
 1

EKLAVYA 3.0

Indian Institute of Technology Kharagpur
The Autonomous Ground Vehicle Research Group (Team AGV)

Faculty Advisor: Dr. Debashish Chakravarty
Email: dc@mining.iitkgp.ernet.in

INTRODUCTION

Team AGV, under the ambit of Center for Robot-

ics, IIT Kharagpur, has been pioneering the autono-

mous ground vehicle technology with the ultimate

aim of developing the first self-driving car of India.

The team has been participating in IGVC since its in-

ception in 2011 with the Eklavya series of vehicles.

Eklavya 3.0 is the third prototype developed for the

IGVC 2014 by the team and it features many improve-

ments over the earlier design – Eklavya 2.0 – espe-

cially in mechanical performance, electrical effi-

ciency and robustness of software. The model is twice

as fast as its predecessor (section Motors and Wheels)

while weighing almost the same, has reaction times

over 0.3 times lesser than that of 2.0 and is capable of

adapting itself to changing environments (section

Lane Detection). This report describes in detail the de-

sign and development process of Eklavya 3.0.

DESIGN PROCESS

The best suited design process for Eklavya series is

the spiral model and is illustrated in Figure 2. It allows

for incremental releases of the product via incremental

refinement through each iteration around the spiral. In

a spiral model, the estimates (budget, risk etc.) become

more realistic as work progresses, as more important

issues are discovered earlier. This lets the developers

and designers to get started with the model and code

at an early stage of development.

In 2011, Team AGV participated for the first time

with Eklavya 1.0 in IGVC 2012. Eklavya 1.0 was a

skid-steer vehicle but the less powerful motors meant

that its maneuverability was limited. The software

IGVC2014 – Eklavya 3.0

Figure 2. Spiral Model

Figure 1. Eklavya 3.0

 2

consisted a single process and development was carried out on Microsoft Visual Studio 2008.

Eklavya 2.0 has been a tremendous improvement over Eklavya 1.0 in all three divisions – mechan-

ical, electrical and software. The chassis has been built using reconfigurable T-slot aluminum rods

which made it easier to try various prototypes. Through iterative prototyping, the team has learned

to switch from skid-steer drive to single differential, single caster wheel drive which led to maxi-

mum maneuverability, especially in rough outdoor terrains like the one in IGVC. Much powerful

motors and a state of the art controller have been used to achieve precision for the low level loco-

motion. The software stack consisted one ROS node which implemented a threaded design which

ran all the various modules in parallel. This improved the reaction time a lot in comparison with

Eklavya 1.0.

During Eklavya 3.0’s design and development, major focus was on finding solutions to the

problems faced while participating in IGVC 2013 with Eklavya 2.0. Speed was a major issue in

Eklavya 2.0 – the vehicle barely managed to pass the minimum speed test. The electronics could

be made more robust with respect to safety. Threaded code is prone to blocking – a common prob-

lem due to mutexes. All these and other related issues were addressed in Eklavya 3.0.

TEAM COMPOSITION

Recently, Team AGV was recognized by the administration of IIT Kharagpur by making it of-

ficially a part of the Center for Robotics, IIT Kharagpur. The team consists of more than 40 under-

graduate and postgraduate students belonging to interdisciplinary backgrounds viz., Computer Sci-

ence, Electrical and Mechanical Engineering and is mentored by Professor Debashish Chakravarty

of the Department of Mining Engineering, IIT Kharagpur. The team members are pursuing this

project out of their passion for robotics as an extra-academic activity. The team spent approximately

2070 person hours in design and development of Eklavya 3.0.

INNOVATIONS

Vehicle Information Display [VID]

Eklavya 3.0 features a display just beneath the switch panels to provide critical but minimalistic

information about the state of the robot. It is equipped with anti-glare protection to work properly

in sunlight. The VID is interfaced with a Raspberry Pi interfaced to the main processor via Ethernet

cable. The display proves vital in debugging where critical responses are appropriately displayed.

The displayed information can be one of the following.

1. Steering direction: pointed by an arrow. The speaker would announce the direction of

rotation “Taking Left” or “Taking Right”.

2. Current vehicle speed: displayed in 𝑚/𝑠. The speaker would announce the speed.

Figure 3. Team Composition

 3

3. Special cases in the control flow. These include the cases when no path is found, or an

obstacle is too close while starting. In each of these cases the speaker announces an

appropriate message.

4. The current battery levels.

Battery Management System [BMS]

Conserving the battery power has been a prime concern while designing the power system for

Eklavya 3.0. The charging procedure has been modified with a single plug outlet. Physically de-

taching the batteries during test runs is not a concern anymore. Three batteries are housed inside

the bot with only two working at a time along with an extra redundant charged battery. When there

is a requirement of high torque, a relay circuit automatically switches the top two charged batteries.

The least two charged batteries are used during normal run, unless, one of the batteries is drained

critically when the remaining two batteries are used. The battery level indication and the currently

used batteries are displayed on the VID.

Power Management System [PMS]

Eklavya 3.0 features an intelligent power management board that uses custom made circuitry

providing power just as much required by the individual modules to operate properly. The custom

made ICs helped us improve the efficiency of the power consumed, thus increasing the average

run-time of the robot. The power requirements are listed in the form of a chart depicted in Figure

10.

Adaptive Grass Removal

Lane detection algorithm used on Eklavya 2.0 was not robust with respect to sparse lanes.

Eklavya 3.0 tries to tackle this problem by deploying a machine learning based approach which

focuses on removing the grassy regions in the image and then trying to detect the lanes. The simple

SVM based classifier proved to be effective against intensity changes and shadows.

Auto Calibration of IPM

During IGVC 2013, a good portion of efforts and time was spent in calibrating the lane detection

algorithm for correcting the inverse perspective transform used to map the image coordinates to the

world coordinates. This process has to be repeated whenever the camera position changes and thus

was quite annoying. A solution to this was developed and being used during the development stages

of Eklavya 3.0. The idea is to automatically generate the warp matrix used by IPM.

The traditional approach is to keep a rectangular shape whose dimensions are already known at

a known distance and orientation from the bot and manually detect its corners from the camera

feed. The automation script would try to detect the corners of a checkerboard (instead of a plain

rectangle), since it can be detected with a higher probability and try to match the distances of ob-

stacles placed at the corresponding corners using the laser scan data which is enough to calculate

the warp matrix.

Quick Response and Lattice Planners

In the pursuit of developing the highest reaction rates, the path planner module of Eklavya 3.0

takes a two stage approach. The slower but complete second stage will be triggered only when the

greedy yet lighter first stage fails to find a feasible and walkable path. Since the complexity of the

first stage is constant for all practical scenarios and the probability of second stage being triggered

is quite less considering that the vehicle would be strictly following lanes most of the time, this

approach would make the vehicle highly reactive, limited only by the perception’s critical delay in

addition to mechanical lags.

 4

MECHANICAL DESIGN

Vehicle Design Specifications

Table 1. Vehicle Design Specifications

Design Parameter Specification

Payload Capacity 20 kg

Dimensions 62.3 cm x 80 cm x 109 cm

Weight 45 kg (excluding payload)

Peak speed possible 4 mph

Average running speed 2 mph

Drive mechanism Single Caster Differential Drive

Drive Front wheel drive

Power source Battery

Drivetrain

The things in the drivetrain that have to be decided before the design process are as follows:

1) Number of powered wheels

A bot can either have 4 powered wheels

(skid-steer drive) or 2 powered wheels. Based

on the study of several research papers, it was

understood that using four powered wheels,

i.e. having the skid-steer drive mechanism led

to the problem of having indefinite yaw angle

which can be eliminated only by having two

powered caster wheels where as a 2 powered

wheels would not have any such problem. A

skid steer drive with 4-powered wheels

would have a larger skid friction. This would

have to be overcome by the driving wheels

and this requires that the motors have enor-

mous torque. Thus, such a model cannot make turns easily. Instead, 2-powered wheels with

castors would be a more efficient alternative. Thus 2 powered wheel design was chosen.

2) Number of castors

A single castor design was developed on the basis of the observation made on the previ-

ous robot Eklavya 1.0 which perfectly showed that a two castor wheel design is prone to

swiveling of the two casters in different directions simultaneously in rough terrain. Further-

more, for a bot to be stable its needs to have a 3 point contact. Due to the uneven terrain

there is a high possibility that one castor would be in air and it would lead to wheel slips

which are not preferred.

3) Placement of Castors

A single castor can be at the front or rear of the powered wheels. When the caster is kept

at the front of the vehicle, the bot would go in the direction the caster would lead it to go.

Although the direction of the caster is controlled by the motion of the powered wheels,

under rough terrain conditions and undulated surfaces, the caster generates its own direction

at every moment which makes the robot deviate from the desired path. So, the caster in

Eklavya 3.0 is attached to the rear of the vehicle.

Figure 4. Motor Hub

 5

Motors and Wheels

The decision of motors and wheels are interdependent due to iterations and availability of mo-

tors for the targeted weight and speed the wheels must have a 16 in. diameter and the motor for

15% inclination should have a maximum torque of 10Nm and to achieve the peak speed of 4mph

should have 94 rpm. So, we are using a 16 in. diameter wheels and Midwest Motion motors with

continuous torque of 12.5 Nm and has 80 rpm. In the construction of the motor hubs there is a gear

reduction of 1.2 to get the desired speed.

Chassis

1) Targets

The targets for the chassis of Eklavya 2.2 are:

 Maximum weight of 10kgs.

 Design has to be modular for easy replace-

ment of the damaged parts.

 Accommodate all the sensors inside the

bot’s chassis frame and be strong enough

to carry 2 batteries and a payload weighing

a total of 30kgs.

 Waterproofing for the sensors and provid-

ing tilt platforms for lidar and camera.

2) Choice of materials

For making chassis under 10kgs weight and be strong to carry 30kg weight the chassis is

built using lightweight materials like galvanized 20 x 20 mm extruded aluminum bars, Pol-

ycarbonate sheets and Polypropylene sheet. Polypropylene sheets are used for making elec-

trical control boards and electrical circuitry. These sheets were chosen as they are resilient

and easy to manipulate. Polycarbonate sheets are used for waterproofing the sensors and as

a covering for the bot.

Extruded aluminum bars were chosen for the following reasons:

 An extruded aluminum bar weigh same as an aluminum bar with square cross

section of 3mm thickness but has the strength of a solid aluminum bar.

 The extruded bars have the flexibility of fixing any ob-

ject at any place as the come with inbuilt grooves (Fig-

ure 6) along the length of the bars. The grooves have a

2° bend which when fastened to the right extent, the

groove keeps pressing against the M-5 and M-6 T-nuts

used thus increasing the grip.

 The flexibility of fixing helped create a modular design

for the bot. The placement of the lidar, camera mounts

can be varied and the size of the castor and other param-

eters became independent of the design of the chassis.

Figure 6. T-Slot

Figure 5. Eklavya 3.0 Chassis

 6

3) Chassis Design

The chassis can be completely divided in the following parts:

 Motor and wheel hubs

 Battery and payload hub

 Laptop hub

 Control switch base
 Circuitry hub

a) Motor and wheel hubs

The 16 in. diameter wheels are kept outside the chassis of the bot as keeping them

inside the chassis would raise the center of mass of the bot significantly. The motors

and the wheels are connected using a chain and sprocket system so as to transfer the

bot’s complete weight on to the wheel axles made of solid mild steel. The wheel axles

have been simulated under specific the loads and then the dimensions (diameter and

length) were decided (Figure 7 and Figure 8). It was found that the under 40kgs weight

on a single wheels axle it would have a maximum bend of only 0.25mm and has a factor

of safety of 5.5. In each hub the chain passes through 4 sprockets out of which 2 are

idlers so as to increase the chain and sprocket contact angle thus increasing the effi-

ciency of load transfer.

Figure 8. Displacement Analysis of Wheel Axle

(maximum displacement = 0.246 mm)

Figure 7. Stress Analysis of Wheel Axle (factor of safety = 5.5)

 7

b) Centre of Mass

As a three-wheeled robot with a trailing caster, Eklavya 3.0 turns around the axis

passing through the geometric center of the frame, halfway between the front powered

wheels. As the wheel hubs weigh a little less than that of the rear part which shifts the

center of mass of the vehicle towards rear part, so in order to bring the center of mass

close to the center of the vehicle, a laptop hub and a wedge-shaped structure is made on

top of the front part of the chassis. The wedge houses the switch control board, cameras,

E-Stop switch and safety indicator lights.

ELECTRICAL SYSTEM DESIGN

Embedded System Architecture

Figure 9. Embedded System Architecture

Control Panel

The control panel of Eklavya 3.0 is both informative and interactive. It features several modules:

 Switch Board: An array of switches to power individual sensors/modules, to electrically

decouple the motors to prevent unwanted back-current which might damage the main

circuitry, to charge the batteries or to use them in operate mode.

 Safety Lights: A panel consists of 5X10 LEDs to indicate the autonomous or manual

drive mode as the rules of IGVC mandate.

 Mechanical E-Stop: Located at the center of the dashboard at approximately a reachable

height of 1.2m to bring the vehicle to an immediate halt.

Sensors

Eklavya 3.0 is equipped with high-end robust sensors that have been phenomenal in accuracy,

high-speed and reliable automation.

 8

1) Hokuyo Lidar

The vehicle uses a long range laser scanner from Hokuyo with a view angle of 240° and

gives 652 readings which are spread equally throughout the range at rate of 40 scans per second.

The range of laser scanner is 30m which is sufficient for our planning algorithm. The large

scan rate enables us to implement Hector slam to obtain accurate pose, just from the lidar data.

2) VectorNav GPS/INS

VN-200 is a miniature high-performance GPS-Aided Inertial Navigation System that com-

bines MEMS inertial sensors, a high-sensitivity GPS receiver and advanced Kalman filtering

algorithms to provide optimal estimates of position, velocity and orientation for industrial ap-

plications. We used VectorNav’s C/C++ software library to fetch data through the INS solution

provided by the sensor which gives us thermally and magnetically corrected pose with a hori-

zontal dynamic accuracy of 2.5 meters. The yaw data that we need for target location was

obtained from VN-200 having static accuracy of ±2° and a dynamic accuracy of ±0.75°.

 Extended Kalman Filter (EKF) was applied on the odometry data, IMU orientation and

latitude longitude from the GPS to accurately localize the vehicle.

3) Logitech Camera

The Logitech QuickCam Pro 9000 color camera is installed which gives high definition

video (1600 × 1200) at 30 frames per second. The camera has inbuilt auto focus and blur re-

moval which maintains the video quality when the vehicle is in motion. It has a high horizontal

field of view (600) which makes it possible to detect both the lanes simultaneously.

Power

1) Power Source

Eklavya 3.0 gets its whole power supply from a 2x26AH Lead Acetate battery supported by

a 1x8Ah redundant Lithium Polymer battery. The LiPo battery is used only when the motors

demand incremental torque which happens primarily during inclines or while maneuvering thick

grassy terrain. The power is primarily consumed by three components: motor along with motor

controller, sensors and the cooling fans. As one of the many safety precautions, fuses have been

installed to prevent component damage.

2) Battery Switching

The Battery Management System (BMS) has been a prime innovation in Eklavya 3.0. The

battery level is constantly monitored and a relay circuit switches to the redundant LiPo battery

source in two cases: either when one of the lead acid batteries is drained out or when the other

motors require more torque. This increasing demand in torque is assumed to arise mainly due

to inclines. The incline is detected by a change in pitch sensed by a VectorNav Inertial Meas-

urement Unit installed on the robot and also by the instantaneous battery life remaining.

3) Power Distribution

The power distribution diagram is shown in Figure 9. The battery charger has been incorporated

in the vehicle itself with a power outlet for charging the batteries. The power flow from the battery

goes directly to the motors and the custom made power distribution circuit board to the sensors,

motors, flashlight, mini control board (Raspberry Pi) and the main computing platform (laptop).

The power circuit board IC is an innovation this year which features a Buck/Boost converters to

cater to the demands of the 19V laptop battery charger, the 12V sensors (e.g., lidar). 5V powered

USB hub, Raspberry Pi controllers and the Vehicle Information Display.

 9

4) Power Distribution Table

The power consumed by the different elements are listed in Table 2. Based on these power

calculations, the average runtime of the robot comes out to be: 1.5 hours (approx.) at full load.

Table 2. Power Distribution Table

Sl. No. Components Voltage (V) Current (A) Power (W)

1. Roboteq (+Motor) 12 15*2 360

2. Hokuyo LIDAR 5 0.7 3.5

3. Camera 5 0.25 1.25

4. GPS/INS 5 0.5 2.5

5. IMU 5 0.1 0.5

6. Kinect 12 1.08 12.96

7. Cooling Fans 12 0.42*4 20.16

8. Flash Lights 12 1.4 16.8

Total Power Requirement 417.67 W

Motors and Controller

1) Roboteq Controller

Eklavya 3.0 uses the brushed DC motor controller MDC2230 from Roboteq. Roboteq con-

trollers are used in automated guided vehicles and have built-in features supporting some com-

mon utilities such as encoder data acquisition, current sensing, PID, RC remote integration, E-

Stop etc. The support for the RC remote enables ease of switching to manual control. The pri-

ority of the manual control through wireless remote is set greater than serial data transmission,

enabling the bot to swiftly switch to manual mode, once the RC controller is activated. It is a

2*60A, 30V micro-controller which receives input from RC or PC and converts it into high

voltage and high current output to drive two DC motors. There are various safety measures

incorporated in Roboteq which ensures safe and reliable operation.

Figure 10. Power Distribution Diagram

 10

2) Motors and Encoders

Eklavya 3.0 uses reversible DC geared motors equipped with an IP-65 optical quadrature

encoders. The maximum output speed is 4615 RPM delivered at an internal gear head ratio of

34.97:1. The rated continuous torque provided is 164 in-lbs. The motors run at 12V DC and

have a rated continuous current of 28.6 A. As per the requirements of IGVC, we needed our

robot to move at a speed of 1.5 mph. With a wheel diameter of 8 inch, the required angular

velocity of wheels came out to be 71 RPM. The continuous torque requirement, hence, came

out to be 110 in-lbs.

Speed Control Algorithm

The control algorithm implemented is the proportional integrative and derivative control

(PID) on the speed of the motors. In the Roboteq controller, although a high frequency inbuilt

PID controller attempts to achieve the desired set speed, it was required to tune the constants as

per our requirements to get the optimum response. The tuning was done using intuitive obser-

vations by following the standard Ziegler-Nichols Rule

SOFTWARE SYSTEM DESIGN

Software Architecture

The software architecture for Eklavya 2.0 was based on threads. Each module was running on

its own thread and inter-thread communication was implemented by accessing shared global vari-

ables via mutexes. This led to long waiting times when the number of modules increased and so

did the communication between them. This prompted the inception of a publisher-subscriber based

mechanism, closely following the ROS framework while developing the architecture for Eklavya

3.0.

The ROS framework allows for seamless scalability when changing the number of sensors and

other hardware thanks to the hardware agnostic code. Each node runs as an individual process, thus

Figure 11. Software Architecture

 11

providing more freedom over its creation and deletion during test runs. Many other features like

the rosbag and rosparam helped dynamic reconfiguration of code during run time which helped

ease the testing process.

Each node can subscribe to topics on which messages are published by other nodes. The archi-

tecture is described in Figure 11 and contains terminal nodes, perception nodes and AI nodes. The

terminal nodes consist of entry and exit points to the software stack. Perception nodes are tasked

with interpreting the sensed data and modeling the environment. AI nodes mainly include planner

and its associated nodes which take the ultimate decisions and generate commands. Messages pub-

lished by each node are labelled against the corresponding outward arrows. The corresponding

topic names are prepended by the node names. (e.g., lane_detector node publishes the

lane_detector/lanes and lane_detector/visibility_flag topics)

Perception

1) Lane Detection

The lane detection algorithm for Eklavya 2.0 comprised of color-based filtering followed by

application of canny threshold and concluding with a Hough transform to give the line equations

of lanes. The observed problem with this approach was that the thresholds were heavily depend-

ent on the changes in brightness and contrast of the ambient environment. Eklavya 3.0 features

a machine learning based algorithm adaptive to the fluctuations characteristic of the ambient

scenery.

The initial approach was to detect lanes via their structural features. However, applying me-

dian blur, histogram equalization and other color and/or brightness equalization techniques, fol-

lowed by edge detection the results were highly dependent on features like color, blur size, filter

type, etc. which were not robust to changes in the lightening conditions. The problem was am-

plified with non-uniform grass and grass containing dead patches. This led to the conception of

the negative space approach. The trick is to remove the grassy portions of the image, instead of

detecting the lanes themselves via a machine learning algorithm.

Features for learning were taken as a kernel of an N×N ROI of the image. This kernel was

classified as grass or non-grass based on a polynomial SVM classifier. This classifier test was

used at each pixel of the image to remove the grassy portions. Initially the classifier was trained

to detect lanes though, the results were not satisfactory. This was attributed to high saturation

and content of the white color in the white strips on the barrels and ladders. The strips caused

spurious lanes which led the classifier boundary to shift more toward this region.

Figure 12. SVM Classification Results for Lane Detection

 12

As shown in Figure 12, the left image

shows the various regions and the right im-

age depicts a red line separating the afore-

mentioned regions using the SVM classi-

fier. Since lanes are not exactly white, some

of the lane points lie in the negative region

i.e. on the left side of the curve, thus giving

false positives. But if the detection is ap-

plied on the grassy part we would get a parting line similar to the red curve shown in Figure 14

(Experimental observation. Curves are generated based on classification results over various

images). Although this gives a few false positives, most of the lanes are classified as non-grass.

Also, grass offered a more uniform patch compared to lanes as the lane portions in the image

varied with variations in brightness and lightning conditions. Lanes also exhibit non-uniform

thickness.

The next task was determining the num-

ber N, size of the kernel. It was observed

that the code’s FPS increased with N and

the classification accuracy decreased with

N. By experimentation the value of N was

kept between 7 and 12 when tested on a

640×480 image with a first generation i5

processor.

2) Obstacle Detection and Fusion

The white strips in the obstacles and the

white ladders interfere with the lane detec-

tion algorithm as they occur as false posi-

tives and thus have to be removed before lane detection. Initially a color based algorithm was

applied to extract the non-white portions of the barrels and dilate them so that they cover the

white strips lying in between them. Still, the problem prevailed in certain cases, especially with

the white ladders. Thus, instead of a color based filter, the lidar data was used to erase parts of

the image which coincided with the lidar readings.

After this step, the image contained only the lanes and some random noise. The lane was

further filtered by a color based threshold algorithm followed by an edge detection algorithm

which resulted in high lane detection probabilities with very few false positives.

3) Map Fusion

Output of the lane detection algorithm is subjected to an Inverse Perspective Transform

which, with proper selection of the warp matrix, would generate a representation of the lanes in

the world frame with a desired resolution. Lidar data is already in a similar world frame, albeit

Figure 13. Grass Removal Results

Figure 14. SVM Classification Results for

Grass Removal

 13

with some offset (x, y, θ) compared to the lane map. Both these maps are corrected for the

relative offset and their union is taken as the final fused map. Note that the lanes are being

concerned as non-walkable for all future purposes.

Navigation

Navigation is tasked with the responsibility of using the data interpreted by the perception nodes

and steer the bot to success. First an intelligent strategy is used to decide the target to follow out of

targets suggested by lane and GPS. Finally, a path planner plans a path from the bot’s origin to the

target position (relative to the bot’s origin) while avoiding obstacles.

1) Target Selection

Targets calculated from the lane and GPS

data are both represented in the bot coordi-

nate frame with the bot at origin. The selec-

tion strategy is to implement lane following

(use target from lane) until the first GPS

waypoint is reached or the last waypoint has

just been traversed (black path in Figure 16).

Otherwise, target from the GPS is used (way-

point navigation, green path in Figure 16).

During lane following, it can so happen that

the lanes are not visible (especially during

switchbacks). In this case, the selection strat-

egy is to resort to the next waypoint naviga-

tion.

The binary output of the lane detection algorithm is processed via the Hough transform to

give line segments on each lane. Lines are fit which pass through most of these segments and

their parameters estimated. Center line of the lane can be obtained by taking the mean midpoint

and mean slope of the left and right lines. Lane target is selected as the point lying on the center-

line a fixed distance from the perpendicular dropped from the origin to the center-line.

VectorNav GPS/INS gives the latitude and longitude reading of both the target waypoint and

the current position of the bot. These are first transformed to the ENU coordinate frame (East-

North-Up) and their relative displacement is calculated in meters. A simple yaw correction (ob-

tained from the IMU’s yaw reading) yields the position of target in the bot coordinate frame in

meters and radians. This is depicted in Figure 17.

Figure 16. Target Switching Strategy

Figure 15. Lane Detection via Grass Removal Results

 14

2) Path Planning

The path planning algorithm for Eklavya 3.0

has been improved over the last year’s A* algo-

rithm to guarantee faster reaction rates, im-

proved control granularity and increased ro-

bustness. The planner executes in two stages

with the second stage being triggered only

when the first stage fails to find a path.

a) Quick Response Planner

The constraint for this stage is to produce a

feasible and walkable path with high control

granularity quickly. The idea is to spawn a lot

of elementary circular arcs, each representing a

particular command set (left and right veloci-

ties and unit time of execution). After filtering

for a basic walkability check, the best arc is se-

lected based on a cost which decreases with the

proximity to target and increases with proxim-

ity to the nearest obstacle. It may be noted that

this planner is not complete; it might not be

able to find a path when one truly exists, due to

the absence of an exhaustive search function.

In such cases, the second stage kicks in.

b) Lattice A* Planner with DT

This is a simple grid A* search algorithm with a slight modification to the grid represen-

tation to ensure kinematic feasibility of the planned paths. The inter-grid transitions (seeds)

in the grid A* are replaced by circular arcs which always connect two grids. Pose and cur-

vature continuity is preserved at places where the seeds meet, thus ensuring the feasibility

throughout a path planned by this method.

In a lattice, each grid center represents the space around it, thus leading to a discrete

representation of the environment around the bot. A major advantage of using a lattice is a

massive reduction in the size of open list with decrease in the lattice grid resolution. This is

possible since two possible paths ending up in the same lattice grid will be mapped to the

same lattice grid cell, thus cutting short the search in open list at every step.

The concept of distance transform was adopted from Eklavya 2.0 to produce obstacle

avoidance behavior in the planned paths. A safe path would take the bot away from the ob-

stacles as much as possible – probably along the voronoi edges created by assuming the

obstacles as the voronoi centers. This can be achieved by adding an extra cost to the cost

function which represents the overall distance of the path planned so far to the nearby voro-

noi edges.

Figure 18. Quick Response Planner

Figure 17. Target from GPS

 15

SAFETY

“Safety has to be the topmost concern while building any autonomous vehicle” - this was kept

in mind while designing Eklavya 3.0. The vehicle is equipped with flashlight indicators that blink

to indicate the autonomous run mode. The average speed of the vehicle has been kept at a meagre

2 mph which is not too fast. The mechanical and wireless E-Stops directly cut off the motor driver

power bringing the vehicle to an immediate stop. The wireless E-Stops are two X-Bee modules that

operate in a secure channel frequency protected by a custom key and operating at a radius of about

100 meters.

PREDICTED PERFORMANCE

Table 3. Predicted Performance

Parameter Expected Values

Maximum Speed 4 mph

Ramp Climbing Ability 10°

Response Time 0.1 seconds

Battery Life 1.5 hours

Obstacle Detection Range 30 m

Localization Accuracy 0.5 m

Figure 19. Quick Response Planner with Circular Seeds

 16

CONCLUSION

Team Eklavya designed Eklavya 3.0 with an aim to excel the challenges put forward by the

IGVC-2014 based on the important lessons learned in IGVC 2013 with Eklavya 2.0. The team’s

efforts and innovations are clearly reflected in the improvements on Eklavya 2.0 which represent

the humble skill of the people at Autonomous Ground Vehicle Research Group, IIT Kharagpur.

Having achieved the goals set at the beginning of the year, the team is looking forward to contrib-

uting the ongoing research in the field of mobile robotics and building a driverless car.

ACKNOWLEDGEMENTS

Team AGV is thankful to Prof. Debashish Chakravarty, Department of Mining Engineering,

IIT Kharagpur, for his constant support and valuable guidance. We would also like to express

our thankfulness to our sponsors – VectorNav and NAG Inc. for their gracious contributions.

TEAM AGV

Software Team

Abinash Meher, Aditya Narayan, Arna Ghosh, Ayushi Mrigen, Harsh Gupta, Krishna Bagadia,

Krishna Kumar Agarwal, Rohan Sur, Samuel Anudeep, Satya Prakash Yadav (Lead), Shivam

Vats, Shiwangi Shah, Sidakpreet Singh Chawla, Tanmay Patil, Udai Bhardwaj, Yash Shrivastava

Electronics Team

Anshuman Pradhan (Team Lead), Arun Kumar Patro, Ayush Pandey, Bismaya Sahoo,

Divesh Hura, Diwakar Paliwal, Harit Bansal (Lead), Kawaljeet Kumar, Madhuri Sangaraju, Ma-

nuj Agrawal, Rahul Kumar Singh, Swapnil Shaktawat, Vikram Mohanty

Mechanical Team

Abhijeet Kant Sinha, Amit Rathi, Ayush Chhaparia, Naveen Thontepu (Lead), Parimal Parth

Sarathi, Shubham Kumar, Siddhant Gupta, Siddhesh Keluskar, Suraj Aggarwal

Public Relations Team

Anand Qumar, Dwipayan Kar, Ishan Gupta, Megha Sinha (Lead), Pranshu Jain, Prashant

Singh, Rohan Gupta, Shubhi Jain, Soumyadeep Ghosh, Vinayak Mahbubani

 17

