

The team is being incubated in the Centre for Innovation (CFI) and is being supported by funds

from the Alumni of IIT Madras. The team consists of junior undergraduates belonging to various

academic backgrounds viz., Computer Science, Electrical Engineering, Mechanical Engineering,

Engineering Design etc. With this diversity, every member brings to the table a different set of

skills and opinions, which is vital considering the multi-disciplinary nature of the project.

The tasks in hand are divided between 5 modules:

- Mechanical Module

- Electronics

- Navigation

- Communication

- Obstacle avoidance

- Computer vision

Team Leaders

Ashish Mohan Sharma

Sripriya Kalidoss

Mechanical Design

Akshay Sudhakar

Navaneeth

Computer Vision

Nikhil Krishna

Muhammed Ajwahir

Bhargav Ghanekar

Prerna Dhareshwar

Spoorthy Reddy

Electronics

Sai Kiran Ramana

Sushmita A.V

Jayachand

Manudeep C

Obstacle avoidance

Vishwa Sai Prathyusha

Saathvik DPKS

Bhavya Sambana

Arvind N

Communication

Akhil LB

Navigation

Arjun Kumar

Introduction

The weight and dimensions of the payload were the primal considerations during the course of the

mechanical design. Being the heaviest part of the vehicle it was ensured low placement and CG as

near to center of vehicle as possible. The shape and structure of the frame were decided after

rigorous discussion and testing considering the distribution of different components to be placed on

it. The bot will be in contact with 3 points on the ground at all times. So, given any terrain, the bot

will always find a plane of motion. Air-filled tyres are used for locomotion such that their pressure

can be varied to dampen unwanted vibrations.

Design Methodology

1. Drive train

The drive train is very simple and effectively

designed. The motors are placed near the

center of the vehicle, while the drive shaft and

motors are connected using flange coupling

arrangement. This arrangement reflects the

design for easy assembly and disassembly in

the vehicle. The coupling arrangement is

attached to the frame using ball bearings on

either side of the wheel, which provide

support for smoothness and help avoid friction

and bending moments.

2. Frame

The whole chassis of the vehicle is

made using Aluminium extrusion

channels. The main problems with the

previous prototype (Abhiyan 1.0) were

the use of Aluminium L-channels and

the resulting instability of the structure,

which led to errors in the readings of various sensors, which led to complications in the

navigation and obstacle avoidance modules. Aluminium extrusion channels are

commercially designed for modularity and ease of assembly and disassembly of the

complete frame. Thus, the fabrication time and efficiency of the vehicle were reduced

considerably. The extrusion channels can be joined using angle brackets at right-angle

joints. We can also tap threads into the channels and use T-nuts and Button-head bolts to

fasten 2 different channels.

Fig.2 a)

Angle

bracket

b) T-bolt

Fig.1 Drivetrain arrangement

3. Steering

Being a completely autonomous vehicle, no manual input is allowed once the vehicle is

on track. The differential drive was chosen as the steering methodology because of its

simplicity and efficacy for our requirements. The vehicle has two powered wheels and

one castor. The wheels are powered by one motor each. The RPM of the motors is

controlled independently by the microcontroller. By varying the RPM of the motors the

steering angle and the direction of heading of the vehicle can be changed. Internal

encoders fitted with the motors are being used for precise motor control and odometry

calculations for navigation purposes.

4. Castor positioning

The position of the castor plays a vital role in the dynamic

orientation of the vehicle. Keeping the castor in the front

would make the robot sway in the direction of the castor,

which is theoretically controlled by the motion of the

powered wheels. But after extensive testing it was observed

that on rough surfaces the castor generates its own

direction which makes the vehicle deviate from the desired

path. Hence it was decided to use 2 front powered wheels

with a rear wheel castor.

Design Process

Computer Aided Design: The 3-D modelling software SOLIDWORKS by Dassault Systems

was used for CAD modelling purposes. The advantage of using this software is that it

reduces physical design iterations which can save time in the design process. There are also

provisions for stress analysis on the design to avoid material failures.

Fig.3 The complete

frame designed using

aluminium extrusion

channels. Notice the

right-angle joints are

connected using angle

brackets or by tapping

the channels and using

T-bolts.

Fig.4 Castor wheel at

rear of the vehicle

Payload: The vehicle is required to run with a payload of 10 kg weight. The design and

component distribution has largely been influenced by the presence of the payload. A low

and centralized center of-gravity has been maintained to provide maximum dynamic

stability to the vehicle.

Vehicle Configuration: After deep deliberation and analysis, it has been determined that two

wheeled front powered vehicle with a single rear castor is required for locomotion,

providing greater stability while turning. This weight distribution of the components and

low speeds ensure ground contact and enough normal forces on suspensions at all times.

Fabrication: The entire chassis was assembled using standard Aluminium extrusion channels

from Alstrut Inc. This improved the structural integrity of the vehicle and reduced

mechanical errors in readings from the various sensors.

Torque requirements

The major forces acting on the vehicle are-

- Aerodynamic force: These are the drag forces that act on vehicle due to wind resistance. The

forces are directly proportional to the square of velocity of the vehicle.

Fig.5 Free body diagram indicating

the forces acting on the vehicle

Fig.6 Plot of

aerodynamic drag

power vs. speed

From the plot and the equation it can be deduced that the air drag for our requirement is very

low and can be neglected.

- Rolling resistance

The rolling resistance is the friction that the vehicle experiences due to hysteresis in the runner

tires. The Rolling resistance is a constant value and is computed by

Motor specifications

We need to achieve a minimum speed of 1mile per hour and a maximum speed of 5 mile per

hour. Motor specifications were calculated using a max

speed of 3.9kmph and an average speed of 2.4 kmph.

Maxon Brushless DC motors are used with the ESCON

Module 50/5 Servo Controller, which is a small-sized,

powerful 4-quadrant PWM control for these type of

magnet-activated motors.

No load speed – 7580rpm

No load current – 137mA

Stall torque – 2280 mNm

Max. Efficiency – 91%

Operating Voltage – 24V

Fabrication and Assembly

Aluminium extrusion channels are used to build the chassis. The channels are connected using

angle brackets or T-joints. The motors were secured to chassis using vertical clamps to reduce

the vibrations and proper transmission of power to the wheels. Parts like bearing-casing,

couplers, intermediate shafts, rear wheels assembly were manufactured using lathe and milling

machines. Specific mounts were designed and fabricated for the multiple sensors like LiDAR,

GPS, Camera and a separate shelf for placing of the laptop computer. Enclosure of the entire

vehicle for rain proofing purposes will be done using acryclic sheets.

Fig. 7 MAXON DC Motor

Power System

Among all the sensors in the bot, the LiDAR, GPS sensor and the motors consume the maximum

power. Lithium polymer batteries are used as sources of power in the vehicle.

The sources of power in the circuit are divided into two:

a. Main Source: Five 3cell 30C 8000mAh batteries explicitly to power the motors, GPS and

LiDAR and safety light.

b. Auxiliary Source: One 3cell 30C 8000mAh battery to power the entire circuit.

Wireless control

The Auxiliary power source is connected through the RF module on the bot. This RF Module helps

to wirelessly control the circuit by switching it ON/OFF using a remote control. This serves as the

Wireless E-stop, added to the Mechanical E-stop (Push-button) on the vehicle.

Odometry: Control and PID Tuning

MAXON motors have internal encoders with 5376 Ticks per rotation which is very high for a

normal microcontroller unit to count the ticks appropriately. Hence, we use the Arduino Due QEI to

get Odometry data from wheel encoders which will be then used by the path planner in ROS.

ESCON motor drivers are used along with MAXON motors to control the speed of the motor and

regulate the current to the motors depending on the load. They contain internal circuitry that can

power and control the operation of the motors, according to the PWM signal sent by the Arduino.

To configure these motor drivers, the ESCON Studio software is used to tune and configure the

motors accordingly in order to achieve the desired set speed with ease. The tuning is done at high

frequency through inbuilt PID controller which follows basic Ziegler-Nichols Algorithm.

Fig.8 Final vehicle

a) Isometric view

b) Front view

Microcontroller Unit

The Arduino Due was preferred as the MCU because of its QEI (Quadrature Encoder Interface)

which is designed to count motor encoder ticks. Two Arduino Due are used since any one of them

individually cannot handle the encoder counts in the motors. I2C serial communication interface is

implemented between the 2 Arduinos to transfer data between them.

1)Master MCU: This powers and transmits data from the compass, controls the bot speed with

appropriate PWM signals and retrieves odometry data from the Slave MCU.

2) Slave MCU: Its sole purpose is to get the

odometry data from the wheel encoders and

send it to Master Arduino by serial

communication.

 Since the digital I/O pins in the Arduino can

only take till 3.3V, there is a risk of burning the

MCU while interfacing with sensors like the

wheel encoders. To prevent this, optocouplers

are used to step down the voltage signal of the

encoder before providing it to the Due.

Eagle CAD is used to design the PCB.

Basically, the circuit board is virtually

partitioned into two parts -

- Main Board

- Power board.

The main board consists of the Arduino Due shields, ESCON motor driver shields and optocoupler

shields. Fuses are used to protect various components of the circuit from shorting and current surge.

One of the main functionalities of this ground

vehicle is to perceive the environment, and

negotiate outdoor obstacles. Obstacle avoidance is,

hence, the most fundamental and essential part of

the vehicle’s navigation system.

The crucial component for this is the sensor,

which is chosen to be a LiDAR (Light Detection and

Ranging Device). LiDAR is a laser based ranging device that scans the surroundings in 2D plane

in front of it to detect objects and evaluate their positions. It, basically, gives a polar profile

through which the distance of the nearest obstacle at any angular position can be measured.

Fig.10 Sample LiDAR scan

Fig. 9 PCB designed using Eagle CAD

Earlier, the basic algorithm was simulated and tested in various software (MobileSim of ARIA),

the results for which have been summarized in the following section. The figure above shows

the data obtained in a LaserScan. The whole region is segmented into different regions called

as valleys and peaks. Valleys represent no obstacle region and peaks represent the region in

which obstacle is present. Hence, at any instant the algorithm looks for all the valleys and chooses a

valley closest to the goal position with a constraint that the valley width is greater than the robots

width. MobileSim is a software on ARIA (Advanced Robotics Interface for Applications)

platform of mobile robots that is being used for simulating the basic algorithm.

Limitations -

 The present mapping software cannot be used for complicated environments

 The motion control and other functions are all in-built, which cannot be customized as

per our requirements

 Direct integration with other modules and ROS is not possible.

Current Control and Operating System

Moving to an advanced stage, it has been decided

to use ROS (Robotic Operating System) and the

in-built algorithms available with its packages for

the navigation of the robot. The current control

and operating system in Abhiyan robot is based

majorly on ROS.

ROS is an operating system with a set of

libraries and software for various robotic

applications. It also covers various algorithms

for many programs, provides visualization

software for simulations, device drivers for

various sensors, and also unique opportunity

of synchronization with various applications at a

Fig. 11 Simulation

on MobileSim

Software

Fig. 12 Robot configuration

time. That allows for better and easier ways of integration of different modules.

In such huge set of packages available, the package called ‘Navigation Stack’ is being used for this

robot. Navigation stack takes in input data from all the sensors attached to the robot, processes them

in different appropriate nodes simultaneously or sequentially, and gives the values of the velocities

to the robot to follow as an output.

Working of Navigation Stack

Input:

Robot Configuration - This includes transform configuration and robot setup, wherein the

physical shape, size and dimensions of the robot are set up. With this information about the

robot, all the frames available on are identified. This transform considers all the coordinate frames

and uses this transform to interpret data from various sensors appropriately.

Sensor Information - Data from different sensors is obtained and taken in form of messages. There

are a set of kinds of messages in which the data can be published and subscribed by different nodes

whenever required.

 A view of the frames of the robot, where LiDAR (base_laser), Camera (laser_frame) are attached

to the main robot base (base_link) receiving odometry readings (odom), also connected to IMU

(imu_frame). Also shows the parameters in which the sensor data is being received.

Fig.13 Frames of the robot

Process and Outputs:

The navigation stack with all the parameters in the .yaml files for robot configuration, with

all the inputs from different sensors published/subscribed by different nodes, maps are

generated with specified goals to reach. Then, by using SLAM(Simultaneous Localization and

Mapping) in gmapping package on a dynamic map or by using AMCL(Adaptive Monte

Carlo Localization), the pose of the robot is traced and localized. After the localization of the robot,

according to its position with respect to the target location, the robot is given velocity commands

(/cmd_vel) to reach the goal.

Introduction

Major challenges in the problem statement include:

- Detection of lanes and simulate potholes in the arena

- Detection of red and blue flags and navigate the vehicle accordingly

The goals of this module were to effectively isolate the lanes and potholes and feed this data in

some format to the path planner for further processing. Also, it was required to obtain the positions

of the red and blue flags in the arena and transfer the data to ROS for planning and navigation.

For lane-and-pothole detection (Camera 1), a Logitech C310 camera (640X480) is used to capture

the view of the arena. The camera is mounted at a height of 43.3cm from the ground. For flag

detection (Camera 2), a camera of the same model is used but at a height of 100cm from the

ground.

Fig. 14 Network

of the topics

published and

subscribed

between

different nodes.

Bird’s eye view transformation

The orthographic view of the camera is computed using

the formula:

A = HB

Where A ≡ orthographic/final computed image;

 B ≡ initial image captured by the camera;

 H ≡ Homography matrix;

The Homography Matrix is calculated by training the

camera for various heights and angles, so as to

minimize the errors obtained. After rigorous testing, it

was finally settled to have the camera mounted at a

height of 43.3cm above the ground, tilted to an angle of

-20ᵒ with the horizontal. This is also reduces the blind

spot distance, so as to capture the parts of the lane

which are close by. The blind spot distance is

approximately 67cm from the front-end of the vehicle.

Obstacle masking

The lane detection algorithm requires the obstacles to be masked/ignored from the image for

efficient computation. Hence, this is done using HSV segmentation of the blue channel of the input

Fig.16 a) Normal camera view

Fig. 15 Breakdown of the

algorithms used. Scripts

implemented in C++ using

OpenCV libraries.

Fig. 16 b) Orthographic view

image and applying an automated thresholding algorithm which takes the minimum peak in the

histogram as the thresholding characteristic.

- Image is converted from RGB to HSV

- Orange parts of the image are thresholded to white in a binary image.

- Convolution with a vertical kernel is done to mask out striped barrels properly.

- Morphological opening and closing algorithms used to smoothen the contours

- Subtract the final image from original image to mask out the obstacles

- A contour-area based filter can also be used to get rid of the blobs after convex hulling.

Lane detection

The algorithm for extracting lanes from the grassy arena includes converting the color space to

HSV for better color segmentation. The obtained image is processed by the Canny Edge Detection

Algorithm before running it through Probabilistic Hough Transform. The voting procedure is set up

to maximize the number of lines of a minimum length that can be generated in the image.

Pothole detection

An essential part of the problem statement is to detect simulated potholes (white in color). The

circular potholes are actually seen as ellipses in the non-orthographic, i.e. the camera view.

We take the image processed through the obstacle masking and lane detection algorithms. A median

filter is then applied, followed by canny edge detection. The obtained contours are fitted to ellipses

using perimeter thresholding. These ellipses are masked as potholes.

Fig. 17 Lane detection
after masking obstacles

a) Original image
b) Final image after

processing

Flag detection

Flag detection is done using Camera2 placed above Camera 1.

The centroids of the triangular red and blue flags are roughly in a plane parallel to the ground.

Hence, a homography matrix calibrated for a height of 100cm above the ground is used so as to get

the correct orthographic view.

Red (Grainger3LUK2) and Blue (Grainger3LUK4) flags are detected using HSV segmentation.

These flags are fitted into a polygon, whose centers are located and joined by best-fitting lines. The

objective is for the vehicle to stay to the left of the red flags and to the right of the blue flags.

Thus, we can create a wall in the infeasible regions of travel for the bot, so that the feasible regions

remain open. This final image depicts the regions of open allowable travel for the bot.

ROS Integration

The lanes, obtained above, are converted into the form of LaserScan data. This conversion is

needed because the ROS Gmapping package can accept data inputs only in the form of LaserScan

data or Point Cloud data to generate maps. After converting to LaserScan data, the CV images are

converted to ROS image messages using cv_bridge package, so that the images can be

published, and accessed by the ROS Gmapping package, which visualizes the lanes as

Fig. 18 Simulated
pothole detection
a) Simulated
pothole
b) After processing

Fig. 19 Flag detection

a) Original image b)

Red and blue flags

detected as

continuous contours

walls/obstacles to be avoided. This data is fed into the navigation stack, along with the LiDAR,

GPS and odometry data for path planning and autonomous navigation. The walls obtained in

the flag detection script can also be passed as a LaserScan to ROS, which will run it through similar

procedures to depict the possible paths of navigation for the bot. The simulated potholes will also

be seen as walls, applying the same methods to these as well.

Further challenges in these algorithms include noise removal in video feed, processing capabilities

of the computer and ambient conditions of the track.

The JAUS challenge requires us to implement JAUS services on our machine and make it

interoperable. We have used the JAUS++ SDK for this purpose. JAUS++ is an Open Source

implementation of JAUS in C++. It implements the current versions of the SAE standard. JAUS++

includes complete message libraries for both the Core and Mobility service sets, and interfaces for

the most common services. JAUS++ is Object-oriented in design and provides threads in the

background to send and receive messages. Every JAUS component has a subsystem ID and a

node ID. The assignment of these IDs is static. For transport, JAUS over UDP transport protocol

will be used as specified in AS5669A.

The UGV first tries to discover the calling device and tries to establish a connection with that node.

It keeps listening to that node for queries. As soon as a query is received, it processes the type of

query it is and decides which action to take. If a query for velocity or GPS is made, the last value

of the required component published from ROS is read and updated in the JAUS system

navigation points and fed back to ROS. JAUS++ provides us an interface to update different

components and since it runs threads to receive and send messages in the standards mentioned by

SAE, we don’t have to worry about them while coding it. Since a reliable transmission is needed,

JAUS is implemented on TCP.

The following diagram shows the class inheritance diagram for services within JAUS++. It shows

the Core Services and a few Mobility Services available.

Introduction

A vital system for any ground vehicle to make an accurate decision about its heading and

navigate from initial position to final position. Here, we have used global coordinate system

i.e. Global positioning system (GPS) for localization in the vehicle’s frame of reference. Apart

from this, Inertial Measurement Unit (IMU) is also used to obtain localization in vehicle’s frame.

This provides another input for vehicle’s movement to know its position and orientation

accurately. To know the vehicle’s heading with respect to the Earth’s magnetic field, combination

of triple axis magnetometer and triple axis accelerometer is used. Combination of these two sensors

provides tilt compensated values of vehicle’s heading.

GPS Hemisphere A101 Smart antenna:

This Antenna uses GNSS to locate its position at an update rate of 20 Hz. It can also be used as

DGPS using SBAS and NMEA 0183 protocol. Accuracy of the device is around 50cm.

Software like Pocketmax 3 or SLXMon is used to calibrate the GPS device using the Microsoft

Windows platform. To get faster satellite locks, the masking angle can be reduced. DGPS is used to

get faster and more accurate values.

We are using the GPSD client to publish the Co-Ordinate data and integrate it into ROS.

GPS readings are obtained and converted to link vehicle’s local coordinate system to the

Global coordinate system using Spherical Polar coordinates. The heading angle of the vehicle, in

Fig. 20 JAUS system architecture

local coordinate system, with respect to Earth magnetic field direction (N-S) is obtained from the

compass. We have used GPS system and compass to determine the angular rotation of the vehicle

.This angle of rotation can be fed to the wheel encoder using algorithm to rotate precisely

with same amount as calculated. Here Inertial Measurement Unit (IMU) helps in tracking precise

angular rotation of vehicle and its motion.

Implementation in ROS:

With respect to ROS, the navigation module includes some basic tasks to be done:

1) Giving the bot a direction toward next GPS waypoint

2) Sending goal points to navigation stack

3) Providing the remaining modules with necessary data (this includes providing odometry

data to robot_pose_ekf package for estimating bot’s current position).

 Obtain GPS values: The gpsd daemon running on the Ubuntu looks into device file onto

which the values are written by the GPS. Using telnet we publish these values onto a port. The

gpsd_client node running in ros listens to this port and takes in the value and publishes it

by a topic named /fix.

Give direction to bot: The gps_com_filter node implemented in the gps_t package

takes in an input from both the compass (for calculating bot heading) and the GPS data (for

calculating direction towards GPS waypoint) and depending on them calculates a direction

which is published for the remaining modules to make a decision based upon.

Goal points from GPS: Navigation stack requires goal points specified on base frame for

making a movement. The gpsgoal node present in the package simple_navigation_goals sends goal

points in bots base frame to the navigation stack. These goal points are calculated based on the

present GPS coordinates and the bots heading.

Odometry data: The robot_pose_ekf package requires odometry data for cal culating present

pose of the bot. This is calculated by the gps_common node present in gps_umd package

The odometry data calculated is published by the topic name.

Block diagram for above mentioned steps:

Fig. 21 Flow of data from odometry

sensors: GPS, IMU, Compass and Wheel

encoders

All sensor data and control systems are integrated using the Robot Operating System platform. This

graph represents the publisher-subscriber data flow model for the Abhiyan robot.

Our Intelligent Ground Vehicle has the ability to traverse rugged and dangerous terrains that any

human will find difficult. Also, the IGV can move from one goal point to another with considerable

accuracy and avoid obstacles within its range of motion. Features of lane detection and flag

detection are implemented using a camera positioned on the bot. These features can be easily

adapted and its uses are multi-varied and distinct. The prototype when implemented on large

scale can be used for sting operations by the military. The Image processing technology

used for path following can be extended for many Human Computer interface technologies

which can be used in the consumer market. On the whole the complete integration of hardware

and software makes it very versatile for different applications. The technology we are developing is

an intelligent ground vehicle. It is a vehicle that can be used in semi–rugged terrains for military

operations, mitigation, surveillance and sample collection. Capable of traversing over sand,

gravel and grass, the vehicle realizes autonomous navigation and detects obstacles through

laser ranging. Algorithms developed to automatically generate waypoints, will guide the vehicle in

Fig. 22 Comprehensive network of all topics from

the final integrated multi-sensor system of all the

modules together.

unidentified regions. Manual control of the vehicle is achieved using wireless communication. The

vehicle can thus be controlled from a remote base station. Together with an image processing

module in place, the vehicle is capable of independently navigating in a new environment. It

is also capable of delivering a live video, recorded by the on-board camera at a remote location. The

technologies involved in the project are those of emerging industries today, with great

opportunities for breakthroughs and innovation.

Part/Electronics Company &

Model No.

Description Amount (In USD)

Laser Range Finder SICK AG & LMS

111

2D LaserScan sensor 3417.5

Inertial

Measurement

Sensor

Sparkfun & Razor Three Axis Gyro,

Accelerometer and

Magnetometer

209

Global Positioning

System

Hemisphere GNSS &

A101

GPS receiver module 2295

Digital Compass Sparkfun & Adafruit

HMMC5883L

Tilt compensated compass 29.10

Camera(2 No.s) Logitech & C310 HD720P Webcam 54.8

DC Geared motors Maxon DC geared motor with

internal wheel encoders

N/A

Batteries ZIPPY Flightmaxx Lithium Polymer batteries 234

Fabrication N/A N/A 374

Circuitry N/A Electronics & PCB printing 796

Total Cost 7409.4 USD

We would like to thank Centre for Innovation, IIT Madras for being our chief patron and

providing us major funding for vehicle construction, travel and logistics. We would also like to

thank our Faculty Advisor, Dr. Nitin Chandrachoodan, for his unshaken faith in our team, and the

Co-Curricular Advisor, Dr. Mahesh Panchagnula for his support and guidance. Lastly, we are

grateful to the Centre for Industrial Consultancy and Sponsored Research, IIT Madras for helping

us with procuring the imported components with relative ease.

We hope that this report is a clear testimony of the work we have been doing and the challenges we

have resolved in the building of an intelligent ground vehicle.

