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INTRODUCTION 

EDT-Scipio (Scipio) was designed from every angle to be a reliable and stable platform that 

can be used for years to come. The self-built gearbox and pulley drivetrain qualify as an innova-

tion, as well as the ease with which our top chassis can be modified to accommodate new sensors.  

The electrical team has spent their time reducing size and complexity of the circuits required to 

operate the system, while adding more features. A new smaller backplane and new motor control-

ler are a breath of fresh air to our control system.  On the software front, development was moved 

to the Robot Operating System (ROS). ROS is a dedicated open-source platform for robots that 

provides a standard communication channel between software nodes that monitor the robot’s en-

vironment, make plans based on present and past information, and act accordingly by sending 

commands to the motor controllers. 

 

THE IGVC TEAM 

The Chicago Engineering Design Team consists of over 40 members, but the IGVC team is 

made up of only the most experienced. Figure 1 shows how the team was the organization of 

members and distribution of responsibilities. The team was divided into mechanical, electrical, 

and software departments, all overseen by EDT's President and Vice-President. For IGVC 2013 

the team invested roughly 2000 man hours to create a new mechanical and electrical platform. 

With IGVC 2014, EDT has invested another estimated 1500 man hours, largely devoted to soft-

ware development. 

 

IGVC2014-SCIPIO 
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Figure 1. IGVC Team Organization 

DESIGN PROCESS 

In 2013 the team took on the substantial project of designing and constructing a state of the art 

autonomous platform.  In 2014, the team doubled down on this platform, focusing its efforts on 

rewriting the software brain and focusing on mechanical and electronic deficits identified during 

the 2013 competition season.  

The design process began by first understanding the design problem, and then formulating de-

sign objectives. After the problem was well defined and the objectives were formulated, the con-

straints and requirements limiting the design were recognized. The constraints included competi-

tion rules such as vehicle size, vehicle speed, and safety regulations, as well as also internal con-

straints such as cost, resources, and manufacturing capabilities. In order to measure how well an 

objective was met, metrics were developed in order to score different aspects of the design. Met-

rics pertaining to the higher level objectives were weighed heavier than those pertaining to lower 

level objectives. The metrics carrying the most weight in Scipio's development were cost and 

manufacturing capabilities. The metrics were later used in the conceptual design process to com-

pare various design concepts against each other. 

The conceptual design process began by determining all necessary functions the vehicle need-

ed to perform. Next, all possible means to fulfill the functions were determined and inserted into a 

morphological chart in order to generate design concepts. A sample of the morphological chart 

can be seen in Table 1. Concepts were generated from this chart by making various combinations 

of the means. Many concepts were eliminated because of a failure to satisfy the design con-

straints. The overall con-

cepts list was then reduced 

to four top concepts which 

were further analyzed and 

compared against each 

other. Generic drawings 

and sketches were made 

for each concept and the 

overall cost and manufac-

turability were estimated. 

A comparison chart was 

Table 1. Morphological Chart 
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developed and the metrics were used to score the predicted performance of each concept. The 

method of assigning a score to objectives involving performance was done by researching the 

concept and making an educated estimation. After compiling the overall scores of each concept, 

the one that received the highest score was chosen. At this point the departments branched out to 

work on a detailed design section for their concentrations. The detailed design section consisted 

of engineering drawings, schematics, CAD models, and a bill of materials. Once the CAD models 

were completed, dynamic simulations and testing could be performed. Finally, parts were ordered 

and manufacturing began. 

During the manufacturing process, each department performed its own independent tests of 

components and systems. Once the mechanical and electrical systems were manufactured, inte-

grated testing of all 3 systems was performed. When problems were encountered, improvements 

were suggested and implemented where required. 

MECHANICAL DESIGN 

Scipio was designed to be a reliable and stable platform such that the mechanical structure 

could be re-used in future years. The entire drivetrain is considered a mechanical innovation, as it 

is different from any previous EDT drivetrain. Scipio is composed of two main sub-assemblies, 

the top chassis assembly and bottom chassis assembly, which are described in detail below.  

Bottom Chassis Assembly 

As seen in Figure 2, the bottom chassis is a steel tube frame which houses the drivetrain and 

its components. The drivetrain is a skid-steer system powered by two 3 HP brushed DC motors 

operating at 24 volts.  A skid-steer system allows Scipio to have a zero-turn radius which is opti-

mal for switchbacks and dead ends. The drivetrain consists of two gearboxes, shown in Figure 3, 

that were manufactured in house and drive a power transmission belt system. The gearbox and 

belt system achieve a speed reduction of 12.8 and 2.39 respectively, providing a total speed re-

duction of 30.63:1. Both of these systems are designed and manufactured within tolerances to 

achieve efficiencies greater than 93%. 

The drivetrain increases Scipio’s power and efficiency while reducing the amount of mainte-

nance required. Previous chain-driven robots suffered performance issues and required large 

amounts of maintenance to compensate for backlash. In particular, chain based drivetrains strug-

gled to turn the robots steadily and accurately. Increasing the speed reduction and establishing the 

wheel center ratio counteracted the effects of wheel scrub. 

 

Figure 2. Bottom Chassis Assembly Figure 3. Gearbox Skeleton View 
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Top Chassis Assembly 

The top chassis, shown in Figure 4, was 

designed to be modular and accessible 

while maintaining a professional aesthetic. 

The top chassis stores the logic circuits, 

payload, and all sensors. The top chassis is 

divided into three compartments: the elec-

trical box, laptop area, and housing area. 

Each area can be accessed by either a 

drawer or a door. The laptop platform 

slides outward on a drawer, while the elec-

trical box and housing area have hinged 

doors for access. Aluminum T-Slot fram-

ing was used as the base structure for the 

top chassis, allowing for easy assembly 

and future modifications. Aluminum pan-

els with rubber edge-grip seals were fas-

tened to the T-Slot. These panels provide 

protection and weather proofing. The top 

and bottom chassis are mated with four 

quick-release pins. The pins provide easy separation for troubleshooting and maintenance. 

The T-Slot frame allows for easy mounting of components and sensors. To mount the GPS re-

ceiver, pieces of T-Slot were added between the front and rear supports. The receiver was then 

secured to the supports using L-brackets. Drawer slides were also mounted to the T-slot frame. 

These slides support the drawer that holds Scipio’s laptop computer, and allow the drawer to be 

locked in place keeping the drawer either open or closed. 

Innovations 

Scipio’s 2013 design required a human operator to hold the payload panel open for access. 

This year two five lbf gas struts were installed to keep the door open. These struts automatically 

open the panel when the locks are disengaged. Compression latches counteract the force applied 

by the struts. The latches are adjustable, and were calibrated to counteract all force from the gas 

struts and vibration. The struts caused minor deformation damage to the original payload panel. 

Increasing the thickness of the plate from 1/16” to 1/8” eliminated the possibility of deformation. 

The increased thickness of the plate also supports a new GPS receiver and allows for better 

placement of the Emergency Stop button.   

Scipio travels with a large amount of testing and backup equipment. A trailer provides mobile 

storage space for this equipment. The design is a simple rectangular frame with a tailgate, similar 

to a pick-up truck. Since a single hitch system has the potential to jackknife, a double hitch sys-

tem was created. The dual-hitch system prevents jack-knifing, yet allows vertical rotation on une-

ven ground. Caster wheels allow the trailer to rotate when Scipio turns in place. 

 

 

 

 

 

Figure 4. Top Chassis Mated to Bottom Chassis 
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ELECTRICAL DESIGN 

This year EDT narrowed 

its focus to reducing the size 

and complexity of Scipio’s 

electrical system in addition 

to adding a few small fea-

tures. A new smaller back-

plane integrated our systems 

and reduced wiring. A new 

motor controller reduces the 

latency of command execu-

tion, and allows for easy 

installation and configura-

tion of a real-time drivetrain 

control loop. Numerous 

modifications to the hard-

ware compartment allow 

for easier access for 

maintenance. These chang-

es allowed the team to simplify the design, improving performance and reliability. Figure 5 shows 

a high level overview of the hardware and sensor flow.  

Power System 

Scipio uses two 12 volt 35 amp-hour sealed lead acid batteries arranged in series, resulting in a 

24V nominal system. This configuration yields 90 minutes of drive time and multiple weeks of 

standby time. Switching regulators were soldered directly to the backplane, improving efficiency 

and providing 12V, 5V, and 3.3V power lines for sensors and logic circuits. A simple low pass 

filter eliminates switching ripple effects. The new Roboteq motor controller receives the full po-

tential of the batteries, and can report useful information to the computer such as battery charge 

and motor current draw. Using a workstation class laptop provided the needed computational 

power, while eliminating need for an inverter, and increases overall robot runtime. 

Emergency Stop 

The Emergency Stop (E-Stop) system disables Scipio whenever an emergency situation oc-

curs. The E-Stop may be activated wirelessly by remote control or manually by pressing the 

onboard switch. The system is composed of a wireless handheld transmitter and a receiver on the 

vehicle. The transmitter unit has a highly visible red pushbutton switch which changes from 

“GO” command to “STOP” command when depressed. The “GO” signal must be received from 

both the onboard switch and the wireless transmitter before the vehicle is allowed to move. If no 

valid signal is received the vehicle will remain stopped. The radio module has a range of 5 miles 

and uses spread spectrum technology to provide data encryption and prevent interference or jam-

ming from external sources.  

System Monitor 

The system monitor is a twofold system. Its primary focus is safety, and will alert bystanders 

to the current mode of operation. It controls four high output LEDs, one facing out from each of 

Scipio’s sides, mounted under the webcam. This circuit receives the current drive mode from the 

Roboteq, and places itself in one of two states. When autonomous mode is engaged, the LEDs 

Figure 5. EE Flowchart 
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blink with 1 Hz frequency, giving people adequate warning to stay clear of the robot. When not in 

autonomous mode, the LEDs are on, but do not flash. 

The second part of the system is to provide status information to the operator, including bat-

tery voltage and motor current draw. By communicating with the Roboteq using RS-232, the sys-

tem can alert the operator to an upcoming problem, such as bad motor or batteries that need to be 

charged. This circuit can change the color of several high output LED's placed on the rear of the 

robot. 

Sensors 

Scipio has several sensors that provide data feedback to the computer software. Two incre-

mental shaft wheel encoders are coupled directly to the front wheels to measure the exact rota-

tional position and velocity of each side of the vehicle. Each encoder produces two pulse trains 

with frequencies linearly dependent on wheel speed. The encoder sends the two pulse trains to the 

motor controller, which determines the wheel speed and direction of rotation. A weatherproof 

GPS receiver is used to help with goal planning and navigation by heading and GPS waypoint. A 

laser rangefinder is used for object detection and replaces a previously less accurate system of 

sonars and a stereoscopic disparity camera. 

Computer 

Scipio uses an onboard laptop, which eliminated power system requirements such as DC-AC 

inverters. The laptop is durable and withstands vibration and temperature shock. Replacing the 

mechanical drive with a solid state drive provided additional vibration resistance. It contains an 

NVidia Quadro K3000M graphics card, which will allow for GPU processing in the future. A 

secondary battery was installed, giving an average runtime of four hours. 

Electrical Innovations 

The largest innovation this year was the move to the Roboteq HDC2450 motor controller. 

This new controller made the reduction in backplane size possible. One important feature of the 

motor controller is its ability to monitor battery voltage and motor current draw. The motor con-

troller also allows the user to define Scipio’s mode of operation. A mode is set by pressing one of 

the four pushbuttons on Scipio’s left side. First is the safety mode, the default mode of operation. 

Scipio remains stationary in this mode. The second mode provides autonomous control to Scipio. 

The third mode allows a user to direct Scipio by remote control. If Scipio fails to detect a valid 

RC signal it will switch to the safety mode. The final mode allows the vehicle to switch between 

autonomous and radio control. Control is determined by a toggle switch on the remote control. 

The backplane is a vital part of the design, and the new motor controller was vital in its im-

provement. Moving to the new Roboteq motor controller allowed the team to design a new back-

plane that is 28.6% smaller. The backplane has DC-DC converters onboard, reducing the amount 

of wiring between components. The previous backplane included a signal multiplexor and two 

custom motor controllers. These were removed and re-implemented with a combination of soft-

ware and the new motor controllers.  

In the past the team needed to manually unplug batteries, sensors, and communication lines to 

separate the top and bottom chassis. This year, the team installed self-aligning blind mate con-

nectors, which allow the top chassis to be effortlessly removed and replaced.  This made disas-

sembling Scipio easier and faster, reducing time needed for maintenance and modifications. Elim-

inating and rerouting the remaining cables increased the payload volume by 17.8%.   

Lastly, Scipio received a major GPS update. Previously, it relied on a receiver that was only 

accurate to an average of 2.5 meters. This receiver was replaced with a Hemisphere V103 GPS 
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Compass. This receiver is accurate to 0.6 meters, allowing for much more accurate GPS naviga-

tion. This unit also contains a precision compass and gyroscope, allowing for navigation by head-

ing. The receiver is mounted perpendicular to Scipio’s direction of forward movement. Because 

the receiver is designed to be mounted parallel to forward movement the compass readings are 

shifted 90 degrees before being broadcast. This compass communicates with the GPS to stay cal-

ibrated when moving between different electromagnetic regions of the earth.  

SOFTWARE DESIGN 

In 2013, Scipio ran an in-house software platform named Deimos. Deimos presented two ma-

jor difficulties. First, the team spent a large amount of time on tasks such as navigation and driv-

ers, consuming time that was needed for integration and testing. Second, integration proved diffi-

cult as each member had developed their portion in isolation. Because Deimos had no well-

defined communication interface, Scipio was unable to reliably process sensor data and respond 

properly. 

To address these problems, development was moved to the Robot Operating System (ROS). 

ROS is a dedicated open-source platform for robots that provides a standard communication 

channel between software nodes that monitor the robot’s environment, make plans based on pre-

sent and past information, and act accordingly by sending commands to the motor controllers. 

Nodes are able to publish or subscribe to any information topic and act independently. 

ROS's organization as nodes that communicate through a standard channel has eliminated the 

integration problems that the team experienced during Deimos' development. Each member is 

able to develop and test each node in total isolation or with any number of other nodes. Thanks to 

ROS's adoption by the robotics community, there are many libraries available reducing the need 

to re-implement existing code. ROS also has a powerful testing, logging, and simulation tool 

chain that allow the team to ensure nodes function as intended. 

Software Architecture  

ROS nodes are contained in packages. Packages can be groups of nodes sharing similar func-

tionality such as mapping or navigation, or individual nodes responsible for unique tasks. Data 

are collected and modified by the sensory nodes, then sent to the navigation stack. The navigation 

stack then uses the data to determine Scipio’s location, orientation, and speed. Once the current 

state is determined, it is compared to the current goal state to find the steps needed to attain this 

state. The navigation stack then communicates with the motor controller and indicates a speed 

and direction of movement. The navigation stack monitors the data sent by the motor controllers 

to measure and adjust progress towards the goal. 

Language and Libraries 

Scipio’s software was written in C++ and Python. XML and YAML are used for mark-up. 

The ROS API handles all primary functionality such as movement, object recognition, line detec-

tion, and localization. Libraries used include ROS, JAUS, gUnit, NumPy, and OpenCV for image 

processing. 

Movement 

Locomotion of Scipio is controlled by the Roboteq HDC2450 motor controller. The motor 

controller allows Scipio to be controlled in closed loop where PID constants can be easily tuned. 

For comparison, in 2013 Scipio’s movement was controlled by querying two independent 

drivetrain control systems for wheel velocities. This inefficient high latency process was elimi-

nated by the switch to the Roboteq motor controller, which provides a programmable interface 

that decreased communication and process latency while allowing for tighter control specifica-
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tions. Velocity commands and measurements are sent between the motor controller and laptop 

through serial communication. 

Laser Rangefinder 

Scipio’s laser rangefinder (LRF) is a SICK TiM310. Its driver is a ROS node that requires the 

parameters of the rangefinder such as the minimum and maximum viewing angle. Once launched, 

the node connects to the LRF and begins publishing "laser_scan" messages. At that point, the 

navigation stack listens to these laser_scan messages and places the obstacles found onto its map 

and takes appropriate measures to avoid collisions. 

GPS/Compass 

A C++ ROS node serves as the driver for the GPS receiver. It connects to the receiver through 

a serial connection and listens for sentences using the NMEA 0183 standard. GGA, the first sen-

tence type, contains Scipio's position in degrees latitude and longitude. HDT, the second sentence 

type, contains Scipio's heading in degrees. The node converts both readings from degrees to radi-

ans and publishes them to appropriate topics for use by the navigation stack. 

The navigation stack uses the heading and GPS data to determine its position and orientation 

in the world. It compares this data to its current goal and any specified GPS waypoint to deter-

mine progress and any necessary adjustments. 

Line Detection 

A Python ROS node processes data from the webcam to detect and stay inside lanes. The node 

makes extensive use of the OpenCV library in conjunction with the NumPy library to manipulate 

and process the images. It captures images from the webcam, removes distortion, filters and pro-

cesses the images, then sends the lines it found as point cloud data to other nodes. The point cloud 

contains the line points in 3-D space, which are published to the navigation stack and placed as 

objects on the map. 

The images are captured from the webcam using OpenCV's VideoCapture.imread() function, 

which returns a 2-D matrix containing the pixel values for the red-green-blue (RGB) channels. 

Radial and tangential distortion is then removed. Before each run, the camera focal length, skew 

coefficient, and other parameters are determined from pictures of a checker board pattern. 

OpenCV’s undistort() function uses these patterns to return an RGB image free of lens distortion. 

Scipio converts this image to hue-saturation-value (HSV) format which is better suited to color 

detection in varying lighting settings. A histogram back projection is performed on the HSV im-

age to filter out undesirable pixels such as grass, barrels, and mud. A series of training images 

determine the colors that should be ignored by the line detection processes. The image is then 

converted to grayscale, and high-frequency luminance noise is filtered using Gaussian blur. 

The image is then thresholded using a global value based on the image mean brightness, so 

that all pixels below that value are filtered out. The resulting histogram is then equalized to use 

the entire 0-255 scale instead of only the upper half. An adaptive threshold is then run on the im-

age in order to adjust for lighting differences in different regions of the image. 

The final image contains only the white lines to be followed. Since the resolution of the cam-

era is 1080p the lines each contain thousands of pixels. The algorithm assumes that all lines are 

roughly the same thickness and forms topological skeletons of the lines based on the images. This 

decreases the amount of information that must be processed and sent to other nodes. The skele-

tons are obtained from the line images by performing morphological operations such as erosion 

and dilation on the lines iteratively until only the skeletons remain. The resulting image contains 

pixels depicting only the line skeletons. Figure 6 shows the progression of image processing. The 
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top window shows the original image, while the bottom window shows the final processed image 

only containing lines.   

 

Figure 6. Progression of Image Filtering 

The images are then converted into real-world spatial points. The pixels are measured from the 

bottom left corner of each image, which makes the calculations easier than those using measure-

ments taken from the top left corner. Angles are measured from the horizon in the image, repre-

sented by a solid horizontal line skeleton. Because each pixel corresponds to an angle difference, 

the angle difference can be multiplied by the vertical pixel difference between the horizon line 

and the pixel of interest. The angle is decreased by ninety degrees and used to calculate the verti-

cal component of the radial distance. The result is a function of θ which is the height of the cam-

era multiplied by the tangent of 90 subtracted by θ, where θ is the angle previously calculated. To 

find the horizontal component, the vertical component is multiplied by the ratio of the pixel’s hor-

izontal measurement to the dimension of the picture multiplied by a constant. With these points 

stored in an array, a helper function creates and publishes a point cloud object. 

Odometry  

Scipio uses odometry based on multiple data sources to track where it moved relative to the 

starting position. Currently, two nodes provide position data, which is combined using an extend-

ed Kalman filter to produce odometry data. These two nodes are a custom-written dead reckoning 

node that uses encoder data and a modified ROS GPS driver node. In the future visual odometry 

will be included as another source of position data for the odometry extended Kalman filter. 

Since the rotary encoder data suffers from creeping error in the long term due to slippage and 

GPS data suffers from low refresh rate and low accuracy , neither data source can be used alone 

to determine where the robot is. By combining both sources through an extended Kalman filter 

position data with high accuracy and low creeping error can be obtained at a high refresh rate. 

ROS has an extended Kalman filter node that receives messages from multiple data sources and 

publishes odometry messages, which the Navigation stack uses to determine Scipio's position in 

the map. 

 



 10 

Mapping 

As Scipio moves through the course, it creates a map using ROS’s SLAM gmapping library. 

SLAM builds this map using laser scan and odometry data. To run gmapping both the LRF and 

motor controller drivers must be initialized. The map contains points depicting objects detected 

and depicts progress made toward the goal relative to the starting position. This information is 

saved to disk for later use when running the same course multiple times. 

Navigation 

Localization, orientation, and obstacle and line detection information are processed by the 

Navigation Stack (NavStack) to generate the movement commands sent to the motor controllers. 

NavStack's main package "move_base" is a library native to ROS. Figure 7 shows move_base's 

interactions between sensor input and command output. 

 

Figure 7. ROS Navigation Stack Structure* 

All sensor information is sent to both the global and local cost map nodes within the 

move_base package. The global cost map represents all information Scipio has about its envi-

ronment. It continuously saves sensor information and builds the cost map until the system is re-

started. The local cost map is the pool of information which is acquired from the immediate vicin-

ity, a 4 meter radius around Scipio. The local cost map is constantly updated but is not stored for 

future use. The global cost map is used for long-term goal decisions, and the local cost map is 

used for short-term decisions. 

As Scipio collects data from sensors, extracting useful information from disorganized data be-

comes increasingly difficult. Transforming it based on known characteristics of sensor placement 

eliminates this difficulty. Converting data systematically to Scipio's point of reference at its cen-

ter is done via a transform tree as shown in Figure 8. This allows data coming from a sensor such 

as the LRF to be adjusted by translation and rotation so as to appear that the LRF is at the center 

of the robot.  

 

                                                      

* http://wiki.ros.org/move_base 
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Figure 8. Transform Tree 

The LRF is located 0.4 meters in the x plane from Scipio's center and 0.124 meters in the z 

plane from it. Every new data point the NavStack receives from the LRF will have these x and z 

offsets added to it. Point cloud messages sent by the camera driver have an x offset of 0.14 and z 

offset of 0.3. The data from the GPS driver is not transformed using offsets as the center of the 

GPS receiver coincides with Scipio's center, and GPS based altitude readings are not used. These 

sensor transforms are handled by the nodes, "tf_broadcaster", which publishes the sensor trans-

form offsets, and "tf_listener", which transforms new data based on the published offsets.  The 

base of the robot, "base_link" is the parent of all sensors. For data to be sent to the map frame, 

which allows the global cost map to analyze information, data from the base_link frame must be 

transformed to the odometry frame. No offset is necessary here as both frames use the same ref-

erence point at Scipio's center.   

Once determining that navigation should continue the NavStack then analyzes the information 

acquired from the global and local cost maps and determines a short distance path that will opti-

mally decrease the distance between Scipio and its goal. Once Scipio detects an object in its path 

the local path planner will attempt to determine a direction to turn to continue navigation toward 

the goal. As this path is determined, the NavStack continues to determine the long term path to-

ward the goal. This is important in situations where the local path planner is unable to determine a 

path such as when Scipio has moved into a corner and must move backwards before continuing 

movement toward the goal.  
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Scipio's ultimate goal is a GPS waypoint defined in software before each run. The move_base 

package determines the path that leads to the desired location. The GPS coordinates are sent to 

the NavStack in a message containing an x, y, and z location computed by the "gps_goal" node. 

Once the NavStack has received this goal the global path planner begins determining the overall 

path and the local path planner begins determining the short term paths. 

Once move_base has computed and analyzed all of the sensor information, recovery plans, 

and has picked a desired path, it sends a velocity command to the Roboteq driver. This command 

contains a linear distance to move and an angular velocity to turn. After each velocity command 

is sent odometry information is collected from the motor controller to determine if Scipio has 

moved as commanded. If it has not then recovery behavior will be attempted to adjust Scipio to-

wards the desired path. 

Joint Architecture for Unmanned Systems (JAUS) 

The JAUS protocol allows for communication between autonomous systems. Scipio uses the 

protocol to report information about its current operating state and to receive waypoints for navi-

gation. JAUS is implemented in Scipio as a ROS node using JAUS++. The node listens for and 

responds to information requests, and sends the appropriate command to the motor controller. 

Testing and Simulation 

ROS contains a number of testing tools that greatly speed development and eliminate bugs 

early in the process. RVIZ, shown in Figure 9, is a 3D visualization environment developed by 

the creators of ROS to be used for testing, debugging, and simulation. Gazebo is a 3D simulation 

tool compatible with ROS and RVIZ with a complex physics engine, allowing for a very accurate 

simulation of real environments. With these tools, the software team was able to develop individ-

ual software components and test them before integrating all of the systems. 

RVIZ displays the data being taken in by the sensors and sent through each topic in real time. 

The visualizer displays the sensor data as seen by Scipio as well as the messages Scipio publishes 

to each ROS topic. RVIZ uses a markup file containing the robot's physical information in the 

Unified Robot Description Format (URDF) in order to accurately display the robot in the envi-

ronment.  

 

Figure 9. Scipio Modeled in RVIZ 
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Gazebo uses URDF files to simulate the robot’s performance as well as its surroundings. Us-

ing additional plugins for each sensor and the motor controller, Gazebo simulates data from the 

environment being detected by the sensors publishes the data to their respective topics. Premade 

test objects such as barricades or traffic cones can be placed in the simulation environment to be 

used in navigation and object detection testing. The simulation works in conjunction with RVIZ 

to display the simulated data and the active topics. Using both packages allows for software test-

ing without operating the robot, allowing other team members access and decreasing time spent 

charging batteries. 

SYSTEM SAFETY 

Ensuring vehicle safety ranked highly during the design process, the team considered safety 

measures at all points of Scipio's design and fabrication. All exposed edges and corners were 

smoothed to prevent injury. All drivetrain components were properly enclosed and protected. The 

System Monitor alerts bystanders of Scipio's presence and movement. The Roboteq motor con-

troller checks for valid movement commands and ensures that no random or spontaneous move-

ment will occur in RC mode. The E-Stop deactivates the vehicle when two "GO" signals are not 

detected. Finally, Scipio's speed is mechanically limited to 5.98 mph. 

PERFORMANCE ANALYSIS 

The performance analysis section includes the predicted performance of the vehicle versus the 

actual performance of the vehicle when tested. 

Vehicle Speed 

With 14 inch diameter wheels, a speed reduction of 30.63:1, and motors with an output of 

4400 rpm at 24 volts, the maximum theoretical speed of Scipio is 5.98 mph assuming no losses 

due to loading. Testing showed an average maximum speed of 5.59 mph, which is within 6.6% of 

the calculated speed. 

Ramp Climbing Ability 

Due to Scipio’s low center of mass and powerful drivetrain, it was expected to be able to 

climb an incline of 40 degrees. Testing showed that Scipio was able to easily climb a 45 degree 

incline, significantly greater than any incline on the IGVC course. 

Reaction Time 

Taking images via the webcam and processing them to detect lines is the slowest process in 

navigation. Each image takes 90 ms to acquire and filter. Once the line skeletons have been ob-

tained, there is negligible additional overhead to update goal progress. 

Battery life 

Scipio can operate for a maximum of 90 minutes before the drive motor batteries must be re-

placed. The laptop batteries last an average of 4 hours. The goal was to achieve 2 hours of 

runtime. 

Obstacle Detection Distance 

The LRF specifications state that it will detect objects at distances up to 4 meters indoors and 

over 3 meters outdoors. Testing revealed that the laser rangefinder was able to detect objects as 

distant as 3.96 meters in direct sunlight, exceeding the expectations. 
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Complex Obstacle Handling 

To determine if Scipio is stuck or has come to a corner or other obstacle which must be navi-

gated around, the information from both the local and global costmap nodes is sent to a recovery 

behavior node which decides between four different recovery options as shown in Figure 10. If a 

recovery behavior cannot be achieved the system will abort the navigation to avoid any further 

unwanted movement.  

 

Figure 10. move_base Flowchart* 

Positional Accuracy 

Scipio now uses the Hemisphere V103 GPS Compass, which is accurate to 0.6 meters. This 

unit also contains a precision compass and gyroscope, which are internally filtered to increase 

total perceived GPS accuracy.  

  

                                                      

* http://wiki.ros.org/move_base 
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BILL OF MATERIALS 

Table 2 represents both EDT’s lifetime and fiscal year monetary investment in Scipio.  

Table 2. Bill of Materials 

Part Descrip-

tion 
Part Use QTY 

 Retail 

Price 

($)  

 Cost 

to 

Team 

This 

Year 

($)  

Vendor 

Batteries: Power 

Sonic PS-12350 
Drivetrain Power 2 130 0 BatteryPlex 

GPS: Hemi-

sphere V103 

Smart Antenna 

Navigation 1 3200 0 Hemisphere 

Laptop: HP 

Elitebook 8770w 
Software 1 3729 0 

Hewlett 

Packard 

Laser Range 

Finder: SICK 

Tim 310 

Object Detection  1 2000 0 
SICK - 

Donation 

Motors: Palmer 

Industries 200 
Drivetrain  2 1100 0 

Palmer In-

dustries 

Webcam: 

Logitech C310 
Line Detection 1 53.99 0 CDW 

Wheel Encoders: 

US Digital 

HD25-1000 

Position and Ve-

locity Determina-

tion 

2 681 681 
US Digital 

- Donation 

Wireless 

Tranceiver: Ra-

dioTronix 

Wi.232 928 

MHz 

  2 119 0 Mouser 

Circuit Elements 

(Copper Boards, 

Microcontrollers, 

etc..,) 

  N/A 100 100 
Jameco + 

Mouser 

Switches, Wires, 

Crimps 
  N/A 100 0 

Jameco + 

Mouser 

0.083 wall 1" x 

1" x 6' steel tub-

ing 

Bottom Chassis 

Frame 
6 132 132 

McMaster-

Carr 

Aluminum Flat 

Stock 

Gearbox Cas-

ings/Drivetrain 

brackets 

1 300 120 
Online 

Metals 
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Spur Gears Gear Box 10 660 0 
McMaster-

Carr 

Bearings Gearbox/Drivetrain 20 660 120 
McMaster-

Carr 

Drive Belts 

(Gates Poly 

Chain) 

Drivetrain 4 312 0 
Murph 

Haines, Inc. 

Drive Pulleys 

(Gates Poly 

Chain Sprockets) 

Drivetrain 8 1548 0 
Murph 

Haines, Inc. 

Taper-Lock 

Bushings 
Drivetrain 8 176 0 

McMaster-

Carr 

3.50" Dia., 0.75" 

Dia., 0.625" Dia. 

Steel rods 

Drivetrain, Gear-

boxes, Wheel hubs 
3 60 0 

Murph 

Haines, Inc. 

1" T-Slotted Ex-

trusion (10 Feet) 
Top Chassis Frame 4 176 124 

McMaster-

Carr 

T-Slotted Fram-

ing Accessories 
Top Chassis Frame N/A 500 400 

McMaster-

Carr 

Polycarbonate 

sheet 

Top Chassis Win-

dows/Doors 
3 116 116 

McMaster-

Carr 

Aluminum 

Sheets 

Paneling/Bottom 

Plates 
N/A 315 315 

Stainless 

Supply 

Fasteners Fastening N/A 150 60 
McMaster-

Carr 

Rubber Seals & 

Stripping 
Weather proofing N/A 100 100 

McMaster-

Carr 

Kenda 14 inch 

Diameter tires 
Drivetrain 4 200 0 

Northern 

Tool 

Totals 
 $   

16,617.99  

 $     

2,268.00  
  

 

CONCLUSION 

EDT-Scipio represents the combined efforts of seventeen members of the Chicago Engineer-

ing Design Team. This year's model has seen great improvements from last years in all areas. 

Numerous mechanical modifications allow easier maintenance of Scipio and support new equip-

ment and sensors. Reworked electrical systems decreased complexity while adding features and 

hardware. The switch to ROS and a Roboteq motor controller allowed the software team to focus 

on strategy and greatly improve Scipio's navigation capabilities. Having seen improvements to all 

aspects of its design, Scipio stands as the finest of EDT's work.  
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The engineering design documented in this report and implemented into this vehicle by the 

current student team is significant and equivalent to the credits that would be awarded in a senior 

design course. 

 

Dr. Miloš Žefran, mzefran@uic.edu 

 
 


