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ROBOGOAT 2014 

 

US Naval Academy 
Austin B. Taylor, Gavin L. Schelske, and Professor Joel M. Esposito 

This document serves to summarize the design and construction of the US Naval 

Academy’s senior design project: The RoboGoat.  It will give an overview pro-

ject as a whole then focus on the biggest changes made this year.  The two major 

foci for this legacy project was the addition and use of an omnidirectional cam-

era system and the continual design of the robot structure.  All design aspects 

are addressed in this report along with figures and illustrations to aid in it’ ex-

planation. 
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INTRODUCTION 

The RoboGoat (RG) is a project that has served to educate and develop senior students at the 

US Naval Academy.  It is a legacy project that has been in development since its first debut in 

2009.  This year we set out to accomplish two goals which would develop our project into a more 

competitive robot.  We desired to develop a camera system that allowed the RoboGoat to have an 

increased field of view so that it could detect more objects and at farther distances.  If the robot 

can see farther out, it will better be able to react to the environment surrounding it.  We also 

wanted to make significant structural changes to the RoboGoat in order to make the robot easier 

for the user to control, adjust, and set-up.  If we could accomplish these two objectives then it will 

be easier to successfully navigate the course.   

In contrast to the number of additions to the RoboGoat this semester, there are numerous 

components that will remain the same.  With our past years success, we thought it best to keep the 

things that worked as part of our final system.  This included the obstacle avoidance algorithms, 

LiDAR laser system, lane following code, and a couple of other things.  The biggest obstacle is to 

use these past systems and integrate them with our newly developed systems.  In particular it was 

interesting combining the existing obstacle avoidance and lane following algorithms with our 

completely new vision system. 

DESIGN PROCESS 

The vehicle is built explicitly to participate in IGVC, therefore the design process is guided by 

constraints and functionalities required by the rules, in addition we attempt to optimize some ad-

ditional attributes deemed beneficial based on our past experience with the competition.  

 

Constraint Specification 

Size 3 ft < Length < 7 Ft;   2 ft < Width <   4 ft;   Height < 6 ft  

Payload Capable of carrying 20 lb block, 18” X 8 “ X 8 “ 

Safety Mechanical e-stop, wireless e-stop, safety light, max speed < 10 mph  (see rules) 

Budget < $3000  (Internal FY14 Budget) 
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Rank Attribute Justification 

1 Reliable A run is terminated at the first error (e.g. hit obstacle).  During a typi-

cal 10 minute run, with sensors updating at 10 Hz there are 6000 

frames of sensor data to analyze.   A single bad frame can cause a col-

lision.    

2 Maneuverable A zero turn radius reduces the need for sophisticated planning algo-

rithms.  

3 Easy to Debug  The project is too large in scope for a single student team to complete 

from scratch.   Next year’s team must be able to understand and trou-

ble shoot the design.    In addition much of the trouble shooting must 

be done in the field.  

4 Endurance Longer endurance allows the vehicle to participate in all competition 

runs, and allows for more testing. 

5 Small The course is comparatively less cluttered / gaps are more open for 

vehicle with minimum length/width.  There is no advantage to having 

a large vehicle.    

Transporting a large vehicle to competition requires disassemble or a 

special motor vehicle.   

6 Fast It must be possible to complete the course in 10 minutes.    

In event of a distance tie, time is used to score participants.   This is 

unlikely. 

 

Function Sub-Functions 

Basic Mobility  Average > 1 mph on grassy terrain 

 Traverse inclines up to 15 mph 

Follow Lanes or 

Flags 
 Detect objects 

 Drive accordingly  

Avoid Obstacles  Detect objects 

 Drive accordingly 

Navigate to Way 

Points  
 Enter way points 

 Determine current position 

 Drive on heading 

Mobility  1 mph < Speed < 10 mph 

 Inclines < 15 degrees 

 Grassy terrain 

 Minimal turn radius 

Manual Control  Ability to take control remotely  

 Maintain sensor feed 

 Easy to drive  
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System Selection 

Characteris-

tics 
Option 1 Option 2 Option 3 

Option 

4 

Vision Hard-

ware 

Parabolic Mirror 

with Camera  

Conical Mirror 

with Camera 

Spherical Mirror 

with Camera 
- 

Vision 

thresholds 
Fixed Global Adaptive Locally Adaptive - 

Obstacle 

Avoidance 

Ultra-Sonic Sen-

sors 

25 Hz Laser 

Range Finders 

10 Hz Laser 

Range Finder 

Camera 

System 

U-turn Cor-

rection 
Non-existent 

GPS Path Track-

ing 

Camera Path 

Tracking  

User Interface Purely on Laptop Android Tablet Remote Control 
Wii 

Remote 

Heading Indi-

cation 

Magnetic Com-

pass 
Gyroscope IMU 

 

 

Each of the above selections have independent reasons for being chosen.  The first being the 

choice of which type of mirror we should use for use on in our vision system.  Each of the options 

above have their own pros and cons. 

For the catadioptric camera system, we chose to use the parabolic mirror.  This would allow a 

greater field of view along with a higher informational pixel density focused around the vehicle.  

We decided that with a spherical mirror, we would not get enough pixels covering the immediate 

area around the robot and thus would have unreliable source from which we can detect close ob-

jects and the lanes.  The conical mirror allows us to use the center of the camera again vice, it 

being taken up by a useless image of the robot. 

 

Final Design Overview 

The Robo-Goat is designed around four principles: 

1. Maximize off the shelf hardware use. 

2. All processing done by one laptop running Matlab 

3. A system whose state and world view are easily visualized and controlled by the devel-

opers, can be debugged more efficiently. 

4. Mapping is not necessary to complete the competition tasks and introduces unnecessary 

complexity. 
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Innovation:  We believe these are the most innovative features of the RoboGoat. 

 Frame Design:   As compared with our previous entries, this version is much closer to 

ideal.   The robot has a nearly minimal 2’ 4” by 3’ 2” footprint and maximal height of 4’ -

- making vision and obstacle avoidance easier.    

 Solar Power:  it uses solar power to charge a battery while running the onboard electron-

ics, including the laptop, eliminating battery life as one potential limiting factor when 

testing.  

 Robust Vision System: in our experience, this is the most challenging component of the 

competition.   Our system uses a combination of alternate color spaces, automatic back-

ground detection and a new shadow compensation algorithm to adapt to challenges aris-

ing from variable lighting conditions. 

 User Interfaces:  We subscribe to the adage:   if you can’t see what the system is thinking, 

you will not be able to debug or improve it.   To that end we have implemented a variety 

of user interfaces:  a robot centered world view, a remote control model that can be 

switched to on the fly, an integrated power system display and a camera threshold selec-

tion tool. 

 Maximize Off the Shelf Components:  When possible we try to focus on the planning and 

perception algorithms rather than building custom hardware. 

Power  

Scooter 

 

RoboTeq 

Amplifier 

 

PIC 

 

RC Controller 

Laptop 

Running 

Matlab 

Laser Range 

Finder  

(5V) 

GPS  

(5V) 

 

VectorNav 

IMU 

(USB) 

Camera  

(USB) 

Solar Panels 

 

Smart 

Charger 

 

12 V Battery 

24 V Battery 

 

E-STOP 
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 Runs Entirely in Matlab:  We exploit Matlab’s extensive library of image processing rou-

tines, statistics toolbox, GUI and visualization tools.  Programming in Matlab enables 

rapid prototyping of code, and makes visualization easy.  Despite Matlab’s reputation for 

being slow, with proper coding technique and a new laptop we are updating at 10 Hz.  

We believe we are the only entry running entirely in Matlab. 
*
 

 

Mechanical and Mobility Design  

Another major change in the structure of the RG is 

where our netbook is placed.  Initially the netbook was 

placed on top of the circuitry in the plastic bin that held 

it.  This can be seen in the RG 2013 design figure men-

tioned earlier.  This year we decided that we needed to 

place the netbook in a convenient location for the oper-

ator so that he does not need to bend down to access it.  

We were able to implement a tray just below the rear 

solar panels of the vehicle.  The tray was elevated at 

about three feet so that the operator did not have to crouch down to access the netbook.  The 

netbook is now separated from the circuitry as well so there is little concern for anything actually 

shorting now.  The tray is also a pull out so that it may be properly stowed when there are no 

changes being made in the netbook.  

This year we decided to shorten the masthead so that we 

could be well within the IGVC requirements and make the ve-

hicle more mobile.  The rules for the IGVC are 7x4x6 feet.  

With the old design the masthead was 70 inches compared to 

our new one which extends upward to a mere 40 inches.  This 

new masthead is only possible because of the new camera sys-

tem that we have developed for the vehicle. 

 

Software Strategy 

U-turn Detection and Correction
†
 

 In 2012 we ran in to a major problem involving the vehicle making a complete U-turn at 

the beginning of the course and going in the wrong direction until we had to stop it. Our vehicle 

had no way to remember where it had been so it never knew it was going the wrong way. In pre-

vious years we had experimented with logging all our previous GPS points but we found that this 

slowed down the computer and used too much memory. This year we added a U-turn detection 

and correction algorithm using the GPS. The idea behind this is that the vehicle will remember its 

locations for the last 10-20 seconds therefore creating a tail of GPS points as shown below. 

 

 

                                                      

* "US Naval Academy - Intelligent Ground Vehicle Competition." 2013. 24 May. 2014 

<http://www.igvc.org/design/2013/US%20Naval%20Academy.pdf> 
† Ibid. 
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 In order to get the tail of GPS points we start out with an empty array of a fixed length 

and begin logging our GPS points. Each time we get a new point the old points shift right and the 

new point is placed at the beginning of the array. This allows the vehicle to drag a tail of its old 

locations behind it without bogging down the memory of the computer. The basic idea behind 

detecting a U-turn is that if the current location and last remembered GPS point are within the 

distance of half the lane (we used 2 meters) then the vehicle has made a U-turn. However we 

found it to be slightly more complicated than this. If the vehicle was standing still or had moved 

too slow then the algorithm would detect a U-turn because the vehicle had not been able to move 

outside of the U-turn detection distance. To fix this we found the length of the tail by summing 

the distance between every point on the tail. This basically finds how far we have moved in the 

last 10-20 seconds based on the length of the tail. Then we only check if the first and last points 

are too close together when the tail exceeds a length minimum that is equal to 3 meters or just 

barely over the U-turn detection distance. If the tail is long enough and the first and last points are 

within 2 meters then the vehicle will realize it has made a U-turn at some point.   

 The next step in this algorithm is the correction portion. In order to do this we must know 

what direction we are heading. Therefore, once a U-turn has been made and realized by the vehi-

cle the code stops and records the current heading from our compass. Then that data is sent to our 

drive controller and says that the desired heading is equal to the current direction ±180°. Then the 

vehicle will turn around and once it is on the correct heading will continue the obstacle course. 

Then the GPS tail array is cleared and begins to fill again to check for a U-turn. 

Flag Detection and Path Planning
*
 

The goal of the our line-fitting code was to use the Hough Transform via the HoughLines 

MATLAB function in order to ‘connect the dots’ from each flag of a color to the next flag of the 

same color.  HoughLines works by extracting line segments from particular bins based on the 

Hough Transform.  Many parameters were experimentally tweaked to fit lines to our flags which 

were of reasonable usefullness when applied to driving the IGV autonomously.  These parameters 

included rhores, the resolution in determining the distance of a line, thetares, the resolution for 

determining the angle of a line, FillGap, the maximum number of pixels allowed to fill a break in 

                                                      

* "US Naval Academy - Intelligent Ground Vehicle Competition." 2013. 24 May. 2014 

<http://www.igvc.org/design/2013/US%20Naval%20Academy.pdf> 

Current Location 

Last Remembered Point 

Intermediate Points 
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a line, and MinLength, the minimum number of pixels used to compose a line, among other 

parameters. 

Once lines had been fit to keep the IGV within the flags, we began brainstorming methods to 

allow our vehicle to safely enter the flag lines which had been drawn.  Many ideas were 

considered but the method pursued was that of essentially drawing a funnel from the flag nearest 

in distance to our camera.  Using a funnel we believed that there was a high chance of 

successfully guiding our vehicle into the flag channel without running over any flags and without 

ending up on the wrong side of the channel.  The angle of the funnel was computed by first 

finding the angle at which the flag line had been drawing;  named flag_theta.  For the red flags, 

from which we desired to remain on the left side when navigating the flag channel, the angle of 

our funnel line was computed using : 

 

Likewise for the blue flags, from which we desired to remain on the right side when 

naviagting through the channel, the angle of our funnel line was computed using: 

 

The funnel lines were then drawn by taking the cosine and sine of funnel_theta, multiplying 

this value by a constant to add magnitude (100 was a common value used), and adding the 

multiplied cosine and sine values to the respective x and y values for the end of the red or blue 

line nearest to the camera. 

The final goal of our line-fitting code was to implement a script that could detect whether our 

IGV was on the correct or incorrect side of a certain color flag.  Essentially, if we found ourselves 

on the right side of the red flags, or on the left side of the blue flags, that our vehicle could have 

some alert that it is driving an incorrect course.  Our method for computing this information was 

to use the cross product between the vector comprised of the points from the end of the funnel 

line to the front of the IGV and the vector comprised of the points from the end of funnel line to 

the end of the flag line. 

 

 

 

 

 

 

 

 

 

  In the picture above the small squares represent red flags, the large square represents the 

IGV, the red lines represent the flag line and funnel lines drawn, and the green vectors represent 

the vectors of which the cross product is obtained as shown below: 

IGV 
1 

2 
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The scripts CrossProductRed and CrossProductBlue have been written to take the Cross prod-

uct as explained above and display whether or not the IGV is on the correct or incorrect side of 

the flag channel based on which color flags it is detecting.  

 

Lane Following System
*
 

Why YCbCr: The color space that has been chosen for this project is YCbCr. The Y stands for 

brightness, while Cb and Cr refer to color values (below). If the user only looked at the Y values 

of an image, they would see a grayscale image with the black areas having a Y-value of 0 and the 

whitest areas having a Y-value of 1. This color space is handy for the RoboGoat because it distin-

guishes color from brightness. This means that the thresholds selected with Cb-Cr are more stable 

in differing lighting conditions, because Cb-Cr values refer to "pure" colors and are not affected 

by shades or shadows.  

 

 

Cb-Cr color plane, Y set to 0.5 

 

 

 

 

The 6-Plot Figure is shown below and is the most powerful source of 

image information in the program. The top three plots, moving left-to-

right, display: the original image (top-left), the image shown in YCbCr with a uni-

form/normalized brightness level (top-middle), and a rotatable 3D scatter plot of the image's pix-

els within the YCbCr color space (top-right). The colors of the dots in this 3D scatter plot match 

the colors in the YCbCr image, so the user can see what part of the image they refer to. The bot-

tom three plots, moving left-to-right, display the three 2D perspectives of the 3D scatter plot: Cb-

Cr (bottom-left), Y-Cb (bottom-middle), and Y-Cr (bottom-right). 

                                                      

* "US Naval Academy - Intelligent Ground Vehicle Competition." 2013. 24 May. 2014 

<http://www.igvc.org/design/2013/US%20Naval%20Academy.pdf> 
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The three 2D graphs are very handy. In the example of using the picture of the red buoy, all 

three 2D plots show the dots for the red buoy from various angles of the 3D graph. The dots in 

first 2D graph (Cb-Cr), however, include every value of Y (brightness). This means that if the red 

dots are selected from the Cb-Cr graph, every shade of the red buoy will be included. The other 

2D graphs have Y in the vertical axis, so the red shade-ranges are spread vertically up and down 

the graph. But if the user wanted to specifically choose the lightest or darkest red pixels, they 

could choose the Y-Cb or Y-Cr graphs.  Once the user chooses the 2D graph that they would like 

to use for threshold selection, the program will display a new window. This window displays 

three items: (left-to-right) the original image, the image shown in YCbCr with uni-

form/normalized brightness level, and the selected 2D graph.  

 

Original Image           YCbCr view, uniform brightness             Distribution of pixels in 

color space 

 

In the 2D graph, the user will freehand-select (draw) around the pixels they want to threshold. 

This is done by left-clicking in the graph, holding down the mouse button, and dragging the 

cursor around the desired dots. Figure 3 shows what the freehand selection looks like, in-

progress: 
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The program reads the coordinate values of every selected 

pixel. In this example, the coordinates are Cb-Cr values (just 

like the x-axis and y-axis). The program then takes the maxi-

mum and minimum values from both axes - these four values 

become the thresholds. 

 

Solving the "Barrel Problem": 
*
 

Certain objects on the IGVC course pose a problem for the 

robot's vision system. The robot is designed to use its camera 

to look at chalked/painted white lane lines on the ground, us-

ing them as a visual reference to stay within the lane. There 

are many obstacles to avoid along the route, the most common of which is an orange construction 

barrel. The figure below shows a picture of several such barrels on the IGVC course - the lane 

line is visible in this figure too. 

 

 

When pixels in each frame of the streaming camera fit the 

thresholded criteria of a "lane line" - when our robot sees what it 

believes to be a white lane line - it assigns a trend line to those 

pixels. This is a simple concept, the same process occurs in the 

brain when one sees a less-than-perfectly painted line on a field. 

However, the robot's line-fitting ability cannot distinguish the dif-

ference between white paint in the grass and the white stripes on 

the barrels. If they both fit the color-criteria for a lane line (white), 

then the program marks those pixels as "lane line" pixels. Then, 

when it calculates the trend line for the "lane line", the result is completely incorrect. The robot 

thinks that the lane line is pointed/angled in a certain direction, when any person looking at the 

field knows otherwise. Fortunately, there is a way around this problem through the use of struc-

turing elements. A structuring element is a shape created around a pixel. For this particular task, 

we use a rectangular-shaped structuring element. 

 

Orange pixels are dilated to overlap and conceal the white 

stripes 

 

The result of this method is that the program is free to threshold 

and track the "actual" lane lines [in the grass], using the trend line 

calculations, since it is no longer confused by the white regions on 

the barrels. The following figure shows this dilation executed on 

the image of the course: 

 

 

 

                                                      

* "US Naval Academy - Intelligent Ground Vehicle Competition." 2013. 24 May. 2014 

<http://www.igvc.org/design/2013/US%20Naval%20Academy.pdf> 
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Figure 6 

 

 

 

 

 

 

 

 
 

 

Electrical System 

We replaced the old GPS system, which was a two 

piece component, with a newer GPS (Ag 162) from the 

same Trimble Company.  The new GPS only had one 

component which helped in simplifying the RG.  The se-

cond component to the last 0047PS iteration (the Ag 132) 

simply displayed the GPS information to the operator.  We 

did not need the display box associated with the new GPS 

since the data only needed to go to the netbook where both 

the user and the code could see and utilize the data.  The 

Ag 162 simply takes data from the satellites and sends them directly to the netbook.  

This year we also replaced the Honeywell compass with an 

Inertial Measurement Unit (IMU).  The IMU (VN-100) has a 

compass built into it so it has all the same features of the com-

pass but with added components like the gyroscope and the ac-

celerometer.  We can now know things like where gravity is 

pointing with respect to the vehicle as well as how fast it is ac-

celerating or at what speed it is turning at in any direction.  This 

will be incredibly useful when developing code that stops the 

vehicle based on sensor inputs.  

The first mechanical subsystem to make a note of is the 

new light that we used which is a 12 volt strobe that has an 

electrical connection for flashing mode and one for solid 

mode.  The new light is much brighter than the one used 

last year even though it only utilizes half of the voltage.  

The light was attached to the far back of the RG to allow 

the operator to easily see which mode the vehicle is in.  

The light wiring is temporarily connected to our switch-

board; however, it will eventually be attached to some re-

lays coming off of the Arduino board so that it can switch 

upon changing between autonomous and manual mode. 

 

Autonomy Philosophy 

The RoboGoat is able to switch into an autonomous mode when the user activates a switch on 

the remote control.  Once the RG (RoboGoat) is in autonomous mode, it will turn on its flashing 
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red LED light to make observers aware that it is indeed in the correctly designated mode.  The 

vehicle should function well on its own without the user having to intervene.  Ultimately, safety is 

the crucial point of autonomous mode.  It should be the first aspect to be catered to and devel-

oped.  After safety comes the rest of the RG.  We want the RG to be able to run the course on its 

own with ease.  It should avoid any traffic lane violations swiftly and easily.  This includes hitting 

other vehicles, running outside of the white lines that mark the boundaries of the course, and 

avoiding obstacles all while maintaining a speed below the 10 miles per hour designated in the 

rules. 

User Interface
*
 

We subscribe to the adage: if you can’t see what the system is thinking, you will not be able to 

debug or improve it. To that end we have implemented a variety of user interfaces: a robot cen-

tered world view, a remote control model that can be switched to on the fly, an integrated power 

system display and a camera threshold selection tool.  The user should be very comfortable with 

handling and operating the RG.  This year we have made the RG much easier to assemble and 

disassemble for the user to make adjustments and fix bugs in the system as necessary.  The circuit 

board is detachable so the operator may inspect individual circuit components, as well as replace 

or add new ones as necessary.  The netbook is also placed in a tray which allows the user quick 

and comfortable access to the code running the RG.  To sum everything up, we made the RG eas-

ier for a user to understand, operate, and adjust.  RG is a legacy project, so changes will be made 

often throughout the years, thus it is vital to the success of RG for the system to be very flexible 

and easily alterable.    

Systems Integration to Achieve 
†
 

When considering our major systems, lane following, GPS, obstacle avoidance, our system is 

comparable to the 2013 design. We believe our new additions are fully integrated with the old 

system and we can expect similar results. Specific testing points:  

1. GPS Navigation: Our GPS did not change from the 2012 competition where we were able 

to hit all GPS points in the navigation course. We conclude that our GPS will have the same suc-

cess this year.  

2. Speed: The vehicle’s max speed is 5 mph. However, at this time the autonomous navigation 

has only been tested at speeds up to 2 mph. Initial experiments with our laptop suggest an update 

rate of 10 Hz. We believe this will permit running the course at max speed.  

3. Battery Life: At a recent test evolution the power systems were initially fully charged using 

AC power. Over the next 48 hours, we ran for about 4 hours using only the preexisting charge, 

and the energy contributed by the solar cells.  

4. Obstacle Avoidance: Our obstacle avoidance algorithm is nearly flawless. It is perhaps the 

strongest feature of RoboGoat. At this time we intentionally use a detection distance of 1.5 me-

ters, even though our hardware is capable of up to 4 meters.  

5. Lane following: Over the course of 48 hours, we observed the vision system worked nearly 

100% of the time. More importantly we did not adjust the color thresholds despite the fact that the 

                                                      

* "US Naval Academy - Intelligent Ground Vehicle Competition." 2013. 24 May. 2014 

<http://www.igvc.org/design/2013/US%20Naval%20Academy.pdf> 
† Ibid. 
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light conditions changed. This is extremely promising. Note it is very difficult for us to replicate 

the lane markings on campus because we cannot paint the grass 

Testing and Performance  

We will test our vehicle outside on a local soccer field. We will bring the vehicle out there 

then set-up our netbook and use our final drive code.  We will set up certain segments of the 

IGVC course and run the robot at individual segments to test how it can handle the individual 

portions of the competition.  We will first make a course that is approximately 80- 100 feet with 

white painted/roped lines on either side to act as the borders of the course.  We will then set-up 

orange cones and orange barrel barriers inside of the miniature course.  The last thing we will 

incorporate is large box of some sort inside of the competition track to simulate a stopped vehicle.  

The other portion of the test will test the flag algorithm that we develop.  We will set-up a 

small 50-60 foot course that consists only of the flag portion of the IGVC competition.  The flags 

will be set-up as closely as possible to the configuration shown in the competition guideline. 

Another navigation portion of our test will be to map out waypoints across the field and use 

the same orange cones and barrels and obstructions.  We will only use the GPS of the robot to 

have it move to those waypoints while avoiding the obstacles we set in between itself and the des-

tination. 

Of course we will have already tested the RC controls as well as the electronic E-stop.  We 

will switch the robot to RC mode and drive the robot the maximum distance possible to see how 

far it can go until the controller no longer communicates with the robot so that we have an idea of 

the maximum range upon which we can safely electronically E-stop the robot. 

CONCLUSION 

Our robot this semester will be in top fighting shape.  With a newly designed camera system, 

completely new dimensions, and a more ergonomic interface, we expect to steal the show and 

earn first place.  With last year’s robot doing so well, we can only improve.  The robust and toler-

ant vision algorithms as well as the increased field of view will serve well enough to defeat the 

flag obstacles which were our biggest problem last semester.  While we don’t have the prettiest 

robot, we have high expectations on its performance. 
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