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ABSTRACT 

 

UBC Snowbots is a completely student-run team involved in the design and fabrication of 

autonomous ground vehicles at the University of British Columbia. This is not part of any 

technical course and academic credits are not awarded, but the team still sees strong participation 

from students from various departments of engineering and computer science. Snowbots was 

founded in 2006 and, since then, has performed very well each year at its main competing event, 

the International Autonomous Robot Racing Competition. This year, Snowbots is going a step 

further to compete in the more prestigious and competitive event, IGVC, with its new robot 

design called Avalanche. 

 
 

INTRODUCTION 
 

Avalanche is a novel vehicle designed and built by UBC Snowbots as the first entry by the 

University of British Columbia at IGVC. Snowbots prides itself on being innovative, and while 

we could have continued with well-established vehicle designs used in the past, we decided to 

experiment with Mecanum wheels on this first entry vehicle. These wheels allow a robot to travel 

in any direction without requiring any space for a large turning radius. Avalanche has a square 

chassis supported by the four Mecanum wheels, three LIDAR sensors for obstacle detection, and 

a camera on a tower for computer vision. GPS is also being used for localization and navigation. 

This report will describe the team organization, the design process, and the mechanical, software 

and electrical elements of our vehicle. It will also include a cost analysis and then conclude with 

our aspirations for the competition. 

 

TEAM ORGANIZATION  
 

The Snowbots team consists of UBC students from a variety of engineering programs, 

computer science, and commerce.  The structure of the organization is shown in Figure 1. The 

team has been divided into two main interactive sub-groups – a mechanical group and a software 

group. The mechanical division, headed by Mechatronics student, Jarek Menzies, is responsible 

for the robot hardware such as the chassis, drive chain, and laptop mount. The group also takes 

care of most of the wiring and firmware on board the vehicle. The software division, led by 

Electrical Engineering student, Navid Fattahi, is responsible for coding, sensors, and the response 

testing of the robot. The two team leaders are also responsible for the general organization, 

managing finances, and coordinating with the sponsor contacts who manage external funding and 

marketing for Snowbots. The team meets once a week regularly, or as required by the tasks at 

hand. 
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Figure 1. UBC Snowbots Team Organization. 

 

DESIGN PROCESS 
 

The ultimate result of our design process was to address all the objectives presented in the 

problem statement in the most efficient and effective way. On the technical side, this presented us 

with two major topics: mechanical and electrical design. The team is split into two major groups 

that mainly involve individuals with a mechanical or electrical aptitude in order to achieve the 

major objectives in the competition.  

 

The mechanical and electrical designs were approached as shown in Figure 2. 

 

 
Figure 2. General Design Process. 

 

Although these steps were followed sequentially, an iterative approach allowed us to explore 

beyond the linear structure shown in Figure 2. 
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MECHANICAL DESIGN 

 

General Mechanical Design 
 

In terms of mechanical design for the robot, the goal was to obtain a simple, yet effective 

solution to support the payload while being robust enough to traverse the course of the soccer 

field. Due to time constraints, we chose to utilize custom-made parts supplied by AndyMark 

Robot Supplies. This way we could familiarize ourselves with the possibilities of the chassis 

design without relying too much on our manufacturing skills to perfect the robot’s durability and 

reliability. 

 

In order to ensure compatibility between ordered parts and parts we expected to build 

ourselves, we modeled all the components in SolidWorks. SolidWorks allowed us to visualize and 

conceptualize an end-product rather than undergoing a trial and error process when putting the 

robot together. Modeling in SolidWorks also let us implement new ideas and compare them to 

previous ideas which reduced the time we spend building, and encouraged us to continuously 

brainstorm solutions before purchasing and installing hardware. Figure 3 shows a progressive 

design example of this process. 

 

 

 

 
Figure 3. The Progression of the Mechanical Design of the Vehicle. 
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In following the design process, most of the time was allocated to the three design phases: 

 

 Preliminary Design 

 Detailed Design 

 Testing/Evaluation 

 

The first two phases were addressed early within the mechanical design process of the robot 

and covered areas of concern that included maneuverability, durability, and safety. Some 

solutions that proved to be very rewarding were the implementation of Mecanum wheels and the 

pre-design of the chassis frame. After these objectives were identified, the team began 

brainstorming solutions to combine these ideas using the iterative process involving the 3 phases 

mentioned earlier. Key features of our mechanical design are discussed in further detail below. 

 

Drivetrain 
 

We decided on an innovative approach to this year’s competition with the use of AndyMark 

Mecanum wheels. Directly coupled to an AndyMark Toughbox, we are able to obtain the proper 

gear configuration required to have a simple and dynamic drivetrain. With such a simple 

drivetrain, we have a safe and reliable system where we can easily diagnose and fix problems. 

 

 
 

Figure 4. Drivetrain with Mecanum Wheel and Motor 

 

 

 
Figure 5. CAD Model of a Mecanum Wheel. 

 

By using the Mecanum wheels, our robot is capable of strafing in order to have a net sideways 

direction to avoid a close obstacle, rather than going through the ordeal of reversing and 
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advancing forward. This is achieved by rollers on the wheels oriented at 45 degrees from the 

wheel’s drive shaft. Forward and backward movement is achieved by running all four wheels in 

the same direction. By running the wheels in different directional combinations as illustrated in 

Figure 6, sideways and rotational movement of the robot is achieved. Furthermore, combinations 

of all these wheel motions allow the robot to move in any direction. 

 
Figure 6. Force Balance in the Mecanum Wheels to Achieve Desired Direction. 

 

The mechanics of the Mecanum wheels allows the robot to be much more agile than using 

conventional wheels, and simplifies the CPU control for motor actuation. The benefits of the 

Mecanum wheels remove the requirement for steering systems such as the Ackerman Steering 

System or a rack and pinion. By reducing the number of parts in the drive train, we minimize any 

energy losses that might occur between the motor output and the shaft output. 

 

Chassis 
 

With our minds set on using Mecanum wheels, we decided to use a square chassis in order to 

easily balance the Mecanum wheel force vectors. We chose to use a chassis kit from AndyMark to 

have the convenience of modularity while sacrificing some innovation from building a homemade 

chassis. This chassis kit allows us to have a strong foundation to design around while at the same 

time assuring reliability and durability to meet the needs set out by the competition objectives.  

 
Figure 7. Square Chassis Assembled From AndyMark Products. 
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Steadicam 
 

The Steadicam is a solution to reduce vibrations experienced by the webcam on the robot. 

From past experience, we understood that vibrations caused by the soccer field terrain proved to 

be an issue when attempting to render a quality video for feedback to the computer. There are 

many solutions to solve this issue; however, the simplest idea we conceptualized without 

significantly compromising our current design was to directly dampen the vibrations leading to 

the arm suspending the webcam. This can be done by suspending the webcam on a two-arm lever 

in which one arm has a counter weight to allow rotation about two axes. 

                                  
Figure 8. Diagram of the Steadicam showing the Degrees of Freedom 

 

The bottom portion of the second arm acts as a counter weight and dampens sudden 

movement, or resists movement due to small vibrations about the axes shown above. A downfall 

to this feature is that it does not address vertical vibrations which would require a much more 

complicated apparatus and level of manufacturing in which we could not afford to invest time.  

 

A picture of Avalanche during assembly is shown below.  
 

 
 

Figure 9. Avalanche Assembly 
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ELECTRICAL DESIGN 

 
The vehicle is powered through two separate power systems; one system powers the motors, 

while the other powers all sensors. This design was chosen to prevent noise from the motors 

interfering with the rails powering the sensitive electronics. The design also allows for easy 

implementation of the emergency stop requirements.  

 
Figure 10: Electrical Layout 

 

Power to the motors is supplied using an 11.1V lithium polymer battery. We chose these 

batteries as they are extremely light and able to supply a sufficient, steady current.  

 

As the sensors typically require very little power to operate, they are powered through the 

laptop’s internal lithium-ion battery. In addition, the laptop we chose operates using a solid state 

drive which typically requires less power than traditional hard-drives. 

 

SOFTWARE DESIGN 

Software Strategy 

 
The software required to drive Avalanche has to accomplish the following goals: 

 Observe the surrounding environment and scan for the relevant factors 

 Evaluate and analyze the incoming data, producing appropriate suggestions 

 Make decisions on the next move, based on the performed analysis 

 

To satisfy the required goals, our custom software architecture is implemented using the Robot 

Operating System (ROS). ROS is an open-source framework that manages communications 

between different parts of the software allowing for a high level of modularity. Each software part 

is referred to as a node in this framework. Nodes can talk to each other via messages on different 

topics. A standard node called master manages the communication between all the nodes. 

 
Software Architecture and Systems Integration 

 

A custom-designed high-level software architecture has been designed and adopted by UBC 

Snowbots for ease of development, expansion, and to increase modularity and efficiency. At the 

level closest to the hardware layer, a driver node is responsible for sending and receiving 

information to and from the microcontroller. The data coming from the microcontroller (as well as 

the serial buses) is passed to the data analysis nodes; these nodes receive the sensory inputs and 

process the information. Every analyzer node then sends its processed suggestions to the 
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commander node where a final decision will be made based on a set of priority-based criteria. The 

commander node then sends its final decision back to the driver node for execution and motion. 

 
Figure 11. Software Strategy 

 

Mapping Technique 

 

Avalanche dynamically generates its own two-dimensional map of the track using odometer, 

waypoint, and vision data. Two maps are used: a global map and a local map. The global map is 

Avalanche’s saved copy of the course as it remembers. The local map is entirely dependent on 

Avalanche’s position and what it sees or detects. If Avalanche goes on the same path more than 

once and the local map detects some inconsistencies, it can easily update the global map and path 

re-planning will take place locally. The both maps are built like a grid, and each grid unit is 

composed of 4 variables: its location (waypoint), the probability of whether it contains a white 

line or an obstacle, whether the robot is detected on the unit, and its index on the global map. 

 

 
Figure 12. Avalanche’s Mapping. 
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Navigation and Path Finding 

 

At first, Avalanche will have no knowledge of the course and will depend heavily on the local 

map for navigation. It will first attempt to find a white line to confirm its boundaries. Once it 

detects it, the angle of the boundaries relative to the latitude will be used to determine the general 

directions it can go in. If the angle implies a more horizontal movement (east and west), 

Avalanche will be guided in the direction of the goal’s longitude value. If the angle implies a 

more vertical movement (north and south), then it will move towards the goal’s latitude value. If 

the boundaries indicate free movement in all directions, Avalanche will simply take the most 

direct route towards the goal.  

When Avalanche encounters an obstacle, it will calculate the smallest possible angle relative to 

its forward position, or normal, it needs to turn at in order to avoid the obstacle. This prevents a 

‘zigzagging’ movement during its constant attempt to move towards the goal. Once it passes the 

obstacle, it will change its direction parallel to the boundary lines again.  

 
Figure 13. Avalanche’s Navigation. 

 

The global map, once mapped, will be running a simple pathfinder. Since Avalanche knows 

where the previously detected obstacles are along the paths, it will plot points beside the obstacles 

where it is sure that it can go directly to without hitting an obstacle. Points will be plotted where 

there may be drastic changes in direction along the path as well. In general, the pathfinder will 

plot a path that is as linear as possible in case Avalanche requires its use for future reference. 

 

Obstacle Detection 

 

We utilize the LIDAR’s sensing capabilities to detect obstacles around our robot. The robot 

avoids these obstacles using a type of force field navigation called “forceNav”. ForceNav works 



10 
 

by assigning every obstacle a repellent force where its magnitude is inversely proportional to the 

distance between the robot and the obstacle. The robot’s steering and throttle are controlled and 

adjusted as a proportional relationship to the sum of all force vectors acting on the 

robot.  Designating the angle between the robot and obstacle with the variable ‘θ’ (where an angle 

of zero represents the direction straight ahead) and the magnitude of the force with ‘m’, a single 

obstacle’s force vector upon the robot is calculated from the following matrix: 

 

 
 

The robot avoids obstacles by allowing the repellent force to push it away from obstacles. 

 
Lane-Following 

 

The lane-following algorithm filters the image obtained by the webcam and then analyzes it to 

determine the heading direction. The image is first blurred using a Gaussian blur filter to reduce 

noise. Next, histogram equalization is applied to the image to improve the performance of the lane 

detection under different lighting conditions. The image is then passed through a binary 

thresholding filter to isolate the white lines.  

 

 
Figure 14. Before and After Filtration 

 

Once isolated, the image is scanned horizontally to detect pairs of white lines in the near field 

of view. The average midpoint of the lines is used to determine a heading direction. This direction 

is then combined with input from the LIDAR to obtain a global heading direction.  

 

 
Figure 15. Direction Estimation. 
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Flag Detection 
 

Avalanche is outfitted with a camera to detect and respond to flags placed along the course. To 

do this we created a C++ program that uses the OpenCV library to process the images coming 

from the webcam in real time and provide a vector for the robot based on what it sees. The 

program achieves this by: 

 

1. Capturing an image from the webcam; 

2. Changing the color format from RGB (three channels: Red Green Blue) to HSV (three 

channels: Hue Value Saturation), as this format is less susceptible to false positives as well as 

being easier to use; 

3. Creating a binary (one channel image) by setting any pixels that aren’t red to 0 (black in 

Figure 14) and setting the others to 1 (white in Figure 16); achieved by filtering out colors that 

aren’t in the user-defined range (by moving the sliders or by using the calibration function on the 

object being tracked); 

4. Calculating the totals of each individual column of pixels in the image; 

5. Determining which column has the highest total (and thus where the flag is likely to be). 

This column is highlighted in the window showing the original image; 

6. Producing a 1D vector based on how close the line is to the center;  

7. Repeating steps 2 through 5 with blue in place of red; 

8. Using both 1D vectors to create one 1D vector to guide the robot left/right. 

 
 

 
Figure 16. A Screenshot of the Program Tracking a Red Pillow 
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COST ANALYSIS 

 

Avalanche was built from a scratch and is very different from previous vehicles built by UBC 

Snowbots. Our objective was to design an innovative yet economic vehicle which could be 

managed well within our budget for the current year. The LIDAR sensors used are from our 

previous vehicles, and the only costly components for this new vehicle were the Mecanum wheels 

and the new laptop. 
 

Table 1. Cost Analysis. 

 

Part Qty Cost  

(Canadian $) 

LIDAR sensors 2 $3,000 

Laptop 1 $1,149 

        Mecanum wheels and gearboxes 4 $1,108 

Microcontroller 1 $240 

Chassis Frame 1 $155 

Battery and Charger 1 $120 

Polycarbonate sheet 1 $114 

Steadycam kit and Velcro - $80 

Encoder 2 $74 

GPS Sensor 1 $40 

Angle Bracket 6 $6 

Encoder Mounting Pad 4 $4 

Cross Member 4 $4 

 Total (Canadian $) =   $6,084 

 

CONCLUSION 

 

This report has discussed the team organization of UBC Snowbots and the mechanical, 

electrical, software, and economic elements of our robot Avalanche. This year, we are aiming to 

perform well in terms of maneuverability through our innovative use of Mecanum wheels and 

path planning algorithms. Great care was taken to ensure that our vehicle is light, reliable and on-

budget. We intend to perform well in this competition and to improve in the years to come. 
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