Warthog

University of Delaware % IGVC 2010

Team members

Conor Gilsenan (Senior, CIS) Yan Lu (Grad student, CIS)
Kevin Graney (Junior, CIS) Mehmet Kocamaz (Grad student, CIS)
Kevin Schultz (Senior, ME)

Faculty adviser statement

| certify that the engineering design in the vehicle by the current student team has been significant and
equivalent to what might be awarded credit in a senior design course.

Prof. Christopher Rasmussen
Dept. Computer & Information Sciences
University of Delaware

1 Introduction

Warthog is entering the Intelligent Ground Vehicle Competition for the fourth time, its rookie entry
having been in 2007. Last year, after devoting considerable effort to upgrading both hardware and
algorithmic capabilities for the Autonomous Challenge (AC), we were somewhat surprisingly rewarded
with a 1st-place finish, though we did not complete the course. Our previous strength had been with
the Navigation Challenge (NC), which we somewhat neglected in 2009 to focus on improving our AC
performance. Despite this shift in emphasis, we finished 3rd in the NC with 7/9 waypoints reached.

We analyze what happened in both challenges and our response in Innovations below.

This year, with much of the hardware drama of our first two years behind us and our core approaches
to both challenges reasonably established, we have sought to greatly "robustify" and extend our
algorithms. Even last year, despite our high rankings, we had our proverbial fingers crossed on every
run hoping that certain situations would not arise. Beyond those few obvious cases, our
understanding of what other types of course configurations might cause undesirable robot behavior
was very narrow. Notably, our NC code was completely unaware (by design) of the boundaries of the
course and of the existence of a prominent fence with a single open gate, leading to our
disqualification on several runs for leaving the course. Our AC code had unwarranted confidence that
it could always track both the left and right lines. When this assumption was violated late in the run, it

confused the motion planner and the robot stopped when it could have continued.

Given the already-done work from previous years, the team this year could be fairly small. Many
critical decisions were made by the entire team in weekly meetings held over the spring semester,
while individual students worked on building simulator capabilities, researching hardware design
changes, and developing the iPod interface. We estimate that an aggregate of 200 person-hours
have been put into the project this year. As in previous years, all code was kept in an SVN repository

(http://subversion.tigris.org).

Innovations

A key component of the effort this year to better characterize and improve the robot's behavior across
diverse situations has been the development of a standalone robot simulator for both challenges.
This simulator implements a virtual SICK ladar, GPS, Segway robot control and proprioception, and

omnidirectional camera (rendering the world in simplified computer graphic form). We have used it

http://subversion.tigris.org/

heavily to test our code on all kinds of hypothetical courses and situations. Our existing inter-process

message-passing framework based on IPC (http://www.cs.cmu.edu/~ipc) has greatly simplified this

endeavor. It has allowed the NC module to be run exactly as though it were really controlling the robot
—it just does not know that the sensor modules and Segway module that it sends motor commands to
are virtual rather than real. The AC module can be run similarly, although with a minor modification to
receive virtual camera images as IPC messages rather than capturing them from the Firewire bus
directly. This last feature has been aided by the use of a new OpenCV 2.1

(http://opencv.willowgarage.com) feature to compress and decompress image buffers in memory

before sending them over IPC, allowing a large savings in network bandwidth.

For the Navigation Challenge we have a number of innovations this year. We finally found the time
to add awareness of the course boundaries: based on the robot location and heading, nearby
boundaries cause virtual “walls” to be inserted into the motion planner's obstacle map so that the robot
turns away from them. Because of positional and heading uncertainty, these walls are inset slightly so
that the robot does not get too close. Nonetheless, in the random event that the robot thinks it is
outside the boundaries, the motion planner favors plans which get the robot back inside as quickly as
possible. Also, in the course of simulator testing we discovered that our motion planner, which is
greedy in its choice of robot maneuver which will get the robot closer to the next waypoint, can get the
robot stuck in local minima arising from non-convex obstacle configurations. Although these seem to
have been rare elsewhere on the course in three previous years of IGVC competition, the
fence/boundary combination is one notable place where it can occur: if the robot encounters the fence,
it may need to go a fair distance away from the waypoint before finding the doorway or hitting a
boundary and turning around. To deal with this, we explicitly detect local minima a la the TangentBug
algorithm (Kamon et al., 1998) and enter a wall-following mode that permits the waypoint distance to
increase. One possibility with Bug-like algorithms is always that the robot will wall-follow around the
outer boundary of an environment. We explicitly rule that out here: the robot will not wall-follow the

perimeter of the course.

On the off chance that the robot begins to wall-follow on the wrong wall or an isolated barrel, it is
possible for it to loop forever. We therefore have added loop detection by remembering the location
where wall-following began and leaving wall-following mode if it is revisited. Finally, the collision
checking portion of our motion planner has been changed from a fixed to a variable safety radius to
model the robot. A large safety radius leads the robot to keep better clearance from obstacles, but

may make it think it can't fit through a smaller opening. A small safety radius makes the robot think it

http://opencv.willowgarage.com/
http://www.cs.cmu.edu/~ipc

can go more places, but it will come closer to brushing obstacles as it goes by them. To combine the
best of both sizes, we now search for motion plans with large safety radii first and only go to smaller

radii if we can't find one.

For the Autonomous Challenge our major change has been the addition of several modes
covering line-tracking failures to improve robot behavior in less common situations. Chief among
these is a wall-following mode which the robot reverts to if it loses track of one of the course lines.

If, for example, the robot decides that it is not tracking the left line on the course (based on a threshold
in the image processing routine), it attempts to follow the right line. The practical effect of this is that in
wall-following mode we are not trying to estimate the course width, but rather to hug one side while
avoiding obstacles until the opposite line is re-detected. This is important because in 2009 Warthog
went far using just one mode (which you could call “both-line” tracking), but stopped when the path
was wider than the maximum expected and a row of barrels blocked progress on the right side. There
was space on the left but the robot had lost track of that line and thus “hallucinated” a path width that
was too narrow, leading it to think that the path was completely blocked. We believe that this new
mode will help Warthog have a better chance of repeated long runs. There is also a new no line
mode which is very rarely invoked but necessary to preserve planner continuity in sections where the

path is very wide or heavily occluded by obstacles.

A final motion planning innovation adopted for both the NC and AC is what we call decisiveness.
Because the robot essentially replans at every time step, until this year that has been no built-in
memory of what it decided to do “last time.” This meant that as the robot approached an isolated
obstacle between it and its goal, it would sometimes oscillate between preferring a plan to the left and
a plan to the right of the obstacle and not “make up its mind” until it was quite close. We now

remember the last plan chosen and prefer the next plan to be “close” to it if at all possible.

A hardware innovation this year has been a move to two downward-looking omnidirectional
cameras, allowing stereopsis (last year we had just one). These camera are visible in the robot
picture on the title page. By default the left camera is used for AC line detection and the SICK ladar
remains our primary obstacle detection sensor for both the AC and NC, but the right camera can be
used as a back-up for the left and stereo depth maps can now be accessed in the event of ladar
malfunction. Additionally, because the cameras are omnidirectional, we can construct stereo depth
maps of the course just behind the robot that our single SICK ladar does not cover, and thus allow us

to make better-informed reverse motion plans in sticky situations.

We continue to work on an iPod Touch interface for remotely monitoring the the robot when it is
moving autonomously and for changing settings like which challenge it is about to perform, turning

logging on and off, commanding "soft" stops (as opposed to the hardware e-stop), and so on.

2 Hardware

2.1 Chassis and drive system

Warthog is based on a Segway RMP 400. The RMP 400 is a 4-wheel, differential drive or "skid steer"
vehicle with 21" ATV tires. Each pair of wheels (front and rear) constitutes a powerbase. In contrast
to other Segway products which have only one powerbase, the RMP 400 is statically stable rather
than dynamically---it does not require motion to achieve balance. An independent electric motor
supplying 0.071 Nm/amp of torque at the motor shaft drives each wheel through 24:1 gearing. The
motors are capable of 70 amps peak current per wheel and 24 amps continuous current. The top
speed of the RMP 400 is 18 mph; this is limited in hardware for the competition to 5 mph. The robot
can climb 45 degree slopes and make zero-radius turns (aka "spin in place"), but to reduce stress on

the motors we enforce a minimum radius for turning, which necessitates differential path planning.

Two 72V lithium ion batteries run the motors in each powerbase. Across both powerbases, these
have a total capacity of 1600 watt-hours and provide an average run time of 12 hours under good
terrain and temperature conditions. A charger integrated into each powerbase recharges the batteries
from empty in an average of 8 hours. Two buttons control operation of each powerbase. One
supplies power to the User Interface (Ul) electronics, and the other activates the motors. Both must
be pressed before a powerbase can move, so four buttons must be pushed before the entire robot is
ready to receive and act upon motor commands. As alluded to above, the buttons for the front base
were in a difficult to reach spot inside the chassis. Last year we solved this by removing one of the

control boxes and rotating it 180 degrees to make the buttons face outward.

As delivered, the RMP 400 had a length of 44.5", width of 30.5", and height of 21". Ground clearance
is about 3.5". Our physical modifications last year consisted of installing an internal polypropylene and
aluminum shelving system to secure electronic devices, batteries, and the control computer, as well as
external mounting of the sensors and some switches and buttons on the top and rear plates,
respectively. An 8020 aluminum superstructure raises the primary camera by about 18” for a better

angle for line detection, as well as adding shelves for the payload and two laptops. The sensor mast

is adjustable to a maximum height of about 55" (the top of the GPS antenna) while leaving the length
and width unchanged. This year we also moved the rear bumper to make a stronger connection and

to allow easier insertion/removal of the IGVC payload.

2.2 Safety

A large red e-stop button is mounted on the rear of the vehicle and is attached directly to the Segway-
provided e-stop circuits of both powerbases . This button physically latches--it must be pulled out to
disengage it. However, the Segway e-stop circuit actually shuts the motors off rather than simply
pausing them. Thus, in addition to unlatching the e-stop button, the motor activation buttons must be
pressed to bring the robot out of e-stop. Wireless e-stop functionality is provided by an aftermarket
automotive keyless entry system which interfaces directly with the Segway-provided e-stop circuits.
The nominal range of this device is 100 feet in open air. The remote e-stop is connected in series with
the manual e-stop such that triggering either one causes an e-stop. Warthog also sports 24”-wide
front and rear bumpers from Tapeswitch wired in series with the other e-stop devices so that any

crash stops the motors automatically. These bumpers require 10 Ibs. of force to activate.

2.3 Computing

We have experimented with multiple networked computers controlling Warthog; all run Ubuntu 8.10 for
ease of unified library updates, etc. Due to code optimization this year, though, we have reverted to a
single Dell M2400 Precision workstation laptop with an Intel Core Duo T9600 at 2.8 GHz, 4 Gb RAM,
and a 7200 rpm hard drive. The internal lithium-ion batteries in this machine provides an average run
time of about 2.5 hours and must be swapped for continued operation. It is connected to the RMP 400
via USB (technically, two cables through a hub—one per powerbase, since duplicate commands are
sent to the front and rear powerbases). Low-level motion commands are sent in the form [desired
forward speed, desired turn rate]. The Segway Ul electronics take care of PID control to achieve and

maintain the commanded values.

A wireless Logitech Rumblepad joystick is used to control the robot remotely when necessary. In
open air, it offers an effective range of 50-100 feet. For higher-level remote commands and telemetry,
we are developing a native iPod Touch app which communicates with a wireless router onboard the

robot. This palmtop computer makes it easy to walk along with Warthog over all kinds of terrain while

monitoring the state of its software as it processes sensor readings and plans motions, as well as

sending parameter changes or pause commands.

2.4 Sensors

Warthog's primary sensors are a SICK LMS-291 laser range-finder, a Unibrain Fire-i400 Firewire color
camera, a Novatel Propak-V3-HP GPS, and two Pt. Grey Flea2 cameras with a fisheye lenses for
omnidirectional imagery. The Segway RMP 400 base also provides extensive proprioceptive sensing
regarding odometry, wheel torques, pitch and roll angle and rotational velocities, remaining battery life,
and so on. A diagram of all IGVC-relevant external devices and how they are connected to the control

computer is given below.

2% .
Pt Grey SICK LMS W RMP 400 "f"'”e"?sks
camera ladar ovate front, rear foystic
bases receiver
R5-422->USB R5-232->USE
corverter corverter
Y v
USE 2.0 hub
Frewire hub
> (powered)
Dell

}Precision I‘-'IZ-'-IIJIJ{

Figure 1: Primary sensors for IGVC 2010
2.5 Auxiliary electrical system

While the RMP 400's motors are powered by Segway-provided batteries integral to each base, all
other electrical devices except the workstation laptops require a separate power system. Two 12V, 32
Ah AGM deep-cycle lead-acid batteries are connected in series to create a 24V “auxiliary” battery.
These weigh 50 Ibs. total. AGM batteries are excellent for the rugged conditions created by
autonomous vehicles; they cannot spill even if broken and can be mounted in any orientation. An
externally-mounted Xantrex battery monitor with an LCD display shows the state of the battery. It has
a serial connection to the control computer to report charge remaining for graceful shutdowns. A 24V,
8 A smart charger also rides onboard Warthog, permanently attached to the battery. Plugging in its

cable to an AC outlet commences charging that does not need to be monitored.

BMaster, 24V, 12V, 5V power switches

Figure 2: Auxiliary electrical system components

The batteries are connected via a fuse to a Vicor ComPAC DC-DC converter which outputs 24V, 12V,
and 5V power at up to 100 watts per output. The Vicor offers EMC filtering, transient protection, and
reverse polarity protection at about 85% efficiency. The arrangement of the various devices in the

auxiliary electrical system is shown in the figure above.

Below is a table of the electronic devices which receive their power from the DC-DC converter (the
battery monitor draws power directly from the battery). As can be seen, the watts drawn from the DC-
DC converter are nowhere near its limits. The total average current draw, with a 10% safety factor
added, is about 2.4 A. Given the capacity of the batteries and the efficiency of the converter, this

translates into an expected run time of almost 6 hours to go from a full charge to a 50% charge.

24V devices Average power Average amps
SICK ladar 20W 0.84 A

12V devices
Novatel GPS 25W 0.21 A
Firewire hub (omni cameras) 1W 0.084 A
Wireless e-stop receiver 1.2W 0.1A

5V devices
USB hub (wireless joystick) 1W 0.20 A
Wireless router 1W 0.2A

Table 1: Power consumption of electronic devices

2.6 Major component list

The table on the next page lists the major components detailed in the previous subsections that went
into the construction of Warthog, their retail cost, and the cost to the team this year (items carried over

from previous years are not counted in the latter category).

New Components Item Retail cost | Cost this year

iPod Touch $200 $200

RIGHT omnidirectional camera

$1,300 $1,300
(Pt. Grey Flea2 + Fujinon lens)
Existing components

Segway RMP400 $28,500 -
SICK LMS-291 $5,000 -
Novatel Propak-V3-HP $5,500 -

LEFT omnidirectional camera
$1,300.00 -

(Pt. Grey Flea2 + Fujinon lens)

Dell Precision M2400 $900 -

D-Link USB hub $27 -
2 x Concorde SunXtender

$188 -

PVX-340T battery

Vicor ComPAC DC-DC
$436 -
converter

Soneil 2416SRF charger $160 -
Xantrex battery monitor $225 -
Logitech Rumblepad $20 -

D-Link DGL-4300
$120 -

wireless router

Tapeswitch bumper x 2 $350 -

Table 2: Major hardware components and their costs

3 Software

Warthog's software architecture consists of a set of modules, which this year are separate processes.
Several of the modules are associated with device drivers—they talk directly to sensors and stream
raw data, as well as providing log writing and reading functionality. One middle level module (state)

filters the output of the sensor modules, but makes no actual decisions about what to do. Finally, at

the top level are the pilot modules, which are the only ones allowed to send motor commands. Only

one of these is running at any given time. All modules used are listed below in alphabetical order.

Unless otherwise noted, each module except simulator is used for both challenges.

Module Purpose

boss Process health monitor. Starts/stops/restarts modules as necessary using
the Upstart daemon (http://upstart.ubuntu.com)

dashboard GTK GUI interface for module management, real-time telemetry, and
visualization of sensor data. Typically runs on wirelessly-connected laptop
or tablet PC. A version for iPod Touch is being developed.

aps Novatel GPS data capture, including UTM coordinates, heading, and
velocity

ladar SICK ladar range data capture and transformation to vehicle coordinate

frame

pilot_auto (AC only)

Executive module for Autonomous Challenge. Performs image capture,
internal/external camera calibration, low-level image processing, line
detection and tracking. Integrates input from ladar to decide which
direction to drive.

pilot_nav (NC only)

Executive module for Navigation Challenge; reads list of waypoints and
integrates waypoint homing with obstacle avoidance.

(New this year)

segway Segway RMP 400 data capture and motor control. Embedded in this
module is joystick driver for manual piloting
simulator Simulate ladar, gps, segway modules as well as omnidirectional image

capture from pilot_auto for various virtual environments

state

Measure and filter robot position, heading, velocity, and other positional
variables. Used by pilot_nav to get a decent heading estimate from GPS
+ odometry without digital compass. Uses Bayes++ Bayesian Filtering
library (http://bayesclasses.sourceforge.net)

Table 3: Software modules used for both challenges

A few selected modules are explained in more detail in the following pages due to space restrictions.

dashboard was analyzed on last year's report.

3.1 simulator

The simulator we wrote this year encompasses simple 2-D worlds containing fixed height obstacles

and lines on the ground. It replaces the functionality of the segway module, translating IPC motor

command messages into motion and sending back telemetry regarding speed and turn rate; the gps

module, sending absolute position and heading information artificially corrupted by noise; the ladar

module, scanning the robot's local environment for obstacles; and a virtual omnidirectional camera

which sends images to pilot_auto for the line tracker to work on. Screenshots of sample NC and AC
courses we have used for testing are shown below. Overlays related to pilot_nav and pilot_auto
internal parameters will be discussed below, but note that obstacles are shown in black, course

boundaries for the NC as blue lines, and painted lines for the AC as purple curves.

"

O o
i ey

N - — - - - - - -

Figure 3: simulator module screenshots (NC course on the left, AC course on the right)

3.2 pilot_nav (Navigation Challenge)

Our SICK laser range-finder is set to a maximum range of about 8 m for maximum range resolution, a
180 degree field of view, and a 30+ fps refresh rate. It is mounted about 0.5 m (20") above the ground
with a level scan plane. This allows easy obstacle detection (vs. a downward-pitched scan plane) and
longer-range motion planning, but makes shorter obstacles invisible. This year stereo is available to

fill in blind spots, but we have generally not found these to be necessary at IGVC.

Our base motion planner is derived from a Dubins car model, which accounts for differential
constraints on Warthog's motion in the form of a minimum turning radius. Under this model, the only
maneuvers permitted are straight-line and circular arc (left or right) segments. The shortest Dubins
plan from the current robot position to the next waypoint is always the first one we consider during the

NC, and if this is obstacle-free the robot is in direct mode. If the direct plan collides with an obstacle

(based on the current safety radius), the robot enters avoid mode in which a set of candidate motion
plans are generated and checked for collisions. The pattern of these plans tuned for each IGVC
challenge. For the NC, the pattern is a foveated “spray”, or radial plans which range from 90 degrees
right to 90 degrees left, with smaller angular increments closer to straight ahead. This pattern is
replicated for 7 m, 5 m, and 3 m lengths. Among collision-free plans, the “best” plan to be executed is
the one which gets the robot closest to a nearby goal point (for the NC, this is just the next waypoint).
If no plan is collision-free, the safety radius is reduced. If all plans collide even at the smallest safety
radius, the robot backs up. The spray pattern is visible in the leftmost figure below, which shows in
yellow all collision-free plans, the best plan in green, and the direct plan in purple. This obstacle map
and set of plans corresponds to the situation depicted in the NC simulator screenshot above, which

also shows a recent history of the robot's locations as red circles.

Follow LEFT
L 19, R O

Fellow LEFT 12.05 7.24
145,11

(b) (c)

Figure 4: Motion planning. (a) pilot_nav obstacle map and plans from situation shown in Fig. 3 on
left. Cyan curve is extrapolation of current motor command, (b) pilot_auto obstacle map from
situation shown in Fig. 3 on right; (c) Corresponding omnidirectional image (from simulator) with

masked-out regions drawn as black. Line detections are shown as blue dots.

If the robot detects that it is in a local minimum, it goes into wall-following mode, in which the goal
point becomes the rightmost or leftmost reachable point, and only exits when the local minimum has
been left, a boundary is reached, or the robot has looped around to the point where it started wall-
following. In the left image of Fig. 3, the closest the robot has gotten to the next waypoint is shown as

as a small green circle, and the point where it began to wall-follow as a small purple circle.
3.3 pilot_auto (Autonomous Challenge)

Our basic AC approach using an omnidirectional camera was described in detail in last year's report,
so we only briefly review it. We model the approaching section of path very simply as two parallel

lines and track it using a particle filter whose state has three variables, all in vehicle coordinates: (1)

angle between the path curve tangent and the vehicle heading, (2) lateral offset between the path

center and the vehicle center, (3) and width of the path.

Particles consist of state hypotheses which are scored using a likelihood function where the image
processing occurs. In this function a given hypothesis implies left and right line segments in front of
the robot in vehicle coordinates. These are transformed to image coordinates and sampled at discrete
intervals. At each interval along a given curve (typically there are 15-20 each for the left and right
lines), pixels in a search window about 1 m wide orthogonal to the curve are examined. For each
search window the ratio of the maximum to minimum intensity (aka the blue channel after median
filtering) is computed. If the ratio if over a certain threshold, that window is counted as containing a
line detection. The total number of line detections over all search windows across both the left and

right curves is the likelihood for the whole hypothesis.

In order to not be distracted by contrasting colors on barrels or other obstacles, or the robot itself
(since it appears in the omnidirectional image), a mask is created for each new frame based on the
SICK ladar and knowledge of the camera position and robot dimensions. Any non-zero pixels in the
mask are assumed to not belong to the ground, and thus are skipped in calculation of the likelihood

function. Any search windows that have too many masked-out pixels are omitted from the mean score

for the hypothesis because of insufficient data to be reliable.

(a) (b) (c)

Figure 5: Steps in AC line finding. (a) Obstacle/robot mask (in green) used to exclude pixels from
consideration; (b) 100 path hypotheses from particle filter; (c) State estimate from particle filter with
search windows shown + line locations (red dots)

The plan pattern used by pilot_auto is different from that of pilot_nav. Rather than a fixed radial
spray, an adaptive 2-D grid confined to the estimated path region is generated. There are no GPS
waypoints to serve as goals, so in the default mode the nominal goal location is a “carrot” within the
path some constant distance ahead (roughly 5 m) and on the centerline. In the obstacle map of Fig.

4(b) this is drawn as a red dot.

New this year is the detection of situations in which either or both of the lines is lost by the tracker.
This is accomplished by counting line detections over all of the search windows of the maximum
likelihood path estimate. If there are too few detections on one side, that side is counted as lost. If
only one side is lost, the robot goes into wall-following mode where it follows the single remaining
tracked line. In this mode, the plan pattern is grown outward from the tracked line to the maximum
allowed path width, and the carrot goal point is set to be a fixed distance from the tracked line since
there is no trusted path width estimate. If both lines are lost, the robot goes into free mode where the
plan pattern is grown outward from an imaginary line directly in front of the robot to the maximum
allowed width. This gives the robot “momentum” to effectively continue in a straight line, with obstacle

avoidance, until one or both lines are reacquired.

The screenshot from Fig. 3 on the right shows the history of robot locations in a sample AC run as red
circles. The differing circle radii indicate which safety radius was necessary to pass that point of the
course—recall that larger radii are preferred for greater clearance, but smaller ones are chosen as

necessary. Fig. 4(b) shows the robot's obstacle map and motion planner at the moment captured in

Fig. 3—the robot is in left wall-following mode because the right line is almost completely blocked by a

line of barrels. This is obvious in Fig. 4(c), which shows the simulated omnidirectional image for the

same situation. The barrels are masked out in black and one can see that there are no line detections

on the right, while there are a good number on the left.

