


 

 

 

 

 

 

 

 

 

 

 

 



 

 

The team is being incubated in the Centre for Innovation (CFI) and is being supported by funds 

from the Alumni of IIT Madras. The team consists of junior undergraduates belonging to various 

academic backgrounds viz., Computer Science, Electrical Engineering, Mechanical Engineering, 

Engineering Design etc. With this diversity, every member brings to the table a different set of 

skills and opinions, which is vital considering the multi-disciplinary nature of the project.  

The tasks in hand are divided between 5 modules: 

- Mechanical Module 

- Electronics 

- Navigation 

- Communication 

- Obstacle avoidance 

- Computer vision 
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Introduction 

The weight and dimensions of the payload were the primal considerations during the course of the 

mechanical design. Being the heaviest part of the vehicle it was ensured low placement and CG as 

near to center of vehicle as possible. The shape and structure of the frame were decided after 

rigorous discussion and testing considering the distribution of different components to be placed on 

it. The bot will be in contact with 3 points on the ground at all times. So, given any terrain, the bot 

will always find a plane of motion. Air-filled tyres are used for locomotion such that their pressure 

can be varied to dampen unwanted vibrations. 

Design Methodology 

1. Drive train 

The drive train is very simple and effectively 

designed. The motors are placed near the 

center of the vehicle, while the drive shaft and 

motors are connected using flange coupling 

arrangement. This arrangement reflects the 

design for easy assembly and disassembly in 

the vehicle. The coupling arrangement is 

attached to the frame using ball bearings on 

either side of the wheel, which provide 

support for smoothness and help avoid friction 

and bending moments.  

 

2. Frame 

The whole chassis of the vehicle is 

made using Aluminium extrusion 

channels. The main problems with the 

previous prototype (Abhiyan 1.0) were 

the use of Aluminium L-channels and 

the resulting instability of the structure, 

which led to errors in the readings of various sensors, which led to complications in the 

navigation and obstacle avoidance modules. Aluminium extrusion channels are 

commercially designed for modularity and ease of assembly and disassembly of the 

complete frame. Thus, the fabrication time and efficiency of the vehicle were reduced 

considerably. The extrusion channels can be joined using angle brackets at right-angle 

joints. We can also tap threads into the channels and use T-nuts and Button-head bolts to 

fasten 2 different channels.  

Fig.2 a) 

Angle 

bracket 

b) T-bolt 

Fig.1 Drivetrain arrangement 



 

                      

 

3. Steering 

Being a completely autonomous vehicle, no manual input is allowed once the vehicle is 

on track. The differential drive was chosen as the steering methodology because of its 

simplicity and efficacy for our requirements. The vehicle has two powered wheels and 

one castor. The wheels are powered by one motor each. The RPM of the motors is 

controlled independently by the microcontroller.  By varying the RPM of the motors the 

steering angle and the direction of heading of the vehicle can be changed. Internal 

encoders fitted with the motors are being used for precise motor control and odometry 

calculations for navigation purposes.  

 

4. Castor positioning 

The position of the castor plays a vital role in the dynamic 

orientation of the vehicle. Keeping the castor in the front 

would make the robot sway in the direction of the castor, 

which is theoretically controlled by the motion of the 

powered wheels. But after extensive testing it was observed 

that on rough surfaces the castor generates its own 

direction which makes the vehicle deviate from the desired 

path. Hence it was decided to use 2 front powered wheels 

with a rear wheel castor. 

 

Design Process 

Computer Aided Design: The 3-D modelling software SOLIDWORKS by Dassault Systems 

was used for CAD modelling purposes. The advantage of using this software is that it 

reduces physical design iterations which can save time in the design process. There are also 

provisions for stress analysis on the design to avoid material failures. 

Fig.3 The complete 

frame designed using 

aluminium extrusion 

channels. Notice the 

right-angle joints are 

connected using angle 

brackets or by tapping 

the channels and using 

T-bolts. 

Fig.4 Castor wheel at 

rear of the vehicle 



 

Payload: The vehicle is required to run with a payload of 10 kg weight. The design and 

component distribution has largely been influenced by the presence of the payload. A low 

and centralized center of-gravity has been maintained to provide maximum dynamic 

stability to the vehicle. 

Vehicle Configuration: After deep deliberation and analysis, it has been determined that two 

wheeled front powered vehicle with a single rear castor is required for locomotion, 

providing greater stability while turning.  This weight distribution of the components and 

low speeds ensure ground contact and enough normal forces on suspensions at all times. 

Fabrication: The entire chassis was assembled using standard Aluminium extrusion channels 

from Alstrut Inc. This improved the structural integrity of the vehicle and reduced 

mechanical errors in readings from the various sensors.   

 

Torque requirements 

 
 

The major forces acting on the vehicle are-  

- Aerodynamic force: These are the drag forces that act on vehicle due to wind resistance. The 

forces are directly proportional to the square of velocity of the vehicle. 

 

Fig.5 Free body diagram indicating 

the forces acting on the vehicle 

Fig.6 Plot of 

aerodynamic drag 

power vs. speed  



 

From the plot and the equation it can be deduced that the air drag for our requirement is very 

low and can be neglected. 

- Rolling resistance 

The rolling resistance is the friction that the vehicle experiences due to hysteresis in the runner 

tires. The Rolling resistance is a constant value and is computed by 

 

Motor specifications 

We need to achieve a minimum speed of 1mile per hour and a maximum speed of 5 mile per 

hour. Motor specifications were calculated using a max 

speed of 3.9kmph and an average speed of 2.4 kmph.  

Maxon Brushless DC motors are used with the ESCON 

Module 50/5 Servo Controller, which is a small-sized, 

powerful 4-quadrant PWM control for these type of 

magnet-activated motors. 

No load speed – 7580rpm 

No load current – 137mA 

Stall torque – 2280 mNm 

Max. Efficiency – 91% 

Operating Voltage – 24V  

 

Fabrication and Assembly 

Aluminium extrusion channels are used to build the chassis. The channels are connected using 

angle brackets or T-joints. The motors were secured to chassis using vertical clamps to reduce 

the vibrations and proper transmission of power to the wheels. Parts like bearing-casing, 

couplers, intermediate shafts, rear wheels assembly were manufactured using lathe and milling 

machines. Specific mounts were designed and fabricated for the multiple sensors like LiDAR, 

GPS, Camera and a separate shelf for placing of the laptop computer. Enclosure of the entire 

vehicle for rain proofing purposes will be done using acryclic sheets. 

Fig. 7 MAXON DC Motor 



 

                             
 

 

Power System 

Among all the sensors in the bot, the LiDAR, GPS sensor and the motors consume the maximum 

power. Lithium polymer batteries are used as sources of power in the vehicle. 

The sources of power in the circuit are divided into two:  

a. Main Source: Five 3cell 30C 8000mAh batteries explicitly to power the motors, GPS and 

LiDAR and safety light. 

b. Auxiliary Source: One 3cell 30C 8000mAh battery to power the entire circuit.  

 

Wireless control 

The Auxiliary power source is connected through the RF module on the bot. This RF Module helps 

to wirelessly control the circuit by switching it ON/OFF using a remote control. This serves as the 

Wireless E-stop, added to the Mechanical E-stop (Push-button) on the vehicle. 

 

Odometry: Control and PID Tuning 

MAXON motors have internal encoders with 5376 Ticks per rotation which is very high for a 

normal microcontroller unit to count the ticks appropriately. Hence, we use the Arduino Due QEI to 

get Odometry data from wheel encoders which will be then used by the path planner in ROS. 

ESCON motor drivers are used along with MAXON motors to control the speed of the motor and 

regulate the current to the motors depending on the load. They contain internal circuitry that can 

power and control the operation of the motors, according to the PWM signal sent by the Arduino. 

To configure these motor drivers, the ESCON Studio software is used to tune and configure the 

motors accordingly in order to achieve the desired set speed with ease. The tuning is done at high 

frequency through inbuilt PID controller which follows basic Ziegler-Nichols Algorithm. 

 

Fig.8 Final vehicle 

a) Isometric view 

b) Front view 



 

Microcontroller Unit 

The Arduino Due was preferred as the MCU because of its QEI (Quadrature Encoder Interface) 

which is designed to count motor encoder ticks. Two Arduino Due are used since any one of them 

individually cannot handle the encoder counts in the motors. I2C serial communication interface is 

implemented between the 2 Arduinos to transfer data between them. 

1)Master MCU: This powers and transmits data from the compass, controls the bot speed with 

appropriate PWM signals and retrieves odometry data from the Slave MCU.  

2) Slave MCU: Its sole purpose is to get the 

odometry data from the wheel encoders and 

send it to Master Arduino by serial 

communication. 

 

 Since the digital I/O pins in the Arduino can 

only take till 3.3V, there is a risk of burning the 

MCU while interfacing with sensors like the 

wheel encoders. To prevent this, optocouplers 

are used to step down the voltage signal of the 

encoder before providing it to the Due. 

 

Eagle CAD is used to design the PCB. 

Basically, the circuit board is virtually 

partitioned into two parts - 

- Main Board  

- Power board.  

The main board consists of the Arduino Due shields, ESCON motor driver shields and optocoupler 

shields. Fuses are used to protect various components of the circuit from shorting and current surge.  

 

 

One  of  the  main  functionalities  of  this  ground  

vehicle  is  to  perceive  the  environment,  and  

negotiate outdoor  obstacles.  Obstacle  avoidance  is,  

hence,  the most  fundamental  and  essential  part  of  

the vehicle’s navigation  system. 

The  crucial  component  for  this  is  the  sensor,  

which  is  chosen to be a LiDAR (Light Detection and 

Ranging  Device).  LiDAR is a laser based ranging device that scans the surroundings in 2D plane 

in front of it to detect objects and evaluate their positions.  It, basically, gives a polar profile 

through which the distance of the nearest obstacle at any angular position can be measured. 

Fig.10 Sample LiDAR scan 

Fig. 9 PCB designed using Eagle CAD 



 

Earlier, the basic algorithm was simulated and tested in various  software (MobileSim  of  ARIA),  

the  results  for  which  have been summarized in the following  section. The figure above shows 

the data obtained in a LaserScan. The  whole  region  is  segmented  into  different  regions  called  

as  valleys  and  peaks.  Valleys represent no obstacle region and peaks represent the region in 

which obstacle is present. Hence, at any instant the algorithm looks for all the valleys and chooses a 

valley closest to the goal position with a constraint that the valley width is greater than the robots 

width. MobileSim is a software on ARIA  (Advanced  Robotics  Interface  for  Applications)  

platform  of  mobile  robots  that  is  being used for simulating  the basic algorithm. 

   

Limitations -  

 The present mapping software cannot be used for complicated environments  

 The  motion  control  and  other  functions  are  all  in-built,  which  cannot  be  customized  as  

per  our requirements  

 Direct integration with other modules and ROS is not possible.  
 

Current Control and Operating System  

Moving to an advanced stage, it has been decided 

to use ROS (Robotic Operating System) and the 

in-built algorithms available with its packages for 

the navigation of the robot. The current control 

and operating system in Abhiyan robot is based 

majorly on ROS. 

ROS  is  an  operating  system  with  a  set  of  

libraries  and  software  for various robotic 

applications. It also  covers  various  algorithms  

for  many  programs,  provides  visualization  

software  for  simulations, device  drivers  for  

various  sensors,  and  also  unique  opportunity  

of  synchronization  with  various applications at a 

Fig. 11 Simulation 

on MobileSim 

Software 

Fig. 12 Robot configuration 



 

time. That allows for better and easier ways of integration of different modules. 

In such huge set of packages available, the package called ‘Navigation Stack’ is being used for this 

robot. Navigation stack takes in input data from all the sensors attached to the robot, processes them 

in different appropriate nodes simultaneously or sequentially, and gives the values of the velocities 

to the robot to follow as an output. 

Working of Navigation Stack  

Input:  

Robot  Configuration  -  This  includes  transform  configuration  and  robot  setup,  wherein  the  

physical shape,  size  and  dimensions  of  the  robot  are  set  up.  With this information about the 

robot, all the frames available on are identified.  This transform considers all the coordinate frames 

and uses this transform to interpret data from various sensors appropriately. 

Sensor Information - Data from different sensors is obtained and taken in form of messages. There 

are a set of kinds of messages in which the data can be published and subscribed by different nodes 

whenever required. 

  A view of the frames of the robot, where LiDAR (base_laser), Camera (laser_frame) are attached 

to the main robot base (base_link) receiving odometry readings (odom), also connected to IMU 

(imu_frame). Also shows the parameters in which the sensor data is being received. 

 

 

Fig.13 Frames of the robot 



 

Process and Outputs:  

The  navigation  stack  with  all  the  parameters  in  the  .yaml  files  for  robot  configuration,  with  

all  the inputs  from  different  sensors  published/subscribed  by  different nodes, maps are 

generated with specified  goals  to  reach.  Then,  by  using  SLAM(Simultaneous  Localization  and  

Mapping)  in gmapping  package  on  a  dynamic  map  or  by  using  AMCL(Adaptive  Monte  

Carlo Localization), the pose of the robot is traced and localized. After the localization of the robot, 

according to its position with respect to the target location, the robot is given velocity commands 

(/cmd_vel) to reach the goal. 

 

 

Introduction 

Major challenges in the problem statement include: 

- Detection of lanes and simulate potholes in the arena 

- Detection of red and blue flags and navigate the vehicle accordingly 

The goals of this module were to effectively isolate the lanes and potholes and feed this data in 

some format to the path planner for further processing. Also, it was required to obtain the positions 

of the red and blue flags in the arena and transfer the data to ROS for planning and navigation. 

For lane-and-pothole detection (Camera 1), a Logitech C310 camera (640X480) is used to capture 

the view of the arena. The camera is mounted at a height of 43.3cm from the ground. For flag 

detection (Camera 2), a camera of the same model is used but at a height of 100cm from the 

ground. 

Fig. 14 Network 

of the topics 

published and 

subscribed 

between 

different nodes. 

 

 



 

  

 

Bird’s eye view transformation 

The orthographic view of the camera is computed using 

the formula: 

A = HB 

Where  A ≡ orthographic/final computed image; 

           B ≡ initial image captured by the camera; 

           H ≡ Homography matrix; 

 

The Homography Matrix is calculated by training the 

camera for various heights and angles, so as to 

minimize the errors obtained. After rigorous testing, it 

was finally settled to have the camera mounted at a 

height of 43.3cm above the ground, tilted to an angle of 

-20ᵒ with the horizontal. This is also reduces the blind 

spot distance, so as to capture the parts of the lane 

which are close by. The blind spot distance is 

approximately 67cm from the front-end of the vehicle. 

Obstacle masking 

The lane detection algorithm requires the obstacles to be masked/ignored from the image for 

efficient computation. Hence, this is done using HSV segmentation of the blue channel of the input 

Fig.16 a) Normal camera view  

Fig. 15 Breakdown of the 

algorithms used. Scripts 

implemented in C++ using 

OpenCV libraries. 

 

Fig. 16 b) Orthographic view 



 

image and applying an automated thresholding algorithm which takes the minimum peak in the 

histogram as the thresholding characteristic. 

- Image is converted from RGB to HSV 

- Orange parts of the image are thresholded to white in a binary image. 

- Convolution with a vertical kernel is done to mask out striped barrels properly. 

- Morphological opening and closing algorithms used to smoothen the contours 

- Subtract the final image from original image to mask out the obstacles 

- A contour-area based filter can also be used to get rid of the blobs after convex hulling. 

Lane detection 

 

The algorithm for extracting lanes from the grassy arena includes converting the color space to 

HSV for better color segmentation. The obtained image is processed by the Canny Edge Detection 

Algorithm before running it through Probabilistic Hough Transform. The voting procedure is set up 

to maximize the number of lines of a minimum length that can be generated in the image. 

 

   
 

Pothole detection 

 

An essential part of the problem statement is to detect simulated potholes (white in color). The 

circular potholes are actually seen as ellipses in the non-orthographic, i.e. the camera view. 

We take the image processed through the obstacle masking and lane detection algorithms. A median 

filter is then applied, followed by canny edge detection. The obtained contours are fitted to ellipses 

using perimeter thresholding. These ellipses are masked as potholes. 

 

Fig. 17 Lane detection 
after masking obstacles  

a) Original image 
b) Final image after 

processing 



 

  
 

Flag detection 

 

Flag detection is done using Camera2 placed above Camera 1.  

The centroids of the triangular red and blue flags are roughly in a plane parallel to the ground. 

Hence, a homography matrix calibrated for a height of 100cm above the ground is used so as to get 

the correct orthographic view. 

 

Red (Grainger3LUK2) and Blue (Grainger3LUK4) flags are detected using HSV segmentation. 

These flags are fitted into a polygon, whose centers are located and joined by best-fitting lines. The 

objective is for the vehicle to stay to the left of the red flags and to the right of the blue flags. 

Thus, we can create a wall in the infeasible regions of travel for the bot, so that the feasible regions 

remain open. This final image depicts the regions of open allowable travel for the bot. 

 

    
 

 

ROS Integration 

The lanes, obtained above, are converted into the form of LaserScan data. This conversion is 

needed because the ROS Gmapping package can accept data inputs only in the form of LaserScan 

data or Point Cloud data to generate maps. After converting to LaserScan data, the CV images are 

converted to ROS image  messages  using  cv_bridge  package,  so  that the  images can be 

published, and accessed by the ROS  Gmapping  package,  which visualizes the lanes as  

Fig. 18 Simulated 
pothole detection 
a) Simulated 
pothole  
b) After processing 

Fig. 19 Flag detection 

a) Original image b) 

Red and blue flags 

detected as 

continuous contours 



 

walls/obstacles to be avoided. This data is fed into  the  navigation  stack,  along  with  the  LiDAR,  

GPS  and  odometry  data  for  path  planning  and autonomous navigation. The walls obtained in 

the flag detection script can also be passed as a LaserScan to ROS, which will run it through similar 

procedures to depict the possible paths of navigation for the bot. The simulated potholes will also 

be seen as walls, applying the same methods to these as well. 

Further challenges in these algorithms include noise removal in video feed, processing capabilities 

of the computer and ambient conditions of the track. 

 

The  JAUS  challenge  requires  us  to  implement  JAUS  services  on  our  machine  and  make  it 

interoperable.  We have used the JAUS++ SDK for this purpose.  JAUS++ is an Open Source 

implementation of JAUS in C++.  It implements the current versions of the SAE standard. JAUS++ 

includes complete message libraries for both the Core and Mobility service sets, and interfaces for 

the most common services.  JAUS++ is Object-oriented in design and provides threads in the 

background to send and receive messages.  Every  JAUS  component  has  a  subsystem  ID  and  a  

node  ID.  The assignment of these IDs is static.  For transport, JAUS over UDP transport protocol 

will be used as specified in AS5669A.  

The UGV first tries to discover the calling device and tries to establish a connection with that node. 

It keeps listening to that node for queries. As soon as a query is received, it processes the type of 

query it is and decides which action to take.  If a query for velocity or GPS is made, the  last  value  

of  the required  component  published  from  ROS  is  read  and  updated in  the  JAUS  system  

navigation points and  fed  back  to  ROS.  JAUS++ provides us an interface to update different 

components and since it runs threads to receive and send messages in the standards mentioned by 

SAE, we don’t have to worry about them while coding it. Since a reliable transmission is needed, 

JAUS is implemented on TCP. 

The following diagram shows the class inheritance diagram for services within JAUS++. It shows 

the Core Services and a few Mobility Services available. 



 

 
 

 

Introduction 

A  vital  system  for  any  ground  vehicle  to  make  an  accurate  decision  about  its  heading  and  

navigate from  initial  position  to  final  position.  Here,  we  have  used  global  coordinate  system  

i.e. Global positioning  system  (GPS) for localization in the vehicle’s frame of reference. Apart 

from this, Inertial Measurement Unit (IMU) is also used to obtain localization in vehicle’s frame. 

This provides another input  for  vehicle’s  movement  to  know  its  position  and  orientation  

accurately.  To know the vehicle’s heading with respect to the Earth’s magnetic field, combination 

of triple axis magnetometer and triple axis accelerometer is used. Combination of these two sensors 

provides tilt compensated values of vehicle’s heading. 

 

GPS Hemisphere A101 Smart antenna: 

This Antenna uses GNSS to locate its position at an update rate of 20 Hz. It can also be used as 

DGPS using SBAS and NMEA 0183 protocol. Accuracy of the device is around 50cm. 

Software like Pocketmax 3 or SLXMon is used to calibrate the GPS device using the Microsoft 

Windows platform. To get faster satellite locks, the masking angle can be reduced. DGPS is used to 

get faster and more accurate values.  

We are using the GPSD client to publish the Co-Ordinate data and integrate it into ROS. 

GPS  readings  are  obtained  and  converted  to  link  vehicle’s  local  coordinate  system  to  the  

Global coordinate  system  using  Spherical  Polar  coordinates. The heading angle of the vehicle, in 

Fig. 20 JAUS system architecture 



 

local coordinate system, with respect to Earth magnetic field direction (N-S) is obtained from the 

compass. We have used GPS system and compass to determine the angular rotation of the vehicle 

.This angle of rotation  can  be  fed  to  the  wheel  encoder  using  algorithm  to  rotate  precisely  

with  same  amount  as calculated. Here Inertial Measurement Unit (IMU) helps in tracking precise 

angular rotation of vehicle and its motion. 

 

Implementation in ROS:  

With respect to ROS, the navigation module includes some basic tasks to be done:  

1) Giving the bot a direction toward next GPS waypoint 

2) Sending goal points to navigation stack  

3) Providing  the  remaining  modules  with  necessary  data  (this  includes  providing  odometry  

data  to robot_pose_ekf package for estimating bot’s current position). 

 

 Obtain GPS values: The gpsd daemon running on the Ubuntu looks into device file onto 

which the values are written by the GPS.  Using telnet we publish these values onto a port.  The 

gpsd_client  node  running  in  ros  listens  to  this  port  and  takes  in  the  value  and  publishes it 

by a topic named /fix. 

Give direction to bot:  The  gps_com_filter  node  implemented  in  the  gps_t  package  

takes in an input  from  both  the  compass (for calculating bot heading ) and the GPS data (for 

calculating direction towards  GPS  waypoint)  and  depending  on  them  calculates  a  direction  

which  is  published  for  the remaining  modules  to make a decision based upon. 

Goal points from GPS: Navigation stack requires goal points specified on base frame for 

making a movement. The gpsgoal node present in the package simple_navigation_goals sends goal 

points in bots base frame to the navigation stack. These goal points are calculated based on the 

present GPS coordinates and the bots heading.  

Odometry data: The robot_pose_ekf package requires odometry data for cal culating present 

pose of the bot. This is calculated by the gps_common node present in gps_umd package  

The odometry data calculated is published by the topic name.  

Block diagram for above mentioned steps: 

 

Fig. 21 Flow of data from odometry 

sensors: GPS, IMU, Compass and Wheel 

encoders 



 

 

All sensor data and control systems are integrated using the Robot Operating System platform. This 

graph represents the publisher-subscriber data flow model for the Abhiyan robot. 

 

 
 

 

 

Our Intelligent Ground Vehicle has the ability to traverse rugged and dangerous terrains that any 

human will find difficult. Also, the IGV can move from one goal point to another with considerable 

accuracy and avoid obstacles within its range of motion. Features of lane detection and flag 

detection are implemented using a camera positioned on the bot. These features can be easily 

adapted and its uses are multi-varied and distinct. The prototype  when  implemented  on  large  

scale  can  be  used for  sting  operations  by  the  military.  The Image  processing  technology  

used  for  path  following  can  be extended for  many Human Computer interface  technologies  

which  can  be  used  in  the  consumer  market.  On the whole the complete integration of hardware 

and software makes it very versatile for different applications. The technology we are developing is 

an intelligent ground vehicle. It is a vehicle that can be used in semi–rugged  terrains  for  military  

operations,  mitigation,  surveillance  and  sample  collection. Capable  of  traversing  over  sand,  

gravel  and  grass,  the  vehicle  realizes  autonomous navigation and detects  obstacles  through  

laser  ranging.  Algorithms developed to automatically generate waypoints, will guide the vehicle in 

Fig. 22 Comprehensive network of all topics from 

the final integrated multi-sensor system of all the 

modules together. 

 



 

unidentified regions. Manual control of the vehicle is achieved using wireless communication.  The 

vehicle can thus be controlled from a remote base station. Together with  an  image  processing  

module  in  place,  the  vehicle  is  capable  of  independently  navigating  in  a new environment. It 

is also capable of delivering a live video, recorded by the on-board camera at a remote location. The  

technologies  involved  in  the  project  are  those  of  emerging  industries  today, with great 

opportunities for breakthroughs and innovation. 

 

 

Part/Electronics Company & 

Model No. 

Description Amount (In USD) 

Laser Range Finder SICK AG & LMS 

111 

2D LaserScan sensor 3417.5 

Inertial 

Measurement 

Sensor 

Sparkfun & Razor Three Axis Gyro, 

Accelerometer and 

Magnetometer 

209 

Global Positioning 

System 

Hemisphere GNSS & 

A101 

GPS receiver module 2295 

Digital Compass Sparkfun & Adafruit 

HMMC5883L 

Tilt compensated compass 29.10 

Camera( 2 No.s) Logitech & C310 HD720P Webcam 54.8 

DC Geared motors Maxon  DC geared motor with 

internal wheel encoders 

N/A 

Batteries ZIPPY Flightmaxx Lithium Polymer batteries 234 

Fabrication N/A N/A 374 

Circuitry N/A Electronics & PCB printing  796 

Total Cost 7409.4 USD 
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We hope that this report is a clear testimony of the work we have been doing and the challenges we 

have resolved in the building of an intelligent ground vehicle. 


