs in its surrounding region, thereby
accounting for the physical geometry of the robot. To compensate for detection error on lane markings we
are experimenting with filtering through time, which provides hysteresis for rejecting outlying false-positives
and interpolation to fill in false-negatives.

4.4.2 Waypoint Selection

As with Kratos, waypoints for the navigation challenge are presorted into the shortest overall path by
enumerating all possible permutations. In the autonomous challenge, where the course structure is unknown,
the desired waypoint is generated dynamically; a target point is inferred by finding the midpoint of the two
furthest lane markings seen. In both cases, a new waypoint is only calculated when the robot approaches
the current waypoint.

4.4.3 Path Planning

Argos significantly improves upon Kratos’ simple A* path planner by incorporating incremental replanning
and continuous headings from cell to cell. We accomplish the former by replacing A* with the Dynamic
A* Lite algorithm (D* Lite), which retains the optimality and completeness guaranteed by A* but lever-
ages knowledge derived from prior search iterations to avoid searching when unnecessary [8]. By planning
backwards from the waypoint, search results remain relevant even as the robot moves. In our experience the
move to D* Lite provides a speed-up of over an order of magnitude relative to repeated A* searches.

Our second innovation is the implementation of the Field D* algorithm to formulate the path search problem
[5]. Field search is premised on the recognition that restricting the search to cost cell centroids discounts
feasible robot positions and constrains path heading changes to 45◦ increments, thereby disallowing preferred
paths that do not neatly move from centroid to centroid (including most straight-line paths). Moreover,
these artificial constraints can result in an arbitration crisis between equal cost paths, leading to erratic
robot motion. We implemented a rudimentary solution to these problems in our previous planner with a
tie-breaking “path straightness” heuristic to select paths that, when naturally interpolated by robot motion,
would approach optimality, but in the presence of obstacles paths quickly degenerated. Field search provides
a more flexible solution to these problems by treating the search nodes samples from a continuous cost space,
and applying linear interpolation to approximate an optimal solution with arbitrary headings and positions.
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When determining the depth g of node s, field search takes the minimum of a path to s from each of
its neighbors s′ directly as usual, but also considers a path to s from any point on the boundary of a
neighboring cell (between connected neighboring nodes). Figure 8 shows a canonical example of expanding
node s with neighbors (s1, s2) ∈ {connectedneighborsof s}. Traditional search only considers paths directly
from neighbors, such that

g(s) = min [g(s1) + c(s, s1), g(s2) + c(s, s2)] ,

where c(x, y) is the cost of traversing from node y to node x. Field search expands upon this formulation by
allowing for a continuous range of predecessors between s1 and s2,

g(s) = min
0≤y≤L

[g(sy) + c(s, sy)] ,

in which the depth of novel predecessors sy are linearly interpolated according to

g(sy) =
y

L
g(s1) +

(
1− y

L

)
g(s2)

where y is the distance from node sy and L is the length of a cell side. We use Euclidean distance multiplied
by the cost of the cell (given by the cost map) as the cost function for admissibility and consistency [4].

(a) No Interpolation (b) Linear Interpolation

Figure 9: Example Determination of Node Depth

Figure 9 gives a full-scale example of field search. Searching from the bottom-left to the top-right, without
interpolation the middle-right and top-right nodes are expanded and concatenated to give a highly undesir-
able path. Field search, on the other hand, expands the middle-right and middle-left nodes in the regular
manner, but when expanding the top-right will interpolate between the middle-right and middle-left nodes
for a shorter path to the source. Paths are extracted through gradient descent backwards in the space of
interpolated search nodes, giving the near-optimal result shown in Figure 9b.
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Field search comes at the cost of further node expansion (in the trivial example above, an extra node was
required to allow interpolation), which offsets the speed improvements from our D* Lite implementation.
However, with optimizations such as a binary heap, cached costs, and compiling with the SSE3 instruction
set extensions, our Field D* planner re-plans at roughly 10 Hz the same speed as its predecessor A* planner,
which we found sufficient for autonomous operation. Figure 10 shows a simulated comparison of the two
planners.

(a) A*, Headings Constrained to 45◦ (b) Field D*, Continuous Path Head-
ings

Figure 10: Quality of Planned Paths

As a final step, the planner computes a desired speed profile along the path based on the maximum allowed
acceleration, a weighted average of nearby costs (to ensure slow, precise movement around obstacles), and
path curvature.

4.5 Path Following

Paths are specified as a desired series of positions, ~r(n). Last year’s technical paper describes two path fol-
lowing schemes based on the proportional and crosstrack navigation laws [2]. Kratos only used a proportional
navigation law, which sets the desired yaw rate proportional to the difference between the current heading
and the angle to a lookahead point (Figure 11a). This scheme is easier to integrate with our actuation model,
but its tendency to cut corners caused Kratos to collide with several obstacles during the 2008 IGVC. Argos
eliminates this shortcoming by successfully implementing a crosstrack error navigation law [7].

r(n*+d(t))

r(n*)

v(t)

p(t)

h(t)

(a) Proportional Navigation Law

r(n*)

v(t)

p(t)

e(t)

ψ(t)

(b) Crosstrack Error Law

Figure 11: Path Following Schemes
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Our path tracking controller minimizes the crosstrack error e(t), defined as the signed distance from the
closest point on the path to the point ~p(t) between the robot’s wheels (Figure 11b),

|e(t)| = minn‖~r(n)− ~p(t)‖.

In a point model of the robot, the crosstrack error evolves according to

ė(t) = v(t) sin(ψ(t)),

where v(t) is the robot speed and ψ(t) is its heading relative to the trajectory. The heading control law is

ωd(t) = khψ(t) + arctan
kee(t)
v(t)

,

where ωd(t) is the desired yaw rate for the robot, and kh and ke and tunable constants. Note that when the
crosstrack error is zero, this controller degrades to a pure-pursuit controller in which the desired heading is set
to instantaneous path heading. The inclusion of the crosstrack error term explicitly avoids the understeer
problem we observed with the proportional navigation controller, so we expect significantly better path
following with Argos.

4.6 Speed Control

We took a theoretical approach towards obtaining optimal control of the robot’s wheel speeds. Our goal
was to be able to track a step input with zero steady state error, low overshoot, and minimal sensitivity to
external disturbances such as slopes and other varying outdoor terrain, these being the most desirable control
behaviors for this competition. With these parameters in mind, we developed a feed-forward proportional
integral design with the control equation

u(t) = f(vd(t)) + kpe(t) + ki

∫
e(t)dt,

where u(t) is the controller output to the motor in volts, f(vd(t)) is a nonlinear feed-forward function of
the desired speed vd(t), e(t) is the signed error between desired and actual speed in m/s, and kp and ki

are tunable control constants. Figure 12 shows a block diagram of this controller. The controller constants
kp and ki are kept small enough so that high frequency noise is not amplified. Their values were manually
tuned to obtain empirically ideal responses.

Wheel SpeedRobot Plant Model

K

t.s+1
Output

Saturation
Kp

0.35

Ki

0.1

Integrator

1
s

Feed Forward

Desired Speed

V

Figure 12: Block Diagram of Speed Controller
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The feed-forward branch will produce zero steady-state error given a perfect plant model and zero external
disturbances. The proportional term then compensates for the majority of the error that results from not
actual operation diverging from these unrealistic idealizations. Finally, the integral term guarantees zero
steady-state error. To implement this control scheme, we first had to obtain an open-loop plant model of
Argos. We fit a mathematical model to sampled data and found that the plant model approximates the
exponential function

y(V ) = K
(

1− e−Vτ
)
,

where y is the speed in m/s, V is the motor voltage, and K and τ are tunable parameters set by the
computerized fit. The inverse of this function is

V (y) = −τ ∗ ln(1− y/K),

which maps desired speed y to motor voltage V . This became the feed-forward function used in our controller.
Though PID control is invalid for a nonlinear plant, the inclusion of the feed-forward term compensates for
nonlinearities, resulting in a close realization of a linear system for which PID control is applicable.

We noticed that the forward and reverse responses of the motors were different due to motor winding bias
and the opposite orientation of the motors on the chassis. The forward response of the left motor matches
the reverse response of the right motor, and vice versa. We made sure to fit the data obtained to two different
models, one for the forward case and one for the reverse case, and to code the controller such that each case
undergoes the appropriate speed to voltage conversion.
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Figure 13: Stages of Speed Control Development

A series of plots in Figures 13 and 14 demonstrate the response of each part of our controller to a step
input of 2 m/s. With only the feed-forward branch engaged there is significant error (Figure 13a), indicating
that the model of the system is not perfect. The addition of a proportional term (Figure 13b) results in a
significant drop in error and decrease in rise time, though there is still room for improvement. Including the
integral term (Figure 14) eliminates steady state error while producing no overshoot.

Our controller incorporates several minor alterations to account for nonlinearities of the robot. The motors
are powerful enough such that under high acceleration, either the front of the robot may lift off the ground or
the wheels may spin in place. To compensate for this, we limit the incremental change in controller output.
This effect on the output voltage is clearly seen during the first second of Figure 14. In addition, we prevent
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Figure 14: Feed-Forward + Proportion + Integral

the integral term from winding up when the output saturates at battery voltage. We have not observed
these modifications adversely affecting the controller performance.

5 Conclusion

Argos is a robust and reliable robotic system that will be competitive at the 2009 Intelligent Ground Vehicle
Competition. Its design and implementation, as discussed in this paper, represent significant innovations over
our entry in the 2008 IGVC. Argos is built on an entirely new hardware platform, including a drivetrain that
is more powerful and quieter, and a chassis that is small enough to fit through a standard doorway. Improved
navigation and path planning algorithms combine the latest cutting-edge research with the versatility and
maneuverability of Argos. Early simulations and testing have already shown significant improvements in
both software and hardware performance when compared to Kratos. We look forward to demonstrating
Argos at the 2009 IGVC.
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