
ALbert:
IGVC 2010 Fordham Rambots

Stephen Fox, Jennifer Feliz, Morgan Doles, and Marina Loginova

Robotics and Computer Vision Laboratory
Fordham University

441 E. Fordham Road, Bronx, NY

Faculty Advisor: Professor Damian M. Lyons

Director of the Fordham Robotics and Computer Vision Laboratory
Department of Computer and Information Science

Fordham University

1

Contents

1 Team Overview 3

2 Design Process 3

3 System Integration Overview 4
3.1 On Board Computer . 4
3.2 Microcontroller . 5
3.3 Operating System . 5
3.4 Advanced Robotics Interface for Applications SDK 5

4 Hardware Overview 5
4.1 Pioneer 3 Chassis . 5

4.1.1 Motors . 5
4.1.2 Power . 6
4.1.3 Safety . 6
4.1.4 Compass . 6

4.2 Range Sensors . 6
4.2.1 Ultrasound Range Finders . 6
4.2.2 SICK Laser Range Finder . 7
4.2.3 Canon VCC50iR Camera . 7

5 Software 7
5.1 Navigation Module . 7

5.1.1 Obstacle Avoidance: Vector Field Histogram 7
5.1.2 System “Modes” . 8

5.2 Sensor Modules for Environment Modeling 8
5.2.1 Sonar Module . 8
5.2.2 Laser Module . 9
5.2.3 Vision Module . 9

6 JAUS Compliance 11

7 Special Thanks 11

List of Figures

1 Modular Architecture of ALbert . 4
2 IGVC Simulation . 5
3 Vision Pipeline . 9
4 Detection of White and Yellow Lines . 10

2

1 Team Overview

The Fordham Robotics and Computer Vision (FRCV) Laboratory 2010 IGVC team,

Rambots, consists of four undergraduate students from two of Fordham University’s

campuses. The team is led by Stephen Fox, a junior mathematics major. Experienced as

an administrator in the FRCV laboratory, he was the most suited to lead the team to the

competition. The remainder of the team consists of two 3-2 Combined Plan Engineering

Program students: Jenniffer Feliz, who is a sophomore majoring in Computer Science,

and Morgan Doles, who is majoring in Engineering Physics. Marina Loginova, is a senior

majoring in Math/Economics and is doing an accelerated masters degree in Computer

Science.

Member Contribution(hrs)

Stephen Fox 140

Morgan Doles 45

Jennifer Feliz 45

Marina Loginova 25

2 Design Process

As a small team, we were faced with the obvious challenege of a shortage of manpower.

However, after analyzing the IGVC rules carefully, we determined we would be able to

compete with one of our existing Pioneer 3 ActivMedia robots, though a small set of

hardware modifications would be necessary in order to qualify at the competition:

1. Extension of the platform to meet the 3 ft. x 2 ft. size requirement

2. Addition of a payload area

3. Modification of the kill switch:

• Move to rear center

• Raise to 2 feet off the ground

• Replace the button with one at least 1 in. diameter

• Addition of a wireless kill switch with at least 50 ft. range

Weekly meetings were held between the team lead and at least one other member in order

to maintain the pace and meet our goals. Our initial planning phase led us to design

a very simple modular software architecture consisting of four primary modules, one for

each obstacle-detecting sensor we planned to utilize, and one to synthesize the information

3

and determine the direction to go based on certain goals. Since our team is spread across

two campuses, sometimes meeting strictly every week was quite difficult. When this was

the case, we held meetings online. With a modular architecture, it was possible to write

and test each module individually, as well as test each in any combination. This proved

to be of great advantage when we began testing our system.

Sonar LaserCamera

Navigation MapVFH

Vector
Drive

Primitive
Drive

Figure 1: Modular Architecture of ALbert

3 System Integration Overview

3.1 On Board Computer

The computational power for ALbert is supplied by an on-board computer. The speci-

fications include a 1.8 GHz Pentium M processor, 512 MB of RAM, a 2.5 inch 120 GB

SATA HDD, and USB and serial ports. The on-board computer provides the platform

for receiving sensor inputs and state information, as well as making navigational deci-

sions. The robot is also equipped with a wireless b/g card, by which we connect to it

through a secure shell by either an ad-hoc wireless connection broadcasted by the robot,

as we must do in the field, or through a wireless router, as we do in the lab. We are also

able to connect a monitor to the motherboard’s VGA output in the event that ALbert

fails to connect to the wireless network. Remote access to the robot is only used in the

competition to initialize the navigational programs, though we can also use it for remote

control.

4

3.2 Microcontroller

The software running on the on-board computer connects with the robot’s microcon-

troller. This provides control for obstacle avoidance and navigation. This model of the

Pioneer 3 was distributed with a 44.2368 MHz Renesas SH2 32-bit RISC microprocessor

with 32K RAM and 128K FLASH memory. The microcontroller handles communication

with many of the robot’s components [1], including the motor encoders.

3.3 Operating System

We run the stable release of Debian Linux 5.0 with the 2.6.26 kernel because of its

flexibility, functionality, and stability. It easily allows us to develop transportable and

cross-platform code, as well as to utilize open-source libraries such as OpenCV 1.0.0.

Furthermore, it provides a suitable interface for JAUS communication.

3.4 Advanced Robotics Interface for Applications SDK

Figure 2: IGVC Simula-
tion

ARIA is a C++ based open source development environment

that is distributed by MobileRobots, Inc. with the Pioneer

3 robots. It provides a robust client-side interface for the

robot which is released under the GNU public license. [1]

We also created simulated course maps using Mapper3, and

designed difficult trap scenarios to improve our navigational

capabilities. In the spirit of the competition, we have made a

concerted effort to minimize our dependence on the advanced

features in the ARIA SDK. We have developed our own imple-

mentations of navigational algorithms, mapping capabilities,

as well as algorithms for the manipulation of the raw data

collected from sensors.

4 Hardware Overview

4.1 Pioneer 3 Chassis

4.1.1 Motors

The robot is equipped with four motors with encoders that interface with the on-board mi-

crocontroller. The enconders allow Pioneer 3 robots to accurately estimate their state[1].

5

We tested the robot’s ability to ascend a gradient of 4.5◦ with a 30 lb payload, a pay-

load greater than required in the competition. We observed only minimal strain. We

also tested the robot’s ability to climb a 35◦ gradient with no payload, which it success-

fully completed. We predict that ALbert will be able to ascend the 15◦ inclines in the

competition while bearing the 20 lb. payload.

4.1.2 Power

Pioneer 3 Robots carry three rechargeable 12 V DC batteries in their rear payload bay.

These rechargeable batteries provide sufficient power to run the computer and peripherals,

as well as the motors and the microcontroller. We have tested battery life to be between

20 and 25 minutes without a payload. We were initially concerned that a 20 lb. payload

would reduce the battery life below a level suitable for the competition, but tests showed

that the batteries would be more than sufficient for the five minute maximum of each

run, so no major changes were necessary for power management.

4.1.3 Safety

ALbert, and all Pioneer 3 robots, are equipped with a hardware emergency stop button.

Since this was too small for qualifications, and placed under 2 ft., we have modified it

to meet the specifications. Furthermore, we have added a wireless E-stop for additional

safety.

4.1.4 Compass

The TMC2 compass provides a useful and necessary heading for the ground vehicle. In

the obstacle course, we rely on this, rather than the GPS during the obstacle course for

heading detection. As it is a common component with Pioneer3 robot, we are also using

the ARIA API to interface with it as well.

4.2 Range Sensors

4.2.1 Ultrasound Range Finders

ALbert is equipped with two sonar arrays of eight ultrasonic rangefinders. The sonar are

powered by an on-board 5 V DC connection. We rely on these in conjunction with the

laser for obstacle dection.

6

4.2.2 SICK Laser Range Finder

ALbert uses a high-precision LMS-200 laser range finder connected by serial to the on-

board computer for obstacle detection. In order to detect potholes, we have inclined it at

an angle of 9.1◦ to map the terrain ahead of it. This unique modification is how ALbert

received its name, for we referred to him as Angled Laser, or AL, for some time. Since

the laser is inclined at only a small angle, it can detect potholes at a distance of more

than 2500 mm away while still performing local obstacle detection of varying height up

to 367 mm, the height of the laser, within the 2.4 m range. Accordingly, it can also be

used to improve the camera’s detection of lanes by marking camera image points that do

not appear to be in the ground plane.

4.2.3 Canon VCC50iR Camera

We mounted the Canon VCC50iR camera on top of the SICK laser range finder. It

interfaces to the on-board computer through RS232. We use the ARIA API to control

the pan, tilt, and zoom of the camera, as well as to grab images through a video server.

In the IGVC, we use the camera solely for lane following.

5 Software

5.1 Navigation Module

5.1.1 Obstacle Avoidance: Vector Field Histogram

We use a modified version of Ulrich and Borenstein’s Vector Field Histogram [2]. The

heuristic part of the algorithm comes from their improved VFH+, but we did not find

it necessary to upgrade to VFH*. For the sake of simplicity, we implemented the part

of the algorithm to select an optimal direction while the vehicle is stationary. Simu-

lated tests showed that the robot could navigate a mock course safely and effectively,

and we improved this greatly after turning the parameters carefully. After such success

in simulation, we tested our implementation with equal success in a simulated course

environment. Although the vehicle must stop when it detects an obstacle in the course,

the effectiveness of the navigational decisions seemed a worthwhile benefit. Since ALbert

makes its navigational decisions while stationary, we have observed a very low proclivity

for the robot to get turned around. In the rare event that it does, we are implementing

a simple algorithm that prevents the robot from turning too much in a way that is no

longer consistent with the minimum curvature specifications of the track.

7

5.1.2 System “Modes”

In order to improve our implementation of the VFH, we decided to give the robot a set

of system states. Within the navigation module, we use the following categorizations:

1. Safe, Simple Obstacle Avoidance The system sets the radial threshold obstacle

detection at 1200 mm in the VFH to navigate around areas where there are many

perceived obstacles close together. It maintains a velocity under 500 mm/s from

node to node, stopping to choose a new direction in about one second if an obstacle

is detected in range.

2. Look-Ahead Drive with Acceleration If the system does not perceive any

obstacles in a 1.2 m radius, the navigation module increases the threshold of the

VFH. If this is clear, then the velocity is incremented proportionally to the clear

distance up to a maximum of 700 mm/s. When the system detects an obstacle

ahead, it again decreases the threshold and velocity until it returns back to “Safe”

mode.

5.2 Sensor Modules for Environment Modeling

Each of the sensor modules is a separate C++ object with a common interface that stores

a point cloud to standard template library list of a special three-dimensional point class.

We have given each point a certainty value that is initially determined by the type of

sensor from which the reading originates. Our implementation, which did not initially

employ the certainty values set out by Ulrich and Borenstein, now uses these to improve

its obstacle avoidance decisions.

5.2.1 Sonar Module

Since the sonar sensors emit a cone of ultrasound, our first approach was to model the

worst case scenario of these sensors. Simulated tests quickly revealed the shortcomings of

this simple model, which modeled an entire 30◦ region as occupied, with little considera-

tion of the radius reading. We found we needed a better probabalistic model. In order to

make this possible, we improved our point class to contain a certainty value within it. We

now model the sonar readings in 30◦ arcs centered at each individual sonar. We assign

the center 15◦ of the arc a higher certainty value than the tails. This, coupled with the

VFH which uses the certainty values in creating the histogram, is much more effective.

8

5.2.2 Laser Module

Our LMS200 SICK laser range finder is mounted 200 mm ahead of the center of the robot

on an aluminum frame that is manually adjustable to various inclines. We have inclined

the plane of the laser at 9.1◦; the laser intersects with base-plane of the robot 2.49m ahead

of the robot’s center. Each query to the range sensor returns 181 readings in the half-

place of the direction of the laser. The laser can be used to map the terrain ahead of it by

detecting aberrations, raised or depressed, in the ground plane that could be potentially

dangerous. To transform the coordinates of the points returned by the laser (returned

as radii in polar coordinates) readings in 3D space relative to the coordinate frame of

the robot, we project the laser’s plane on the plane parallel to the ground plane of the

robot that passes through the laser’s center, then translate it appropriately to the robot’s

origin. This can be seen in the following equation, where (XT , 0, ZT , 1)T is the translation

vector from the center of the laser’s origin to the robot’s origin, and (x, y, 0, 1)T is the

coordinate vector of each particular range-reading with respect to the laser’s origin.


cos θ 0 0 XT

0 1 0 0

− sin θ 0 0 ZT

0 0 0 1




x

y

0

1

 =


x cos θ +XT

y

ZT − x sin θ

1

 (1)

Although we do not keep a cumulative point cloud of the world view, we do maintain

a local point cloud, which allows ALbert to avoid both potholes and raised obstacles.

Tests employing our navigation algorithm with only the laser have shown the calculated

navigational decisions to be highly reliable, and the location of the points to be highly

accurate. The modular nature of our software coupled with the precision of this particular

range device lends itself to future developments upon our generalized solution that will

easily allow us to motorize the variation of the incline of the laser and create an accurate

three-dimensional model of the environment.

5.2.3 Vision Module

Image
Red Color

Mask

Convert
to Binary

Hough
Line

Detection

Homography
Transform

Store to
Point
Cloud

Figure 3: Vision Pipeline

Our vision module is used for lane detection. It interfaces with an on-board video server,

SAV 0.9, to grab images from the Canon VCC50iR camera. Using native functions in

9

OpenCV 1.0.0, we filter the image through a red colormask, then convert it to binary

at a threshold of 68, and search for lines using Hough Line Detection in OpenCV. The

endpoints of the lines are then stored, and transformed using one of four Homography

Matrix Transformations to calculate the coordinates of lines in relation to the robot. We

found these settings very effective for detecting both white and yellow lines in green grass.

(a) Original Image (b) Red Colormask

(c) Binary Image (d) Line-Detected Image

Figure 4: Detection of White and Yellow Lines

To aid in the simplification of the vision module, we manually calibrated four useful

homography transforms to be used by the software to transform the coordinates of the

images to the coordinates of the ground plane, with origin at the robot’s center. Each

homography, which is stored in the software, is associated with a distinct set of pan,

tilt and zoom settings, as well as a state setting for the vision module. They can be

summarized as follows:

1. Local, Center Used for close detection of lanes when the robot slows or stops to

calculate a new direction

2. Local, Left Used to scan the left view for nearby lane detection

3. Local, Right Used to scan the left view for nearby lane detection

4. Center, Ahead Used when the navigation module is in “Look-ahead mode” for

more distant lane dection

10

6 JAUS Compliance

The highly modular design of the ALbert architecture affords a great deal of inte-

gration and compliance with the JAUS (Joint Architecture for Unmanned Systems)

specification[3]. JAUS has help us to avoid incompatibilities between the architecture’s

various working components and provides for convenient future extension of our software

platform. ALbert is compliant with the JAUS competition requirements.

7 Special Thanks

Special thanks to Dr. Lyons without whose continuing support, our entry in the competi-

tion would not have been possible. We would like to extend a special thanks to Eric Jones,

a Computer Science graduate student who provided us with much encouragement and

support, particularly in understanding the Joint Architecture for Unmanned Systems.

11

References

[1] Mobile Robots Inc., 19 Columbia Drive, Amherst, NH 03031, Pioneer 3 Operations

Manual, version 5 ed., July 2007.

[2] I. Ulrich and J. Borenstein, “Vfh+: Reliable obstacle avoidance for fast mobile

robots,” 1998.

[3] J. W. Group, “The joint architecture for unmanned systems reference architecture

specification,” July 2007.

12

