
Q
2014 IGVC Design Report

Team Members:
Hokchhay Tann ’14, Bicky Shakya ’14, Vishal Bharam ’14,

Alex C. Merchen ’14, Philip Cho ’15, Binod Giri ‘15

Faculty Advisor:
Dr. David J. Ahlgren

May 10, 2014

Table of Contents
Introduction .. 1

Innovations ... 1

Vision System .. 1

Motor Control Feedback ... 1

Path Planning .. 1

IOP Challenge .. 2

Design Process .. 2

Team Organization .. 2

Design Methodology ... 3

Hardware .. 3

Chassis and Drive Train ... 3

System Integration .. 4

Control Panel ... 5

Power Supply .. 7

Software ... 8

Software Architecture ... 8

Software Interfacing ... 9

Communication ... 10

Intelligence Algorithms: VFH+ ... 10

Waypoint Navigation .. 11

Image Processing .. 12

Motor Control ... 14

Interoperability Profiles Challenge (IOP) ... 14

Previous JAUS Implementation on Q .. 14

Upgrades to IOP .. 15

Safety .. 15

Wireless Emergency Stop .. 16

Vehicle Cost .. 16

Concluding Remark .. 16

Sponsors ... 16

Reference .. 17

1

1. Introduction

 In this report, the Trinity Robot Study team presents its eighth iteration of Q, an
autonomous ground navigating robot for the IGVC. The team consists of four seniors and two
junior members. This year’s goal has been to continue improving Q with great focus on the
mechanical structure, vision and navigation algorithms, and revision of JAUS according to the
new rules for Interoperability Profile (IOP) Challenge.

2. Innovations

 The 2013 iteration of Q had a strong mechanical base, but there were problems with the
placement of the GPS and an overly large turning radius. In the new design, Q’s GPS sits firmly
on the middle section of the robot allowing more accurate waypoints navigation. In addition, we
shortened the chassis to achieve smaller turning radius and thus, better obstacle avoidance.

 On the other hand, last year’s image processing algorithm performed well for the basic
course, but there were problems with blue and white barrels in the advanced course. The focus
of vision system improvement for this year was to enhance its capabilities and run-time
performance. The motor control system was also modified to accomplish a smoother and faster
navigation. With the enhanced vision system, the robot can traverse the course at faster speed.

 Finally, we upgraded our JAUS component to support additional messages as required
by this year’s Interoperability Challenge.

a. Vision System
 Last year, Q’s vision system underwent a major change in both hardware and software.
A new Basler Scout camera was installed, and a new image processing algorithm was introduced.
Although the algorithm was robust for the basic course, we ran into problems with blue and
white barrels in the advanced course. This year, the focus of our work is to improve the
algorithm. While the work is still under development, we have tested a functional prototype. In
addition, the processing steps are also optimized allowing Q to traverse the course at a faster
speed.

b. Motor Control Feedback
 Previous iterations of Q had open-ended motor control loops, and Q had no means to
ensure it was actually traveling at the desired speed. Q’s motor controller provides built in
encoder functionality, but previously, there was a time delay of approximately five seconds in
reading them. This made any attempt to use the encoders in real time completely unrealistic. In
2012, to combat this problem, hardware was designed to directly read the encoder values and
input them through a digital input rather than through the serial port. Two optical encoders
with 180 pulse precision now give velocity feedback which can be monitored to ensure that
speed constraints are adhered to. Velocity and relative position data are also used as feedback
for the IOP Challenge.

c. Path Planning
 In last year’s version, a GPS point trail as well as heading history are recorded and
stored, giving the general heading over Q’s recent path. This heading is used as a heavy weight
in Q’s VFH cost calculation, giving Q a bias away from the path it has already taken (see Section
5.4: Intelligence). In specific situations, such as an area of dense obstacles, Q will stop recording
a path history so that the general heading is not skewed by maneuvers around obstacles and

2

the correct bias is preserved. When Q leaves the obstacle field it again beings recording a
general heading. Previously to find waypoints in the GPS challenge, Q determined a heading
based only upon the nearest GPS waypoint. This heading was inserted into the VFH intelligence
algorithm. In 2011 also, Q has added the A* path planning algorithm, thus taking future
waypoints into account. This year, major improvements were made to the existing algorithms,
VFH and A*, on Q to provide a smoother path planning using data from the improved vision
system, which allows Q to see much further ahead than the webcam.

d. IOP Challenge
 Last year, in the JAUS Challenge (now IOP), Q was able to seamlessly interface with the
Judge’s COP. However, some information was missing when responding to the judge. This year,
all required messages are added. In addition, the new rule for IOP requires more subsets of
messages to be present.

3. Design Process

a. Team Organization
 In the fall 2013, members worked together to make mechanical changes on the robot. In
spring 2014, the team members were assigned into small groups based on the year’s work
focus. Each group was in charge of solving its main problem and reporting to the team on a
weekly basis, during which brainstorming and major decision making took place by the entire
team.

1. Management: this group was responsible for leading the team and making all final
design decisions. This group also manages all logistics ant the planning for IGVC.

2. Vision System: this team was tasked with upgrading the vision system of Q. They
were responsible for any hardware or software modifications related to this challenge.

3. Navigation: this group was responsible for navigation controls. It ensured the
functionality and efficiency of the motor control. The team worked on both hardware
and software to achieve smooth navigation.

4. IOP: this group was responsible for the development and testing of the IOP
Implementation on Q.

 Members were divided into these groups based on their expertise, interests and
workload associated with each group. Most members contributed to more than just one group.
All members were required to work together for a minimum of four hours per week as well as
attend weekly meetings to give progress reports and discuss their projects.

 Since Q is a multi-year project, key members graduate every year and knowledge that
was once common to all members is lost. To combat the high turnover rate, each new member
works with an experienced mentor on the team who passed on his or her expert knowledge.
Furthermore, regular workshops were held on topics such as FPGA programming, Solidworks
modeling, and LABVIEW coding to help new members master wide variety of skills.

3

b. Design Methodology
 The team followed an iterative design process to improve Q. The process started with a
detailed failure analysis of Q's performance in the IGVC 2012. After understanding the faults of
Q and analyzing IGVC’s new rules, a detailed list of requirements was created. Based on these
requirements, strategies were proposed and continually tested to reach a finalized
implementation.

Figure 1: Design Methodology

4. Hardware

a. Chassis and Drive Train
 The physical platform of Q is a modified PerMobil Trax all-terrain wheelchair. This
frame can support a payload of over 250 lbs [1] and has a small footprint of 40" by 26". It
features a differential front wheel drive system – a pair of 500W Leroy Somer MBT1141S motors
- and a pair of rear mounted casters. The motors are geared with a 25.8:1 ratio, providing 15ft-
lb of torque. Additional sensor and payload mounting frames were constructed using 80/20
extruded aluminum channels. The use of these channels allowed for quick and easy component
layout without compromising mechanical strength.

 For previous year’s design (fig. 2a), Q has a turning radius of 26 inches and a non-ideal
position for the GPS. In the new design (fig. 2b), the GPS is relocated, and the turning radius is
decreased to 17 inches.

4

Figure 2: SolidWorks Models of Q: (a) 2013 edition, (b) 2014 edition.

b. System Integration
 The cRIO is the central control unit of Q. All motor control, data collection, navigation
algorithms and sensor interfacing (with the exception of vision processing and cameras) occurs
on the cRIO. This communicates with the NI EVS which interfaces with the two webcams and
executes image processing for lane detection, flag detection and ramp detection. The onboard
Linksys WRT-54GL wireless router allows wireless monitoring and debugging of the system. The
complete system diagram is as follows:

5

Figure 3: System Overview of Q.

c. Control Panel
 The hardware control panel allows easy control of the robot without the need of a
software interface. The primary control panel allows easy operation of the robot when powered
on. By simply initializing, turning off the motor safety and then pushing the GO button, the
user is able to start a competition run.

Figure 4: Main Hardware Front Panel.

6

 An additional secondary control panel offers the user more options and also gives
detailed dynamic feedback of Q’s operation. Here, the user is able set competition challenge
type and also reset the entire control program without the need to reboot the system. An array
of LEDs provides the user with real-time status of the various sensors and the control program.
An additional, tri-state LED provides battery health data.

Figure 5: Secondary Hardware Front Panel.

 In previous years, Q’s front panel was controlled by a custom wired breadboard.
Although the setup was functional, the wiring was not secured properly and very difficult to
debug. This year, we upgraded the board by designing a printed circuit board (PCB) for the
circuitry as shown in fig. 6. In addition, we have added a voltmeter to the front panel to
monitor the robot’s battery level, which was a major problem in previous years’ competitions.
The final design is shown in fig. 7.

7

Figure 6: Printed Circuit Board (PCB) for the Front Panel Controller.

Figure 7: Q’s front panel

d. Power Supply
The power system runs all electrical components (other than the motor) though a single power
board. The new power board features separate DC-DC convertors for 24V, 12V and 5V power
supply. They are rated at 100W, 75W and 75W respectively. In addition, Switchlock circular
connectors were added for all major components to allow easy removal and reconnection.

8

Figure 8: Power Distribution on Q

 To secure sensitive electrical components from transients, high frequency feedback, and
surges from the motors, a 10A Radius Power Filter model RP220-10-4.7 was added to the motor
line. In addition to the filter, slow-blow fuses have been added for all major electrical
components to secure them in the case of accidental short-circuits.

5. Software
 In light of software performance issues in last year's competition, the team has decided
to update certain sections of the code running on the Q for better reliability, flexibility and
execution speed. For example, the image processing algorithm has been optimized for better
frame rates and the software architecture has been radically redesigned to take advantage of
the additional processing power. Additionally, new code has been written for various new
system components and features. In the following sections, we will describe the design of the
individual software components.

a. Software Architecture
 The core of Q's control system is located in the cRIO and interfaces with most of the
sensors and devices on the Q, including the motor controllers. All movement of the robot,
autonomous or remote-controlled, is directed through this main software architecture, which is
shown in fig. 9.

 Our goal in designing the main software architecture was to create a system with
maximum performance and reliability, but also to make our software as intuitive and as
modular as possible. To that end, our design is based on a parallel architecture, where each
component runs relatively independent of other components. Our implementation of this
architecture uses parallel loops, each containing code pertaining to one particular component
of the robot. For instance, each of the sensors interfaced with the cRIO and the motor
controllers is controlled by a separate loop. The sensor loops continuously update data buffers,
while the motor controller loop waits for active commands from the main control loop. This is
to ensure that there is absolutely no undesired movement of the robot.

9

Figure 9: Parallel Software Architecture on Q.

 The main control loop directs data flow between loops, thereby controlling the behavior
of the system. For example, when in the „remote control‟ state, motor commands received from
the tablet PC are sent to the motor controller loop, and while in the „autonomous‟ state, the
motor commands are computed by the VFH loop. Communication with the tablet PC and the
Embedded Vision System are again achieved by using separate UDP loops.

 The parallel architecture has several advantages, for instance, it allows the overall
throughput of the system to be much higher, allowing for smoother control of the robot. The
reliability of the software seems to have also improved, as we have seen far less system crashes
than last year. Furthermore, the new architecture has proved to be much more intuitive than its
predecessor, since the overall structure is much more natural to understand.

 Having parallel loops has also allowed us to modularize the code and work on separate
parts individually, increasing efficiency and reducing the amount of time spent on piecing the
various sections of code together.

Figure 10: Control Loop State Machine

b. Software Interfacing
 The camera is connected directly to the EVS's FireWire ports. LabVIEW provides library
functions for capturing images from the camera. The GPS, compass, and SICK LIDAR interface
with the cRIO through the FPGA. Each of them connects to one of the four ports on the cRIO
RS232 module, which is directly interfaced with the FPGA. The code to read the compass data is
written entirely in the FPGA. The FPGA examines the bytes coming through the serial port until
it sees the line feed character. At this point it begins reading the heading, pitch and roll, which
are sent as “heading'', “pitch'', “roll''. One example would be 100,15,33$<$LF$>$ for a heading
of 100 degrees, a pitch of 15 degrees, and a roll of 33 degrees. Each number is extracted as a
string, then converted to an integer data type, and passed along to the real time controller.

10

 The code to interpret data from the GPS runs on the real-time controller in the Compact
RIO. The FPGA is programmed to act as a serial port. The GPS outputs longitude and latitude
following the NMEA format. All latitude and longitude data are preceded by the string \$GPGGA,
so the GPS interpreter searches for that string, and then parses the following string for the
latitude and longitude, which are converted to double floating point values and transmitted to
the Compact RIO.

 To read data from the SICK LIDAR, some initialization commands must be sent. Once
these commands are sent, the SICK sends 360 bytes preceded by a 6 byte header. Those 360
bytes are 180 16 bit distance values in centimeters - one value for each degree, starting at -90
degrees from the heading and going until 90 degrees from the vehicle heading. The FPGA code
searches for the 6 byte header and then reads each pair of bytes into some of the dedicated
memory in the FPGA.

c. Communication
 There are several components in the system that must communicate for the purpose of
debugging, monitoring, parallel processing, and remote control of the robot. Fig. 3 shows how
all the processing components in the system are connected.

 The EVS and cRIO each have alternate Ethernet ports which are used for direct
communication between the cRIO and the EVS. The primary Ethernet ports are used for the
wired connection from the EVS and cRIO to the Linksys wireless router. The router is used for
wireless debugging, development, and monitoring of the robot. A LabVIEW application for real
time debugging was created that displays the exact information Q is using to navigate, such as
current GPS location, current heading, target heading, SICK array, compass reading, a waypoint
checklist, battery voltage, sensor initialization, and the control loop state machine state.

d. Intelligence Algorithms: VFH+
 A modified form of the Vector Field Histogram (VFH) algorithm was used for obstacle
avoidance. Using a SICK LIDAR sensor, a compass, and camera data, a polar histogram
representation of the obstacles is created and paths are planned accordingly. The algorithm
utilizes a cost function which considers the target direction, wheel orientation and previous
direction. When there is more than one opening between obstacles, this cost function is used to
select the best candidate direction. The opening with the lowest cost is chosen. The result is a
heading which represents the best path. Several improvements from previous years were
instantiated. The scan, which covers 180 degrees, was split into 180 separate sectors, rather
than 30, for path consideration for better resolution. Detected obstacles were widened to
account for the robot radius and turning ability. Finally, the SICK data has been split into three
distance thresholds, with the nearest threshold (at one meter) receiving priority in motor
functions. The further two thresholds, at two and three meters, are considered in path planning.
They influence the cost calculation in the same manner as the first threshold, with robot
direction and target heading taken into account, but have less weight than the threshold at one
meter.

Figure 11: VFH Loop

11

Special VFH States

 Several VFH states have been added to Q outside the “normal” state described above.
These states are triggered by specific signatures detected by Q‟s sensors. Examples of this
would be when the ramp is detected by the SICK and Ping sensors, or when slalom gates are
found from the cameras. When the ramp is detected, Q will give lowest cost to the path of the
steepest gradient, so that lateral motion on the ramp is limited. When slalom flags are detected,
a high cost will be placed on paths outside of the slalom gates.

Smart Path History

 Q now uses a smart path history to calculate a target heading to help navigate and avoid
turning around. Q uses GPS co-ordinates taken at time intervals to calculate and store past
headings. A weighted average of this history gives a general heading that roughly follows the
direction of the course. This assists Q in determining the general direction of the on track. This
is illustrated in fig. 12. However, using a simple averaged path history fails while traversing a
complex chicane. While traversing a chicane, Q may be required to turn at a direction that is
radically different than the general direction of the course. Using heading readings from inside
the chicane to calculate an averaged path history may result in a target direction that leads Q
into a dead end. Such a scenario is identified in fig. 13.

 To overcome the challenge of traversing a chicane, Q uses an environment-aware path
history. Q uses the concept of an obstacle field to select an alternate path. Here, an obstacle
field is defined as an environment where there is a large density of obstacles such as in a
chicane. When Q is not in an obstacle field it continuously logs path history to calculate a new
target heading. But when Q encounters an obstacle field, data collection for the path history is
temporarily suspended and the target heading calculated before entering the obstacle field is
held constant. This helps Q maintain a sense of direction even while traversing a chicane. Fig.
14 illustrates how, this algorithm helps Q traverse a chicane.

e. Waypoint Navigation
 The autonomous and navigation algorithms were merged. This was accomplished by
switching from the autonomous algorithm to the navigation algorithm after the first GPS

12

waypoint is reached. When the robot is in the navigation portion of the obstacle field, Q creates
an creates an X-Y coordinate system with its current location as the origin and plots each
waypoint with coordinates based on the distance of the waypoint from Q's original location. Q
then moves toward the closest waypoint by assigning a very low cost to the heading of the
target waypoint in the VFH cost calculation. When an obstacle is encountered, Q plots the
obstacle on the X-Y graph and routes a path around it. When the waypoint is reached, Q
approaches the next closest waypoint with obstacles that have been plotted considered in
shortest distance calculations. If the closest waypoint changes when Q is navigating to a
waypoint (i.e. going around a wall and increasing distance from the original waypoint) then Q
will pursue the closer waypoint having plotted obstacles along the way. The GPS readings are
accurate to within one meter.

f. Image Processing
 The Basler camera has been positioned for maximal viewing range with bottom of the
image closest to the robot. The field of view is shown in fig. 15.

Figure 15: Q’s Camera Field of View

 A new vision algorithm was developed to achieve a more effective, consistent
performance despite varying lighting conditions. Fig. 16 illustrates the processing algorithm for
each acquired image. The original image (Fig. 16a) had a RGB color map, and because the
background was mostly grass with high intensity in the green plane, a blue plane extraction
eliminated most of the grass and distinguished the white lines (Fig. 16b). X1.5 lookup table and
X0.5 were then applied to the blue plane consecutively to further enhance the contrast (Fig. 16c).
The green plane of the original image (Fig. 16d) was then subtracted from the blue plane to
eliminate noisy reflections from the grass (Fig. 16e). LabVIEW’s auto threshold by metric was
then applied to the image, generating the binary image (Fig. 16f). Hough Transform was then
used to reconstruct the white line from the image, such that any noise left over was
automatically removed (Fig. 16g).

13

Figure 16: Illustration of the image processing algorithm employed on Q for the 2013 IGVC: (a)

Original image, (b) Blue plane extraction, (c) Blue plane ^1.5, (d) Green plane extraction, (e) (c) – (d), (f)
Threshold by metric, (g) Hough Transform.

 The processed image then underwent a calibration procedure which analyzed the
foreground object (the white line) and created a 2D occupancy plot (fig. 17d). The calibration
mask (fig. 17a) contained real-world coordinates of where each white circle was relative to Q.
This information is used to transform input image into a corrected image (fig. 7c). The resulting
plot data (fig. 17d) is sent to cRIO to be combined with the SICK data for Vector Field Histogram.

Figure 17: Image calibration process (a). calibration mask, (b). input image (hough transform image), (c).
corrected image, (d). plot of obstacle distance versus angle.

 The throughput of the vision system has limited the reaction time of the robot. The
algorithm has undergone pipelining. The various subtasks in the algorithm now run parallel to
each other thereby reducing the execution time and increasing throughput. Portion of the code
has also been ported to the FPGA of the EVS, thus decreasing processing time.

14

 In addition, new software was written to check the brightness of each input image by
calculating the mean and standard deviation of the grayscale level on the blue plane. The result
is then compared to a lookup table. If the image is determine to be too bright or too dark, the
gain of the camera is decreased or increased respectively. Otherwise, no change is made to the
gain.

g. Motor Control
 The lack of proper speed control in the previous year led Q to rapidly decelerate or
accelerate when approaching or moving away from obstacles. In order to combat the issue of
rapid speed change, we implemented a step-wise speed control algorithm. This algorithm
converted raw SICK data into actual distance measurements and enabled Q move at 5mph when
more than 3m away from the nearest obstacle. For distances between 1 to 3m, Q’s speed
decreased as a linear function, resulting in gradual deceleration as opposed to a sudden halt
when approaching an obstacle.

6. Interoperability Profiles Challenge (IOP)

a. Previous JAUS Implementation on Q
 Our robot features a single JAUS component to handle all the required JAUS services.
Even though JAUS supports mechanisms for communication between different components of
the robot, we decided not to adopt those mechanisms. Building JAUS components on top of the
cRIO, the vision system, and sensors would have added significant overhead in performance
without discernable benefits. Instead, we have a separate JAUS component that provides a
JAUS-compliant interface to the remote client. An internal communication mechanism is used
among the components that is more cost efficient.

 The JAUS component consists of five parallel loops that communicate via queues as
shown in fig. 18. LabVIEW® supports queues that are safe to use in multiple threads of
execution. We adopt a common parallel pattern called Producer-Consumer, where one loop puts
messages to a queue while another loop fetches them from the queue.

Figure 18: Parallel Implementation of JAUS on Q

15

 We classify JAUS messages as either simple or complex. Complex messages require the
loop to keep track of multiple overlapping states at once. Rather than implementing the finite-
state machine ourselves, we make used of the Statechart Module provided by LabVIEW®. The
module lets us simulate states containing substates.

 The JAUS component also comes with a set of subroutines that either encodes or
decodes JAUS messages. The Statechart depend on those subroutines. We recently made a
complete documentation of the subroutines so that our successors may understand their uses.

b. Upgrades to IOP
 Last year, only a subset of messages had to be present. We upgraded our JAUS
component to support additional messages as required by this year’s Interoperability Challenge.

 Most of the additional messages are part of services that our JAUS component already
provides. Others form a new service called Events. The Events service regularly notifies the
remote client of such information as velocity, local position, status, and heartbeat. The client
specifies those pieces of information it wants and the interval at which it want to be notified.
The JAUS component is to send response messages at the specified time interval. This
particular service is specified in the SAE JAUS Profiling Rules but was not required by last year’s
competition. We added a global events manager that periodically generates response messages.

 We had a problem with reporting of velocity and local position last year. The real-time
loop reading signals from the motor encoder made an incorrect conversion of velocity units. We
revised the loop so that we have accurate velocity state readings.

 Adding new messages and making revisions required extensive testing. We wrote a
modular testing framework. The framework lets us generate any string of messages we want
and send them to either the real JAUS component or a simulated one. It takes minimal work to
support a new class of messages because the code for sending and receiving messages is
separate from the code for generating and decoding them. All it takes to add a class of
messages is two small modules to generate and decode these messages. On an incidental note,
the framework also helped us discover bugs and undefined behavior from the existing code
base.

7. Safety
 Safety has been given the utmost priority in the design of Q both for the electrical
system and the mechanical system. Wires of gauge 10 were used to connect power sources to
the motors and filter, and 16 gauge wires were used elsewhere. A circuit breaker was used for
the entire electrical system. Slow-blow fuses were instantiated into the connections to each
component from the power board to ensure that individual electronic devices did not receive
too much power. A single phase dual stage power line filter inserted to prevent transient
current from the motors.

 Three main motor safety measures have been implemented. They include the motor
control board FETs, the physical emergency-stop, and the wireless emergency-stop. The motor
control board FETs are now controlled by the program to disconnect power from the motor
whenever the system is in an idle state. The physical and wireless e-stop features also work by
immediately cutting power from the motor controllers as soon as one of them is triggered.

16

a. Wireless Emergency Stop
 The wireless Emergency Stop is controlled by a Seco-Larm SK-919TD1S-UP transmitter
that uses 315 MHz RF transmission with a one-channel receiver. The range was extended to 150
feet by installing antennae on Q and on the transmitter.

8. Vehicle Cost

9. Concluding Remark
 The changes made to Q hopefully will lead to improved autonomous performance. Our
goal has been to expand the range of situations that Q can handle when navigating so that each
run will more likely be successful. We look forward to participating at the 2014 IGVC.

10. SPONSORS

• Enterprise Rent-A-Car
• Hemisphere GPS
• Honeywell International Inc.
• National Instruments
• PerMobil Corporation
• Travelers Insurance
• Trinity College

17

11. References
[1]. “USA - Products - Support - Product Support - Permobil." Power Wheelchairs - Permobil.Web. 14 May
2010. <http://www.permobil.com/USA/Products/Support/Manuals/drivers/>.

[2]. Ulrich, Iwan, and Johann Borenstein. "VFH+: Reliable Obstacle Avoidance for Fast Mobile Robots."
Proceedings: 1998 IEEE International Conference on Robotics and Automation, May 16-20, 1998,
Katholieke Universiteit Leuven, Leuven, Belgium. IEEE International Conference On Robotics and
Automation, Leuven, Belgium. Piscataway, NJ: Robotics and Automation Society, 1998. 1572-577. Print.

[3]. Tann, Hokchhay, et al. "New vision system and navigation algorithm for an autonomous ground
vehicle." IS&T/SPIE Electronic Imaging. International Society for Optics and Photonics, 2013.

[4]. Wright, Adam, Orko Momin, Young Ho Shin, Rahul Shakya, Kumud Nepal, and David Ahlgren.
"Application of a Distributed Systems Architecture for Increased Speed in Image Processing on an
Autonomous Ground Vehicle (Proceedings Paper)." Intelligent Robots and Computer Vision XXVII:
Algorithms and Techniques. Proc. of IS&T/SPIE Electronic Imaging, San Jose. Vol. 7539. San Jose: SPIE,
2010. Print.

	1. Introduction
	2. Innovations
	a. Vision System
	b. Motor Control Feedback
	c. Path Planning
	d. IOP Challenge

	3. Design Process
	a. Team Organization
	b. Design Methodology

	4. Hardware
	a. Chassis and Drive Train
	b. System Integration
	c. Control Panel
	d. Power Supply

	5. Software
	a. Software Architecture
	b. Software Interfacing
	c. Communication
	d. Intelligence Algorithms: VFH+
	e. Waypoint Navigation
	f. Image Processing
	g. Motor Control

	6. Interoperability Profiles Challenge (IOP)
	a. Previous JAUS Implementation on Q
	b. Upgrades to IOP

	7. Safety
	a. Wireless Emergency Stop

	8. Vehicle Cost
	9. Concluding Remark
	10. SPONSORS
	11. References

