Phobetor: Princeton University’s Entry in the
2013 Intelligent Ground Vehicle Competition

Joseph C. Bolling, Michael Zhang, Derrick Dominic,
Elaine S. Chou, Nicole M. Gonzalez

Princeton University School of Engineering and Applied Science
Princeton, NJ, USA

May 8, 2013

Faculty Statement:

I hereby certify that the design and development of the robot discussed in this technical report has involved
significant contributions by the aforementioned team members, consistent with the effort required in a senior
design course. Phobetor has undergone significant design modifications, including completely new computing

hardware, a new operating system and an improved computing environment.

PRINCE I OIJ P Vipnmcnon
AUTONOMOUS
School of Engineering and Applied Science EI\‘I/gIl.'IJECéIEI-IN -

Contents

1 Team Overview 1
2 Design Process 1
3 Hardware 2
3.1 Mechanical Design e 3
3.1.1 Drivetrain e e e 3

3.1.2 Chassis Design e 4

3.1.3 Tower Design L e 4

3.2 Electrical and Electronic Systems Lo 4
3.2.1 Power System L e e e 5

3.2.2 Electronic Control e 5

3.2.3 Sensors ... 7

4 Software 8
4.1 Code overviewo e e e 8
4.2 Key Software Innovations L L 9
4.3 Computing Platform 9
4.4 State Estimation 9
4.5 VISIono e e e e 10
4.5.1 Obstacle Detection 10

4.5.2 Lane Detection L e 11

4.6 Navigation L e e e 12
4.6.1 Cost Map Generation 12

4.6.2 Waypoint Selection L e 12

4.6.3 Path Planning L L e 12

4.7 Path Following e 13
4.8 Speed Control 13

5 Conclusion 14

1 Team Overview

Princeton Autonomous Vehicle Engineering (PAVE) is proud to submit its second revision of Phobetor to
the 2013 Intelligent Ground Vehicle Competition. The updated Phobetor boasts a completely revamped
computing framework, from hardware to operating system to software, as well as improved electrical wiring,

which we are confident will perform well in this year’s IGVC.

PAVEis Princeton University’s undergraduate student-led robotics research group. As a completely under-
graduate effort, our team builds on previous competition experience in the 2005 and 2007 DARPA Challenges,
as well as four years of previous IGVC submissions. Student members of the 2013 IGVC team hail from
Princeton’s Electrical Engineering, Mechanical Engineering, Computer Science, and Physics departments,
providing a range of expertise useful in Phobetor’s redesign. We employ a simple, flat organizational struc-
ture that allows our small team to allocate manpower as design challenges arise. We divide our team into the
broad headings of “hardware” (wiring, sensors, power distribution, and mechanical design) and “software”
(computing environment, state estimation, mapping, and navigation). Each subteam has a designated leader
to ensure goals and benchmarks are met in a timely manner. An overall team captain ensures synchroniza-
tion between the two teams and handles logistical issues. We estimate that our team has collectively put in
600 hours of work on Phobetor for the 2013 IGVC.

Team Captain
Joseph Bolling ’15, ELE

l

Software Group

Hardware Group Michael Zhang ’14, PHI
Caden Ohlwiler ’15, MAE Derrick Dominic ’15, ELE
Nicole Gonzalez '16, ELE David Harris ’15, ELE

Elaine Chou ’16, ELE

Figure 1: Team Organization Diagram

2 Design Process

Our design process focuses on collaboration and communication. With this year’s IGVC submission, we
experimented with a modification of PAVE’s traditional approach to collaborative design, combining our
hardware and software work sessions into group work sessions attended by all members. This allows a higher
degree of collaboration between the two groups on design sections at the hardware/software interface, and
allows different teams to work simultaneously on different sections of the robot without setting back each
other’s work. We use git and ROS’s built in development features to synchronize our software versions
between different coders. We document our work using our website, a wiki database, and Dropbox, allowing

members easy access to information about our projects.

After the 2011 IGVC, we identified a number of issues with Phobetor’s design. While Phobetor’s mechanical

systems performed largely as expected, the robot was plagued by electrical issues, including a failed moth-
erboard and speed controller. Software bugs also limited the machine’s performance, and much of the 2011
IGVC team’s time was spent fixing code errors. We based our design calendar on these issues, undertaking
a fundamental redesign of our software framework with a transition to Willow Garage’s Robot Operating
System (ROS), and leaving extra time to debug and test Phobetor before the 2013 IGVC.

Y
Analyze —» Design — Simulate — Acquire — Implement @ Deploy

Figure 2: Flowchart of Design Process

Hardware Software
1. Poorly protected and ventilated computer 1. Debugging difficult and time consuming

housing . o)
2. Insufficiently tested vision processing code

2. Faulty motherboard]
3. Inaccurate costmap generation

3. Faulty speed controller

Table 1: Areas of Phobetor Targeted for Improvement

Table 1 displays our improvement goals for the 2013 iteration of Phobetor . After establishing a cohesive set
of goals, we followed the design process shown in Figure 2. Because of the modularity of both our hardware
and software designs, the process can be applied in parallel to different subsystems. This strategy allows
us to focus on particular components that require improvement without worrying that other systems will
break. Many of the best-designed core systems, such as the wheels, have remained the same for years, while

others, like the sensors, are frequently iterated.

Simulations and models are a crucial part of the design process. Our hardware designers use CAD software
to plan all components, down to the smallest details. The computer-aided process lets us see the finished

product before we build it, and ensures that our parts fit together properly the first time. We simulate

The discussion of the robot design has been divided into two parts within this paper: Hardware (Section 3)
and Software (Section 4). In each section, we outline the specific improvements implemented as well as the
specific design process behind them, as well as the sections of the robot that remain unchanged from the
2011 design and the reasoning for doing so. Based on our designs, our entry into this year’s IGVC, Phobetor,

is a robust and advanced autonomous system that we expect to perform competitively.

3 Hardware

Phobetor was designed and built from the ground up in 2010[3]. In 2011, the robot was improved with a full
redesign of the sensor tower that facilitated easier transport, maintenance, and testing[4]. After the 2011

IGVC, we targeted several electrical sytems for improvement, including Phobetor’s primary computer and

its speed control system. We examine in detail the design of the robot’s drivetrain and chassis in Section
3.1, and the electrical and electronic system is discussed in Section 3.2. An overall list of components used

on Phobetor and their costs is shown in Table 2.

Item Actual Cost | Team Cost
Gladiator Technologies G50 gyroscope® $1,000 $0
Wheels, Tires, & Drivetrain Components $567 $567
Videre Design STOC-15 Stereo Camera (2x) | $3,320 $3,320
HemisphereGPS A100 GPS Unit* $1,500 $0
OceanServer OS5000-US Digital Compass™* $299 $0
Labjack UE9 Data Acquisition Card $500 $0

US Digital HB6M Rotary Encoder (2x) $430 $430
NPC T64 Motor, .7 HP (2x) $572 $572
Roboteq LDC1430C Speed Controller (x2) $290 $290
Raw Material for Chassis $1425 $1425
Miscellaneous Hardware $340 $340
Computer Components $844 $844
Tempest TD-22 12V Battery (6x) $390 $390
IOTA DLS-27-25 Battery Charger $295 $295
Samlex SDC-08 24V /12V DC-DC Converter | $60 $60
Linksys WRT54G Wireless router (2x) $75 $0
R/C Radio System $350 $350
Total: $12,257 $8,883

*Denotes donated item. All other zero-cost items were borrowed from Argos, PAVE’s 2009 robot.

Table 2: List of Costs for Building Phobetor (all trademarks property of their respective owners)

3.1 Mechanical Design

Phobetor measures 31”7 wide, 37” long, and 69.5” tall; it weighs approximately 270 pounds excluding payload.
The robot features a tricycle wheelbase with two powered rear wheels and a leading caster; this design
ensures contact with the ground at all times, regardless of terrain. Along with the low center of gravity, the
wheelbase makes Phobetor highly stable and holonomic. The drive wheels are fitted with snowblower tires,
which provide superior traction on a variety of surfaces, especially off-road. On top of this base is the sensor
tower, which is designed to provide Phobetor with a vantage point equivalent to that of an average human.
At the 2011 IGVC, Phobetor’s mechanical systems performed largely as expected, and were left unchanged
for the 2013 IGVC, save for minor repairs. As with all PAVE robots, Phobetor was designed entirely in
CAD before any material was cut. Using Autodesk Inventor accelerated the updated design process, and
allowed for estimation of weights and moments before construction. CAD visualizations of the robot can be

seen in Figure 3.

3.1.1 Drivetrain

Phobetor’s drivetrain is the result of years of iteration from previous IGVC robots. The 24V electrical
system described in Section 3.2.1 gives Phobetor enough power respond nimbly in different driving modes.

The drivetrain allows zero-radius turning, driving up a 10°incline, and navigating on grass. Phobetor uses

(b) Front

Figure 3: Visualizations of Phobetor

NPC T64 motors. After a speed controller failure, both of Phobetor’s speed controllers have been replaced
with Roboteq LDC1430C speed controllers, which are more electrically robust and can interface directly
with our digital wheel encoders.

3.1.2 Chassis Design

Phobetor’s lightweight chassis is built from 80/20 structural framing aluminum. The two-layer organization
allows all heavy components to be placed near the center of rotation, lowering Phobetor’s moment of inertia.
The horizontal dimensions were chosen to meet competition specifications and allow Phobetor to fit through
a standard door. The second level features two large doors, one on each side. When open, these allow for
easy access to every component on the second level. Phobetor is waterproof, allowing us to test and operate
the vehicle in New Jersey’s rainy spring weather. The angled doors allow water to run off, and are mounted

on continuous hinges with rubber-bulb seals.

3.1.3 Tower Design

Phobetor features a sensor tower that provides mounting locations for its stereo vision cameras and other
sensors(discussed in Section 3.2.3). The stereo vision camera housings are built on movable 80/20 aluminum
racks. The camera enclosures were custom-built to provide a waterproof seal and better secure the polarizers.
The cameras can be moved and calibrated for testing. The tower also provides mounts for Phobetor’s GPS

and compass.

The electronic components in the tower, including Phobetor’s compass, radio receiver, and control circuit,
are encased in a waterproof plastic box halfway up the tower. Mounted on the box are the E-Stop button and
new indicator lights. Signal lines from the GPS unit and the base connect to the box with sealed strain relief
sockets. A plug panel contains watertight connectors for the 5V and 12V power supplies, control signals,

and USB and Firewire connections.

3.2 Electrical and Electronic Systems

Phobetor’s electrical systems have undergone a comprehensive renovation to increase their durability for the
2013 IGVC. Electrical failures proved to be the limiting factor in Phobetor’s 2011 performance, so we have

given extensive consideration to areas that can be made more robust. For 2013, we’ve replaced Phobetor’s

motherboard, selected better speed controllers, installed new batteries, and have examined and organized

much of the robot’s wiring.

3.2.1 Power System

Phobetor’s drive motors, computer, and electronics are powered by a 24-volt electrical system which allows
almost one hour of uninterrupted testing. Figure 4 shows the power storage and distribution layout of
Phobetor’s electrical system. The six 12-volt lead-acid batteries are arranged as two banks in series, and
a voltage divider with precision 15k{) resistors ensures that the banks charge and discharge evenly. This
divider prevents power failures and protects the long-term health of the batteries while drawing negligible

power. For the 2013 IGVC, we have replaced Phobetor’s aging batteries with newer models, to ensure full

250A
80A 80A
LDC1430C LDC1430C

Q
| Router I

I 5V Ccurweneri -
12v 12V DC-DC

Fuse
Panel

power capacity.

L1l

A
W
15K

24V Charger

|

AMA

ACIN

YW
18K

)
e
)

GPS

|_Compass |3
[Warning Light |

Converter

Figure 4: Electrical System

The computer draws DC power directly from the 24-volt system with a 450W ATX power supply, eliminating
the need for a heavy and power-inefficient AC inverter. The 12-volt electronics, including router and GPS, are
run from an 8-amp DC-DC converter and a six-fuse distribution block. The remaining electronics, including
the LabJack computer interface (described in Section 3.2.2) and encoders, are powered by a separate 5-volt
converter. All components are protected by water-resistant breakers and replaceable fuses. A summary
of power usage is shown in Table 3. This power distribution system performed well in the 2010 and 2011

IGVCs, and has been left largely unchanged, save for the aforementioned battery replacement.

3.2.2 Electronic Control

Phobetor’s computer connects with most of its sensors and other electronics through a LabJack UE9 interface
device. The LabJack facilitates communication with most lower-level electronics on the robot, including the
two LDC1430C speed controllers used to power the drive motors. The robot steers by altering the speed

and direction of each wheel.

The custom built motor control switching system, shown in Figure 5, provides emergency stop functionality,

allows the user to remotely switch between RC and autonomous control, and drives Phobetor’s indicator

Voltage | Device Peak Power | Nominal Power | Idle Power
24 Drive Motors 5,280 1,180 0
24 Motor controllers | 7.04 2.48 2.48
24 Computer 450 300 60
12 Router 6 4.8 3
12 Access Point 6 4.8 3
12 GPS 2 1.8 1.8
12 Compass 0.6 0.42 0.16
12 Warning Light 15 10 0
5 LabJack 0.8 0.58 0.43
5 Encoders 0.86 0.58 0.58
5 Gyroscope 0.33 0.25 0.25
5 E-Stop R/C Link | 1 0.5 0.5
y | Total | 5,755 | 1,396 | 72 \

Table 3: Power Requirements for Phobetor (all power listed in Watts)

lights. PWM signals from the LabJack are routed through a pair of mechanical relays, which isolate and
protect the control circuits while providing a reliable emergency stop mechanism at a low level. The relay
inputs are connected to both the physical E-stop button and the 2.4 GHz spread-spectrum wireless radio
system, which allows manual control of the motors with minimal noise and interference. The emergency
stopping circuit is fail-safe, meaning that if a wire comes disconnected or the radio fails, the robot’s motors
will be disabled by default.

5.4 GHz Radio Tower Control >
H Receiver Clreut
= / | ricosuiien
H Remote E-5top e L Pieaswitch
N = r— 1/ g e suten
; :
: b
!
& et
Av‘ top
dest
Base Control]
Circuit m i
F_e\,, i
2 3
Labyack_pwm L o> Relay
Labdack_pwi R} Relay E-Stop.

Figure 5: Phobetor’s electronic control circuit

Phobetor operates with one on-board computer, offloading stereo image processing to Videre’s on-board
camera FPGA (see Section 3.2.3). Phobetor’s main computer has been completely rebuilt for the 2013
IGVC. To minimize the computer’s footprint, Phobetor utilizes a Micro ATX motherboard. Phobetor’s
computer consists of a latest-generation quad-core Intel Core i7 CPU at 3.5 GHz, 6 GB of RAM, and an 128
GB solid-state hard drive. Internet access is provided via a 802.11g Linksys® wireless router and a Cisco
Wireless Access Point, which allows interfacing with JAUS systems and development machines using a WiFi

or Ethernet connection.

3.2.3 Sensors

Environmental sensing in Phobetor is done primarily using stereo vision analysis but is augmented with
absolute and differential sensors for awareness of local robot state. Most of the state variables are redundantly
measured by multiple sensors, and their readings are combined and filtered over time to give an accurate

corrected estimate of the robot’s state.

Gyroscope

Phobetor uses a Gladiator Technologies G50 gyroscope for accurate 3 dimensional yaw rate data. Because
our gyroscope operates independently of the wheel rotary encoders, we can reliably use gyroscope data even
in the case of wheel slippage on low friction terrain. In most cases, though, the acceleration information from
the gyroscope gets cross-checked by the rotary encoder for redundancy and to improve expected accuracy.
This model of gyroscope offers a high resistance to noise (on the order of 0.0015/sec/Hz) and a G-sensitivity
of less than 0.01/sec/g.

Camera

We use a Videre Design STOC-15 Stereo Camera with a 15cm baseline for stereo vision processing. Com-
pared to other sensors such as laser range-finders, stereo vision offers a strategic advantage as a passive
sensor; additionally, in can acquire additional scene information including colors and textures, and it is more
economical and commercially scalable. However, it can be difficult to generate depth maps from stereo
images at a high enough frame rate for real-time autonomous navigation. The STOC system incorporates
a Field Programmable Gate Array (FPGA) into the camera to compute the three-dimensional point cloud

using a highly parallelizable algorithm alleviating this problem.

GPS

Phobetor gets its location information from a Hemisphere GPS A100 GPS unit. This particular GPS unit
offers accurate data even during periods of weak signals or signal outages by integrating COAST, software
which allows the receiver to use old differential GPS correction data without affecting positioning quality.
The A100 also integrates e-Dif software which enables receives to achieve differential GPS quality accuracies
without a differential signal for regions where differential signals are not freely available. We use the GPS
device for location, speed, and heading, the last two being cross checked by the rotary encoder and compass

respectively.

Compass

We determine our heading for mapping and state estimation from an OceanServer OS5000-US Digital Com-
pass. This device typically offers a 1 RMS accuracy with electronically gimbaled compensation for tilt giving
us reliable heading information even on rough terrain when the robot may yaw unexpectedly. The heading

information from our compass also gets cross checked by our GPS device.

Encoder

We have installed two US Digital HB6M hollow bore rotary encoders, one on each driving wheel of Phobetor.
These devices are high resolution optical encoders with industrial strength bearings and housing to withstand
the irregular vibrations of uneven terrain. The encoders provide wheel speeds and wheel accelerations which

we send through a median filter to remove noise and cross check with our GPS and gyroscope.

4 Software

Phobetor’s software employs a similar paradigm as Argos and Kratos, but on a completely different robot
framework and operating system that has been newly implemented on PAVE$ 2013 submission. It consists
of independent processes that communicate asynchronously over the framework provided by Willow Garage’s
Robot Operating System (ROS). Individual modules capture and process sensor input (Section 4.5), estimate
the state (position and direction) of the robot (Section 4.4), plan a desired path (Section 4.6), and determine
the motor speeds necessary to follow the path (Sections 4.7 and 4.8). A holistic diagram showing module

roles and message contents is displayed in Figure 6.

gyroUpdate

ajewns3els
wheelSpeeds

o
“SeDisanre

Figure 6: All packages and intercommunications between them

4.1 Code overview

In our code, 3 nodes are solely responsible for broadcasting sensor data: videre_stereo_cam, compass, and
gps. All hardware control is done through lab_comm, which communicates with the LabJack to set the
wheel speed, disable or enable the robot, and get gyro information, which is subsequently published. Stateest
estimates the robot’s position and heading by reading the compass, GPS, and gyro information, and publishes
its state estimate. The vision node detects obstacles and lanes; costmapgen receives this information and
generates a cost map, indicating the undesirability of driving to a certain point on the ground. path_planner
takes this cost map, along with waypoint information from mission_control, to plan a path using Anytime
D*. Path_tracker receives the path, and using the latest stateestimate, decides how to manipulate motor

speeds to follow the path. It then tells lab_comm to set the motor speeds to the appropriate values.

4.2 Key Software Innovations

Phobetor’s software includes a number of unique and innovative approaches to address the various design
challenges. Notable among these are the implementation of a state-of-the-art variant of Kalman filter to fuse
sensor data for state estimation (Section 4.4), algorithms for lane detection and validation developed entirely
by PAVE members (Section 4.5), and highly optimized implementations of graph search algorithms for path
planning (Section 4.6.3). We have maintained the core structure of these algorithms, but have continued to

develop and optimize them for use with our new computing framework for the 2013 IGVC.

4.3 Computing Platform

Phobetor’s computer runs 64-bit Ubuntu 12.04. All software is written in C++, with the Robot Operating
System (ROS) as our underlying framework. Each software component, called a package, runs as a discrete
program, called a node. Nodes communicate with each other using messages. To send or receive messages,

nodes publish or subscribe to topics.

Besides facilitating communication, ROS offers a variety of convenient libraries. catkin, the latest ROS build
tool, automatically resolves package dependencies in order to include and link to the appropriate files during
compilation. The high-level Videre camera driver takes advantage of ROS’s stereo image processing pipeline.
tf handles transformations between different reference frames. The Time class is an easy way of getting the

system time, and Timer provides an easy way to call a function periodically.

4.4 State Estimation

Phobetor’s state estimation module implements a square root central difference Kalman filter (SRCDKF)
[10] to combine data from all state sensors (compass, GPS, wheel encoders, and gyroscope) and maintain an

optimal estimate of a vector that defines the state of the robot:
X = [Ia Y, 97 5,&)7 Ur, UZ]T)

where x is Phobetor’s x coordinate in meters in a Cartesian local frame relative to its startup location, y is
the vehicle’s y coordinate in meters, 6 € [0, 27) is heading, 6 € [0, 27) is the bias between true GPS heading
and magnetic compass heading, w is the yaw rate of the vehicle, and v, and v; are the right and left wheel

ground speeds in m/s, respectively.

The SRCDKF is a sigma point filter, similar to the unscented Kalman filter (UKF), utilizing a deterministic
set of points to represent a multivariate Gaussian distribution over possible states and measurements. As
opposed to other formulations, the SRCDKF is accurate up to the second order Taylor series expansion of

the process and measurement models.

Parameters for Gaussian noise variables in the model were estimated by analyzing the long-term at-rest
behavior of the sensors’ signals. In all cases except the wheel encoders, the Gaussian random variable is
an accurate representation of the sensor noise; for the encoders, it approximates the finite, discrete noise
corrupting the train of digital pulses. The filter, which has been under development since 2009 [5, 2],

gives Phobetor a robust method of determining its state and accurately arriving at waypoints, even under

conditions of wheel slippage or GPS outages.

4.5 Vision
4.5.1 Obstacle Detection

Obstacle detection processes the point clouds generated by the cameras, in order to distinguish obstacle
points from traversable locations. We implemente two a two-phased process, which is described in detail in
a paper presented at the 2011 IS&T/SPIE Electronic Imaging Conference [9], and which will be reviewed
here.

Firstly, we use a robust approach to fitting a ground plane, then thresholding points as obstacles based
on their distance from the plane. Our ground plane fitting algorithm uses RANSAC (Random Sample
Consensus), which involves alternately selecting random sets of inliers to a model, and fitting a better model

to the inliers. Each model m; is evaluated by the scoring function

sm) = 3

per; L+ [dmj (p)]

where d(p) is the distance from the point to the ground plane m;, and I; is the inlier set at that time. Sample
results of the ground plane fitting are shown in Figure 8. Note that this image was taken on a relatively flat

surface, where the ground plane is approximately constant in the field of view.

(a) Input image from stereo camera, (b) Output of obstacle detection. Pixels
which has a corresponding depth detected as obstacles are overwritten
map. in blue.

Figure 7: Results of ground-plane obstacle detection.

To compensate for variations in the angle of the ground plane in the field of view, we use a parallelized
implementation of Manduchi’s algorithm [8], to take advantage of the multiple cores on Phobetor’s computer.
First, we ensure each pair of points is checked for compatibility only once. To parallelize the computations,
we divide the image into a series of overlapping tiles. We show in [9] that a time-consuming computation can
be computed independently for each tile using this formulation, and we ensure that many of the tiles fit in
the L2 cache for lower access latency. This yeilds runtimes approximately 3x faster than the single-threaded

implementation of Manduchi’s algorithm.

10

(a) Overlapping tiles for paral- (b) Output of obstacle detection. Pixels detected
lel obstacle detection as obstacles are overwritten in blue.

Figure 8: Results of parallelized Manduchi et. al. obstacle detection.

4.5.2 Lane Detection

The lane detection algorithm used in Phobetor are a substantial improvement to our algorithms in previous

years. Our algorithm has 3 phases: filtering, finding clusters, and processing clusters.

In the filtering phase, we try to identify lane pixels by applying a threshold in HSV space. Specifically, we
look for pixels with high brightness and low saturation. Most lanes are identified, along with many false

positives. Fortunately, false positives usually do not form long, thin clusters like lane points do.

In the cluster-finding phase, we take the binary image consisting of candidate lane points, and smooth it.
Clusters are found by finding contours at some high value. We use the contour algorithm from OpenCV,
which in turn uses the border-following algorithm from Suzuki 1985. An alternative is to flood fill the image

to locate regions of high value, but this is slower than finding contours.

In the cluster-processing phase, we try to decide which clusters represent lanes and which are spurious. For
each cluster, we start at one end and (metaphorically) draw several circles of decreasing radius around that
end. If the cluster is part of a lane, the circles should intersect it along only 1 or 2 runs, and those runs
should not be too thick. If a circle ever intersects the cluster at more than 2 runs, the cluster is divergent
and therefore not a lane. Otherwise, we find an intermediate-sized circle that intersects the cluster at 1 or 2
runs, and repeat the cluster-checking process for that point. This process continues until we reach the other

end of the cluster.

Figure 9: Our ’walk-the-line-filter’ identifying lanes

11

After all lane clusters have been identified, cubic spline fitting is used to get a mathematical model of the
lane. It does not matter if multiple overlapping lanes are identified, because all of these are eventually drawn

on the cost map and treated as obstacles.

Our code contains robust methods for fusing and filtering lanes over time, which allows us to build a
continuous piecewise model of the lane and to reject spuriously detected lanes. Because turns are guaranteed
to have a minimum turning radius, we can use a road model which, for each of the left and right lane
boundaries, rejects possible lane markings that disagree with an extrapolation of the history of detected
lane markings. We approximate the “error” between any two lane markings in Cartesian global space to
be the normalized sum of exponentially scaled differences between sampled sets of points, then threshold
on this value [11]. The result is a pair of continuous boundaries that allows for effective autonomous

navigation.

4.6 Navigation

Phobetor’s environment is represented by a cost map incorporating lane and obstacle data. A desired
waypoint is selected, and the path planning algorithm then calculates the most efficient trajectory to that

waypoint given the constraints of the cost map.

4.6.1 Cost Map Generation

The purpose of cost map generation is to build a noise-tolerant model of the environment from obstacle, lane
marking, and state data. Phobetor uses a similar architecture to that of previous years, assigning continuous
costs (calculated with a moving average) to each point in a 10cm x 10cm grid of cells within our global map
[5, 2]. With every vision update, the robot generates a local cost map of lanes and obstacles directly in front
of it. To account for the physical geometry of the robot during path planning, a “footprint” cost map is

employed, in which the cost of each cell is set to the sum of the costs of its neighbors [2].

4.6.2 Waypoint Selection

Phobetor’s approach to waypoint selection is very similar to that of its previous iterations, which in turn built
on the methods used in Argos [5]. In the auto-nav challenge, the desired waypoint is generated dynamically.
The midpoint between the furthest points seen in the left and right lanes is found, and the cell with the lowest
cost within a certain radius is chosen as the waypoint. In both cases, there is a periodic check on whether or
not all waypoints have been reached. If they have not, the waypoint s that have been reached are published
and the distance between the current position and the current waypoint is computed. If this distance is

within a threshold, the waypoint is marked as reached and the robot proceeds to the next waypoint.

4.6.3 Path Planning

Phobetor employs the Anytime D* replanning algorithm which combines the time-efficiency of anytime
algorithms with the D* search [7]. Anytime D* maintains a search history to reduce computation by

updating paths each time new information is incorporated, but does so by finding an initial suboptimal

12

path and improving it. Currently the search considers 16 discrete headings, but more discrete levels can be

considered if necessary.

4.7 Path Following

Phobetor uses a crosstrack error navigation law to follow paths, sequences of points 7(n), generated by

navigation algorithms [1, 6]. This algorithm minimizes the crosstrack error, e(t), shown in Figure 10.

\w(t)

Figure 10: Crosstrack Error Law

e(t) is defined as the signed, perpendicular distance from the center of the robot (midpoint between the

wheels) to the closest point on the planned path. e(t) and its time derivative are given by:
le(t)] = min, [[7(n) — P, &(t) = v(t) sin(y(1)),

where v(t) is the robot speed and (t) is Phobetor’s heading with respect to the planned path. From the

model above, the control law specifies a desired yaw rate

kee(t)
u(t)

wq(t) = kp(t) + arctan

where kj, and k. are tunable constants.

Because the path generator in our navigation algorithm generates paths choosing from 16 discrete direc-
tions, connecting adjacent and nearby cost map cells, the resulting paths are often not smooth. Therefore,
we smooth the paths by fitting their component points with B-splines, piecewise polynomial curves that
are at least C' continuous. Once this is done, the crosstrack error navigation law is suitable for path

following.

4.8 Speed Control

To control the motor voltage u(t), given a desired speed v4(t) (m/s) and the signed error e(t) (m/s) between

desired and actual speed, our IGVC entries since 2009 [1, 3, 4] have implemented a speed controller based

13

on proportional-integral control with a feed-forward term, given by

u(t) = f(va(t)) + kpe(t) + ki/e(t)dt,

where k, and k; are constants tuned to minimize overshoot and are kept small so high-frequency noise from

speed measurement input is not amplified in controller output.

The proportional and integral terms are familiar from standard PID controllers, where the integral term
eliminates steady-state error. Because the rotational speed of the motor is not a linear function of voltage,
a feed-forward term based on a model of the motor is necessary to compensate. To prevent Phobetor from
accelerating too quickly, which might lift the front wheel off the ground or cause the drive wheels to slip
excessively, we limit the magnitude of changes in controller output. Also, when the motor output voltage

saturates, we prevent integral windup to keep the controller responsive to later setpoint changes.

5 Conclusion

Phobetor is a reliable, robust, and innovative autonomous platform that builds off of the experience gained
through PAVES previous IGVC performances. A more robust and durable electrical system, a faster, more
advanced computing environment, and well-tuned and tested software took priority in this year’s design
process. By refining the system with a long life span and low maintenance in mind, we believe that we
were able to make significant improvements to our robot. We are proud of our final product and eager to

demonstrate its capabilities in the upcoming competition.

References

[1] Solomon O Abiola, Christopher A Baldassano, Gordon H Franken, Richard J Harris, Barbara A Hen-
drick, Jonathan R Mayer, Brenton A Partridge, Eric W Starr, Alexander N Tait, Derrick D Yu, and
Tony H Zhu. Argos: Princeton University’s Entry in the 2009 Intelligent Ground Vehicle Competition.
20009.

[2] Solomon O Abiola, Christopher A Baldassano, Gordon H Franken, Richard J Harris, Barbara A Hen-
drick, Jonathan R Mayer, Brenton A Partridge, Eric W Starr, Alexander N Tait, Derrick D Yu, and
Tony H Zhu. Argos: Princeton University’s Entry in the 2009 Intelligent Ground Vehicle Competition.
In Intelligent Robots and Computer Vision XXVII, volume 2, 2010.

[3] Solomon O Abiola, Ryan M Corey, Joshua P Newman, Srinivasan A Suresh, Laszlo J Szocs, Brenton A
Partridge, Derrick D Yu, and Tony H Zhu. Phobetor: Princeton University’s Entry in the 2010 Intelligent
Ground Vehicle Competition. 2010.

[4] Solomon O. Abiola, Ryan M. Corey, Joshua P. Newman, Laszlo J. Szocs, Brenton A. Partridge, and
Tony H. Zhu. Phobetor: Princeton University’s Entry in the 2011 Intelligent Ground Vehicle Competi-
tion. 2011.

[5]

[10]

[11]

Christopher A. Baldassano, Gordon H. Franken, Jonathan R. Mayer, Andrew M. Saxe, and Derrick D.
Yu. Kratos: Princeton University’s Entry in the 2008 Intelligent Ground Vehicle Competition. In
Proceedings of IS&T/SPIE Electronic Imaging Conference, volume 7252, 2009.

Gabriel M. Hoffmann, Claire J. Tomlin, Michael Montemerlo, and Sebastian Thrun. Autonomous
Automobile Trajectory Tracking for Off-Road Driving: Controller Design, Experimental Validation and
Racing. In Proceedings of the 26th American Control Conference, pages 2296-2301, 2007.

Maxim Likhachev, David Ferguson, Geoffrey Gordon, Anthony (Tony) Stentz, and Sebastian Thrun.
Anytime dynamic a*: An anytime, replanning algorithm. In Proceedings of the International Conference
on Automated Planning and Scheduling (ICAPS), June 2005.

R. Manduchi, A. Castano, A. Talukder, and L. Matthies. Obstacle Detection and Terrain Classification
for Autonomous Off-Road Navigation. Autonomous Robots, 18(1):81-102, 2005.

Joshua Newman, Han Zhu, Brenton A. Partridge, Laszlo J. Szocs, Solomon O. Abiola, Ryan M. Corey,
Srinivasan A. Sureh, and Derrick D. Yu. Phobetor: Princeton University’s Entry in the 2011 Intelligent
Ground Vehicle Competition. In Proceedings of IS&9T/SPIE Electronic Imaging Conference, 2011.

Rudolph van der Merwe and Eric A. Wan. Sigma-Point Kalman Filters For Integrated Navigation. In
Proceedings of the 60th Annual Meeting of The Institute of Navigation (ION), pages 641-654, 2004.

Derrick D. Yu. A Robust Method of Validation and Estimation of Road Lanes in Real Time for
Autonomous Vehicles. 2009.

Special Thanks

The 2011 IGVC team thanks our team advisor, Professor Alain Kornhauser, for his support of this project.

We would also like to express our gratitude to the Princeton School of Engineering and Applied Sciences,

the Keller Center for Innovation in Engineering Education, and the Norman D. Kurtz ’58 fund for their

gracious donation of resources. Also, we thank Stephanie Landers of the Keller Center and Tara Zigler of

the Department of Operations Research & Finance Engineering for their tremendous logistical assistance.

Our team could not have gone far without the encouragement and assistance of the numerous professors,

students, and faculty members of Princeton University, and we would like to thank all who have continued

to provide us with the feedback and help that has allowed us to come this far.

15

