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ABSTRACT

This year the software development was based on a Test-Driven Development cycle (TDD) together
with  a  DMAIC improvement  cycle  (Define,  Measure,  Analyze,  Improve,  and  Control).  During  the
design process a small group studied the various concepts, and choices were made democratically with
the complete Capra organization. Since last year, real world and simulated testing was greatly improved.
The result evaluations come from the sum of the test scores, with that score being weighted according to
short-term and long-term objectives. One month before IGVC, Capra6.2 was able to complete the real
world basic course and around 60% of the simulated advanced course.

TEAM ORGANIZATION

The club was founded in 1999 by a group of students passionate about the world of robotics. Capra is a student scientific
club  that  has  as  its  main  goal  the  design  and  implementation  of  autonomous  ground  vehicles.  The  team consists  of
engineering  students  from  various  different  Bachelor  Degrees  and  receives  no  help  from any  professors  or  research
professionals, meaning the club is entirely directed by its members. Members of Capra work completely voluntarily, totaling
to hundreds of hours without receiving any additional credits or compensation. They are students motivated uniquely by
their  passion to learn more practically, and accomplish in creating a product they are proud of.

Both captains  of  the team act  as  project  managers.  Projects  are not  imposed on the students,  but  instead they are
encouraged  to  take  on  projects  they  feel  they  are  best  suited  for.  Each  department  discusses  specific  subject  matter
concerning their projects using a GoogleGroup, for example the process and execution of the robot’s design. GitHub and
Google Drive are used to centralize all the software resources.
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During  the  departmental  meetings,  members
discuss different feasible solutions for problems that
have  arisen.  Each  solution  is  then  evaluated
individually and the members express their doubts
and concerns to then be reviewed point by point, the
pros and cons, of the presented solutions. Following
the  discussion,  decisions  are  taken  democratically
within the department to then be presented to the
membership as a whole. Each department presents
their decisions during general meetings, which are
meetings  of  the  entire  membership  to  discuss
problems arising within projects and solutions found
to  be  implemented  to  ensure  that  everybody  is
aware  of  the  decisions  taken  by  each  department
and the overall impact it has on the overall product.

Mechanical  design  is  done  using  Solidworks.
Each idea, such as modifications or additions to the
design, is discussed during the general meetings or
on the club’s mailing list within the Google group.
Only a few people are tasked with the technical drawing of the vehicle during the conception phase, leaving the rest of the
team time to concentrate on the construction of the drawn parts. Using a similar procedure to the mechanical department,
the electrical department designs their circuits using Altium.

DESIGN STRATEGY

As any improvement  process  is  based  on the  DMAIC improvement  cycle
(Define, Measure, Analyze, Improve, and Control), Capra is continuously using it
to guide the innovations of the robot. The cycle restarts again following the tests;
new objectives are defined, new measures are compiled, etc. During the design
process, the software department define their needs as they relate to the design
function, they present alternative measures that can be taken and ultimately the
final  decision  is  made by  the  membership.  Capra  applies  the  DMAIC in  the
following way.

Define

The first step of any design process is to define the needs to be fulfilled. Since
the team participated in the 22nd edition of IGVC last year with a new robot,
Capra6.2,  the  assessed  needs  and  possibilities  of  improvement  were  clear.
Specific objectives were defined by the needs to guide the team’s work. Outlined
below are examples of some of the global objectives within different DMAIC
cycles  of  the  same  project,  they  have  been  organized  into  three  distinct
categories:  

Reliability:

• Define the working scope of  the design process  until  the next IGVC

which is 90% software 
• Use a methodology of test driven development (TDD) based on people’s
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Figure 2. Team Organization



experience and the data collected in previous years
• Make  each  component  of  the  ROS architecture  function

independently by the end of 2014
• Make  the  whole  simulation  or  the  basic  route  function

before march 2015
• Collect  new  data  each  weekend  in  new  environments,

similar to IGVC conditions, from March to June
• Use the collected data to conduct more precise tests

• Replicate the basic and advanced routes of the simulation

environment as accurately as possible

Durability:

• Reuse the vehicle’s recordings as much as possible to avoid

using the vehicle uselessly
• Eliminate structural weaknesses

• Conduct a complete check up of the vehicle after every two

exterior texts
• Clean the vehicle after each test

Safety:

• Define  a  procedure  for  diagnosis  of  problems  on  the

vehicle to avoid all risk of injury
• Facilitate acess for maintenance

• A risk awareness session is given to each new member of the team and is mandatory

Measure

Over the past year, the team has recorded measures, results, and statistical data of the vehicle’s performance. Methods to
analyze the performances based on different aspects of the vehicle were already in place. This year, the team found a way to
measure the software advancement based on the TDD principle. Each component and simulation of the route has a score,
this score is based on the complexity, time of implementation, and the importance of the task for the realization of the
team’s objectives.

The organizers of the test have to update the level of completion after each successful test. A completion of 1 (100%)
represents a finished task. The total score of the project is calculated by adding the results of the two following formulas; the
underlined numbers are simulated to better illustrate the formulas use. Thus, according to this table, the project would have
a score of 402.5/790.

Analyze

These data sets were used to analyze the improvement or otherwise between the past iteration and the present, and
accounts for future improvements to tweak achievable objectives. We also use this analysis to prioritize the short-term
goals.
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Table 1. Components Score

Component Score Completion (%)

1 Camera 2 1.00

2 LIDAR 2 1.00

3 Encoders 2 1.00

4 Smart Motors 3 1.00

5 IMU 3 1.00

6 GPS 3 1.00

7 Extended Kalman Filter 20 0.95

8 Vision Processing 20 0.90

9 Mapping 30 1.00

10 AI / State Machine 35 1.00

Table 2. Courses Score

Course Score Completion (%)

1 Basic (Simulation) 20 1.00

2 Advanced (Simulation) 50 0.91

3 Basic (Real World) 100 0.70

4 Advanced (Real World) 500 0.15

Figure 5. Components Scoring Formula Figure 6. Courses Scoring Formula



Improve

This is  where changes were initiated.  The team leaders  encourage their  team members  to act  and produce results.
Experienced members taught the newer members and helped them to find and focus on the simplest and easiest solutions to
issues. We found this year that the supervision offered by both DMAIC and TDD is making less experienced members more
comfortable and more productive. Several little goals will always be easier to achieve than a big one.

Control

Small teams test their improvements, control any changes, record their tests, and update their scores.

CONCEPTUAL DESIGN

The architecture of Capra6.2 was separated into parts based on the functionalities needed by an autonomous vehicle to
simplify the design process of the robot. Those sections are sensing, positioning, cognition, and mobility.

Sensing

The maximization of  the field of  perception,  both for  physical  and visual  obstacles,  was the basis for  the sensing
strategy.  The perception needs  to  be as  reliable as  possible so that  the mapping is  precise and  accurate.  It  must  also
guarantee the safety of nearby bystanders because Capra6.2 is often used in public and interactive demonstrations. The
solution is simple and efficient so as to meet the Auto-Nav challenge requirements.

Capra uses and modifies already existing ROS solutions, implementing only what is missing (e.g. a vision processing
module specifically for IGVC), so as to not overcomplicate the design. The data format for the mapping uses ROS's point
clouds. This setup enables the use of a standard data format for all sensors, which is in itself efficiently implemented in
ROS.

The robot is designed with the various sensors in mind. For example, the body was made in such a way that the LIDAR
has full access to its 270 degrees of range.

Positioning

Since the mapping depends heavily on positioning, the latter must be extremely reliable, precise and accurate. To assure
that these aforementioned requiementes are met, data is gathered as often as possible and passed through an Extended
Kalman Filter. The use of complex components, such as an inertial measurement unit (IMU) and a global positioning system
(GPS), requires strict operating procedures to both reduce the failure modes caused by human operation, and optimize their
precision.

The ROS community has greatly simplified the implementation process of a positioning system; many subsystems are
ready-made and publicly available. Few modifications are required to get a working positioning system up and running. The
Capra robot has two motorized wheels along its center so that it can turn around on itself without skidding on the grass. The
IMU must be placed outside to avoid electromagnetic interference.

Cognition

The development of a cognition system is based upon a simulated environment and tested in the field. This year, the robot's
artificial intelligence (AI) is simple, stable and modular. Its flexibility is guaranteed by the incorporation of a state machine
module to control which AI strategy to use when, along side the implementation of a multi-layered subsystem for the AI
(detection, mapping and path planning). This offers the desired stability and simplicity. The division of the cognition system
renders it more durable as depreciated modules can simply be removed or replaced.

Mobility

Security is the main concern of the mobility system; even if the robot can reach a top speed of 4.4 miles per hour (1.97
m/s), it has a hardwired limit of 2.2 mph (1 m/s), thus the reaction time is around 68 ms. The use of smart motors guarantees
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a quick and detailed diagnostic of any encountered failure modes, either during testing or a competition. Only two motors
are used to reduce the cumulative error from the encoders, this also benefits the path-planning module as the robot can turn
on itself. The batteries have a long life, rendering them extremely ideal for tests and official events. The robot's body is as
small as possible, which reduces the strain on the batteries and maximizes error tolerance.

COMPONENTS OVERVIEW

Inertial Measurement Unit (IMU)

The VN300 from VectorNav Technologies uses a GPS
antenna and an integrated Kalman filter  to estimate the
optimal positions, velocity and orientation. The use of the
GPS allows us to obtain reliable measures without having
to rely on the robot’s dynamic or magnetic sensors. We
choose  this  IMU  for  its  reliability  and  durability.
Measurement  includes:  3-axis  Accelerometer,  3-axis
Gyroscope,  3-axis  Magnetometer,  Barometric  Pressure
and two 50-channel u-blox GPS L1 C/A GPS receivers.

Rotary Incremental Encoders With Index

Two  1000  CPR  Optical  Encoders from  US  Digital
precisely measure the relative position and the velocity of
the two motorized wheels of the vehicle. Those encoders
are directly placed on the engine’s shaft, in front of the
gearboxes  that  have  a  20:1  ratio;  increasing  by  twenty
times  their  precision.  Each  encoder  has  a  precision  of
more or less 0.018 degrees, which corresponds to 0.0019
inches (0.048 mm) on the tires.

Global Positioning System (GPS)

One  ProPak-V3 with  702-GG antenna from  NovAtel
Inc. is  placed  in  the  center  of  the  robot.  One  hundred
times per second, the GPS sends 3.94 inch (100 mm) precise measures with Omnistar HP. This device provides superior
multi-path rejection close to the antenna, and in high multi-path environments.
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Figure 7. Hardware Conceptual Design Figure 8. Software Conceptual Design

Figure 9. Components Overview



Light Detection And Ranging (LIDAR)

One LMS100 from SICK Group measuring at 270 degrees, with a precision of 1.77 inches (45 mm), at more than 59 feet
(18 m), at 50 Hz. The measures are taken between 1.64 and 65.62 feet (0.5 and 20 m) with an angular resolution of 0.5
degrees. Ultimately this LIDAR was chosen for its durability and reliability.

Camera & Fisheye Lens

The  Manta  G-095C from  Allied  Vision with  Fisheye  Lens
T2Z1816CS from  Computar performs considerably well, and its
visibility is very impressive. It is able to provide a resolution of
1292  ×  734  pixels  at  40  Hz  with  a  very  sophisticated  color
correction. The fisheye lens of the camera lets us see with a field
of view (FOV) of 160 degrees. It is possible to change the focus
manually in order to test different strategies.

Computer

A  W540 from  Lenovo was  chosen  for  it’s  durability  and
reliability. We have one backup in the case of a failure. Softwares
are  constantly  synchronized  between  the  two  computers.
Computer specifications are described in Table 3.

Smart Motors

Two  SM23165D from  Animatics  Corporation with  SL1500  20:1
Gearbox from Parker  are in the center of the robot in order to let the
robot turn at a 0 degree turning radius. Only two engines in the center
of  the robot are used to  avoid slipping on the grass  when the robot
turns. This kind of action adds an important error risk to the values of
the encoders. Capra6.2 has two motorized wheels at the front, two rear
swivel wheels, and an independent suspension system. The suspension
system is  made of  four  pneumatic  shocks   not  directly  fixed  to  the
wheels, but instead installed on a suspension arm fixed to the wheels. It
makes the robot extremely dependable even where the terrain is bumpy
and unequal. See Table 4 for detailed specifications.

Battery

A  battery  system  of  78  4.2V  5Ah  LiFePo4  cells  from  Amita
Technologies Inc. there are 6 of these cells  connected in series to form a
single battery, leading to a total of 13 batteries. Each of the 13 batteries
are plugged in parallel for a total supply of 54.6 V. The battery system
was completely assembled by the Capra team.

Input-Output PCB & DC-DC PSU

Both  are  custom  made  and  are  described  in  the  Electric  Design
section.

ELECTRIC DESIGN

Power Distribution

The battery is directly connected to the motors and the electrical box where inside the power lines are connected to a
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Table 3. Computer Specifications

Parameter Value

CPU Intel(R) Core(TM) i7-4700MQ
CPU @ 2.40 GHz

RAM 16 GB @ 1600 MHz

SSD Vertex 4 (64 GB)

SSD (Max Read) 460 MB/s

SSD (Max Write) 220 MB/s

Graphic Card NVIDIA Quadro K1100M

Graphic Cores 384 @ 716 Mhz

Graphic Card Memory 2 GB DDR5 @ 2800 Mhz

Table 4. Smart Motors Specification

Parameter Value

Continuous Torque 74 oz-in (0.52 Nm)

Peak Torque 118 oz-in (0.84 Nm)

Nominal Continuous Power 204 Watts

No Load Speed 5,200 RPM

Tires diameter 12 inches (304.8 mm)

Gearbox ratio 20:1

Figure 10. Battery Schematic



power supply. The power supply has been designed by Capra’s team and is based
on the Vicor Corp micro DC-DC converter. The power supply produces different
voltage rails to supply each sensor; generating 5Vdc, 9Vdc, 12Vdc, 19.5vdc and
24vdc. Each rail is fused at the input and the output.

The power supply is connected to the control panel through a power cable, and
to the other PCBs through a mezzanine card connector. The control panel splits the
power  line  to  every  sensor/actuator.  The  control  panel  allows  the  user  to
disable/enable any sensor/actuator individually either manually with a switch or
using  a  software  command.  A  power-on  LED  indicates  the  state  of  each
sensor/actuator.

Control Panel

The  control  panel  acts  as  the  user  entry  point  to  the  electrical  system of
Capra6.2. It provides manual and software control for the power distribution. It
also monitors information such as battery voltage, and vehicle current serial port
to the mezzanine card connector. Its consumption, internal temperature, problem
indicator, and individual sensors power-on LED. Finally, an ATC fuse (automotive
model) for each power rail is present on the control panel.

This  circuit  board  is  a  four  layer  PCB  based  on  a  PIC24FV32KA304
microcontroller; it has been completely produced by the Capra team. The use of
such a circuit considerably simplifies the maintenance of the vehicle as a result of the easy-connect configuration and the
monitoring  features.  Each  device
has a  unique connector  that  avoids
human  errors  and  results  in  clean
wiring.

Input-output PCB & DC-DC PSU

Capra’s  electrical  team  has
designed a printed circuit board that
allows  easy  scaling  of  the  system.
This  circuit  has  two  main  safety
related  features:  it  provides  five
RS232  ports  over  one  USB  cable,
and  it  allows  input-output  PCB  to
take control over a RS232 line as a
middle man.

SYSTEM INTEGRATION

System  integration  is  what
makes Capra6.2 a robot functioning
as  a  whole  rather  than  many
modules  working individually.  The centerpiece of Capra6.2’s  software system integration is the ROS architecture that
manages the communication between all the nodes of the system. The software team used this integration to connect all the
sub-systems together, be they pre-existing nodes within ROS or new ones designed by them.

The node controlling the Animatics SmartMotor is a new part of ROS added by Capra this year. It is a conversion of pre-
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Figure 12. DC-DC PSU



existing Java code to Python for an optimized integration with ROS, and is able to send velocity commands to the motors
while simultaneously reading the encoders’ position. The team also developed various new nodes that add functionalities
and interact with different parts of pre-existing ones.

Software Architecture

Capra’s software architecture is built on top of the Robot Operating System (ROS). It provides a reliable communication
model between all  subsystems, an efficient  distributed architecture,  and an extensive set of debugging tools to build a
software platform. Subsystems are divided into nodes, which can be developed independently one from another and provide
a perfect  integration with the team’s DMAIC processes.  Every device on the robot  has  its  own set  of  nodes that  are
independent from each other. This makes the code easier to maintain as each node acts as a software that receives and
publishes messages (i.e.: raw sensor data, the robot position, etc.) to and from other nodes.

Robot Positioning

Great improvements were made when it  comes to position the robot in a virtual  environment.  With the help of an
extended  Kalman  filter,  from  the  robot_pose_ekf  ROS package,  the  robot  positioning  subsystem can  now accurately
determine the robot’s position. The data from the wheel encoders, the Novatel ProPak v3 GPS, and the VectorNav VN-300
IMU, are merged in the filter and the linear quadratic estimation algorithm recursively calculates a statistically optimal
estimate of the robot’s position. The 0.5-degree accuracy of the IMU, together with the 5 cm precision of the GPS receiver
and the 0.02 degree precision of the rotary encoders allow an incredibly precise estimation. With the Kalman filter, the
robot’s position will always drift slowly towards the measurements and will attenuate the effect of erroneous data or bad
sensor calibration.

Waypoint Navigation

GPS Waypoints are loaded and converted to Cartesian coordinates as soon as Capra6.2 is launched. The current position
of the vehicle is accounted for and considered as the origin of the grid in which it will move. Since the GPS receiver’s
accuracy is very high, we can trust that converting the coordinates only once, at the start, will yield reliable results. Trials in
a real-word environment confirmed this theory.  One by one, the Cartesian waypoints will be sent to the robot and it then
will calculate a plan to reach them according to strategies described in the Software Strategy section.

COGNITION

Obstacle Detection

Obstacles are detected with our Sick LMS100 LIDAR. The physical layout of the robot allows the sensor to detect
obstacles within 270 degrees around the robot at 50 frames per second, with a precision of 0.5 degrees that is even able to
detect the poles of the flags of the auto-nav challenge. The raw data is filtered to remove optical distortions and sent to the
mapping subsystem.

Lane & Flag Detection

In the last few years, in association with other student clubs at École de Technologie Supérieure, Club Capra was able to
develop a common vision server named SeaGoatVision. This year, SeaGoatVision was encapsulated in a ROS node to
enable perfect compatibility with the rest of the system.
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The camera output is up to 40 images per second, with a 720p
resolution. With the help of a fisheye lens, the camera has a field
of view of 160 degrees, and the robot can easily compete against
other robots that use two cameras. Using a single camera makes
the vision system simpler since there is no need for hardware or
software synchronization between multiple optical devices.  

The goal set by the team this year was to be able to have an
artificial intelligence that could take decisions at a rate of 20 Hz.
In  order  to  achieve  this  goal,  the  vision  software  had  to  be
reworked entirely. With the help of multiple filters to sanitize the
output  from  the  camera,  the  line  detection  software  can  now
output lines at a rate of 20 Hz. Besides the optimization of the
filters, the execution of the line detection algorithm was moved to
the  GPU  in  order  to  let  the  AI  use  as  much  of  the  CPU  as
possible.

To detect  the lines and the flags,  SeaGoatVision uses a set  of  filters based on OpenCV algorithms to perform the
following actions: 

• Resize the image to maximize performance Figure 14. Image processing

• Remove the fisheye distortion of the lens

• Apply a mask to hide the robot from the camera image

• Apply color filtering

◦ Detection of white lines

◦ Detection of flags

• Adjust perspective to adequately position the elements in the 3D environment

• Publish the images

To detect the flags, we simply apply a HSV color threshold to the image since the colors
of the flag (red and blue) have hue values that are quite different from the green grass.

The first step of the vision strategy is to convert the image in HSV; some obstacles are
then removed using their typical orange colors to detect them. A filter removes the grass
from the image using predefined hue parameters to output a binary black and white image.
Some particle  of  grass  may still  be visible,  so a  particle  filter  is  applied to  remove the
smallest bits.

The next step is to split the image in 5 rows. A convex hull is applied on each of these
rows to make the detected grass areas bigger. Finally, the rows are put back together and a
dilate function is applied to connect them.

This process allows Capra6.2 to accurately detect lines. The filter must be calibrated if
the  lighting  changes  significantly,  but  otherwise  this  system is  quite  robust  in  a  stable
environment.

Vision Mapping

To position  the  various  elements  detected  through  an  optical  device  in  the  robot’s  virtual  environment,  the  team
implemented a new calibration system. The idea was to design a system that would be simple to use and calibrate. Thus was
developed a ROS node that shows the camera image to the user and allows for dynamic modification of the parameters of a
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Figure 15. Image Processing



perspective transform to align real-word points with virtual ones. Figure 15 shows the result of this process where a user has
aligned 6 real-world points (white) with their virtual equivalent (orange). The parameters of the transformations are then
saved and the filter is applied to any input image.

The whole process is very simple to do, taking from 2 to 3 minutes, and the filter only has to be recalibrated if the
orientation of the camera changes. 

Mapping

This year,  Capra overhauled the way its  robot  maps its  environment
now  using  the  probabilistic  3D  mapping  library  Octmap,  based  on  the
octree data structure.

To navigate through its environment, Capra6.2 uses its sensors to create
an accurate map of its surroundings. The map generation is based on the
ROS package  move_base.  Two  different  maps  are  used;  the  first  map,
called the local map, is built with instantaneous data from the sensors and
the persistence of these data is very low. Almost as soon as the sensors get
updated,  the  map  is  refreshed  to  contain  only  the  most  up-to-date
information.  This  allows  the  vehicle  to  plan  a  precise  short-term  plan
meanwhile reliably avoiding obstacles using the up-to-date data.

The disadvantage with the local map is that it does not take into
account the position of the robot and is therefore useless for long-term
uses. This is why a second map, called the global map, is generated as
the robot moves along its environment. The map is built by taking into
account  the  current  position  and  orientation  of  the  robot  and  the
currently detected obstacles and lines. The data is added to the map
using the  probabilistic  model  of  Octomap.  The model  accounts  for
sensor noise and the map is dynamically resized as the robot explores its surroundings. The data structure allows the map to
be stored efficiently and reused for a later run. . 

All the data uses point cloud formats and, even though the robot
currently  only  supports  2D  sensors,  the  maps  could  easily
transformed to 3D representations of the environment.

Both maps apply inflation to its input data. The inflation varies
according  to  the  type  of  the  obstacle,  the  type  of  the  map,  and
follows  the  following rules  (table  5).  By using  that  strategy,  the
robot  plans  its  global  path  to  avoid  any  obstacle  or  line,  while
simultaneously planning its  local  path  by considering it  can pass
quite close to lines.  The difference between the line and physical
obstacle  inflations allows the robot  to  avoid obstacles  at  all  cost
while keeping close to the lines. This optimization was designed to
increase the performance for the IGVC challenges, since the robot
may touch lines, but not obstacles..

Path Planning

To generate its path, Capra6.2 uses 2 strategies, basing itself on the move_base ROS package Figure 17 It starts by
generating a global plan using the global map built with high inflation values. This plans uses a dijkstra algorithm to find the
shortest path to the next waypoint. The path passes relatively far from any currently known obstacle, line, flag, or pothole
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Figure 16. Inflated Map

Figure 17. move_base ROS Package

Table 5. Obstacles Inflation

Line Value

Global map High inflation Very high inflation

Local map Very low inflation Low inflation



and is recalculated every 2 seconds to account for newly discovered obstacles. The second step is to generate a local path
that will calculate the velocities for the next 1.5 seconds and is recalculated at a frequency of 20 Hz. The local plan is
configured with three heuristics (named in order of importance):

1. Avoid obstacles
2. Follow the global plan
3. Reach the goal

The obstacle avoidance is based on instantaneous data
from the sensors  instead of on a pre-generated map to
achieve  very  robust  results.  During  the  process,  if  the
robot gets stuck and is unable to move, it starts cycling
through its recovery behaviors, pivoting on itself until it
finds a way out.

Figure 18 shows both plans as the vehicle plans its
way through an obstacle course. The green line represents
the global path while the short yellow line represents the
local path.

Lane Fallowing

The strategy to follow the lanes of the IGVC Auto-Nav challenge is the result of the process described in the previous
sections. As white lines are detected, they are added to the local maps, the global map, and the global path. This allows the
robot to plan a path to the next waypoint every 2 seconds, allowing the local planner to send velocity commands in such a
way as to avoid obstacles and lines; eventually leading to the objective.

To be able to follow lanes with dashed lines, the robot will extend the detected lines to cover the gaps between them if
they end abruptly. The generated path will then automatically circle around them.

SOFTWARE STRATEGY

The  artificial  intelligence
subsystem of the robot is based on a
state  machine that  manages the path
planning  algorithms,  the  waypoint
navigation  parameters  and  accuracy.
Figure  19  describes  how  this  state
machine  evolves  as  the  robot
progresses in the course. 

The  parameters  are  adapted  to
optimize  the  robot’s  behavior  and
decision-making  process.  The
precision  with  which  the  robot  will
attempt  to  reach  waypoints  is
dynamically  adjusted  to  reflect  the
importance of the waypoint (IGVC vs
generated waypoint from the previous
run). The speed of the vehicle is also
modified  since  the  no  man’s  land
generally  requires  less  precise

11 Figure 19. Decision-Making

Figure 18. Path Planning



movements.  At  the  start  of  the  run and  when the  last  IGVC waypoint  is  reached,  virtual  obstacles  are  automatically
generated to help guide the robot. A half-circle will force it to start by going in the right direction and a simulated wall will
close the way as the robot reaches the last IGVC waypoint, effectively forcing it to come back to the starting point through
the lane.

The yellow states represent states where the robot uses the path planning algorithms to reach a goal. This is where the
cognitive process takes place, iteratively calculating a path to reach the current waypoint at a rate of 20 Hz. 

For high speed operations, various parameters are adjusted in the following way:

1. Speed is increased
2. Obstacle detection range is increased
3. Waypoint precision is slightly reduced
4. Camera angle is adapted to see further
5. The resolution of the input camera image is slightly reduced to allow a quicker analysis
6. Path planning parameters are adjusted to avoid dangerous mechanical behaviors

Simulations

To test software strategies and analyze the decision-making process of Capra6.2,  the team decided to use the ROS
simulator,  Gazebo,  and  configure  it  to  accurately  replicate  the  sensor  data  perceived  by  the  robot  in  a  competition
environment. Two complete courses were designed, for the basic and the advanced challenges, and include lanes, obstacles,
waypoints, potholes and even alternating fence openings, see Figure 20.

Debugging

To efficiently debug the robotic platform, the Capra team developed and integrated various tools: 

• The ROS visualization tool, Rviz, is used to inspect and analyze the robot. Many tools were developed to allow an

extensive use of Rviz to debug any aspect of the robot, including sensor data, maps, decision plans, waypoints, etc. 
• The distributed architecture of the systems allows any team member to connect remotely to the robot using its

internal router to run diagnostic tests or analyze runtime data.
• The control panel and LED panels show information about the current state of the robot without requiring any
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Figure 20. Simulated Avanced Course



external software.

FAILURE POINTS IDENTIFICATION & RESOLUTION METHODS

During the competition, if  there is  no power to a component,  the cables,  the DC-DC PSU and the battery will  be
checked, in that order. Once the defective component is identified, it is replaced by a backup. If the component is not
transmitting information, the connection between it and the software, the physical connection, the cables, the input/output
card, and the software configuration are checked in that order. If needed, the components or configurations are changed.

If the camera emits too bright or too dark of an image, or if the field of view is too small, the iris or the focus is
manually changed to suit the situation. If the camera emits an image with non-optimal colors for the detection of obstacles,
the color correction, exposure, and white balance are tweaked in the camera's configuration.

If the LIDAR always detects an obstacle, no matter its position, its line of sight will be checked for obstacles (e.g. part of
the robot), its position is also verified as the sensor must be parallel to the ground.

If the GPS is lacking precision or accuracy, the connection to the OmniSTAR service will be verified first, then the
filtering of data, and finally its configuration. If needed, the filters will be adjusted, the configuration changed, or the data
refresh rate lowered. If the latter is too slow, the configuration will be tweaked or the GPS will be switched with its backup.

If the IMU emits erroneous data, the antenna's connection will be checked, the data filtering will be verified to see if it's
coherent, verification that no external interference might distort the data, and then the configuration would be reviewed. If
needed, the filtering or the configuration can be adjusted.

If an encoder is emitting false information, a well-established connection to the laptop will be checked and checks will
be made to all other components to assure the error is not being cause by them. If needed, the encoder will be switched with
a spare.

If a smart motor is not spinning, the logs will be verified to see that the motors are supplied with current. If they are
spinning too fast or too slowly, the logs and encoders will be checked. The communication between the motors and laptop
will be checked to see if it is stable. If the motors fail to rotate or fail to stop at a prescribed time, the logs will be checked,
as well as the communication. In all cases, an attempt to recreate the problem off course will be made. More often than not,
the logs give information as to the next step to follow in order to solve the problem

If the laptop does not boot properly, the hard drive may need to be replaced by a backup drive which has recently been
updated with a functional copy of the system, and as always the logs must be checked. If the laptop does not receive data
from one  or  more  hardware  components,  the  input/output  card's  USB connection  to  the  laptop  will  be  checked,  the
communication with the camera and range finder will  be tested,  and the system logs and electronic box will  also be
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Table 5. Obstacles Inflation

Failure Point Failure Mode

Camera no power, no output, output refresh rate too low, output too bright, output too dark, output field of view too
small, output colors not optimal for detection

LIDAR no power, no output, always detects an obstacle

GPS no power, no output, output refresh rate too low, output precision too low

IMU no power, no output, erroneous output

Encoder no power, no output, erroneous output

Motor no power, not rotating, rotating too fast, rotating too slow, fails to rotate at a prescribed time, fails to cease
rotating at a prescribed time

Computer no power, not booting correctly, no hardware inputs



checked. The worst-case scenario, the laptop itself will be switched with another that has a working copy of the system.

A more exhaustive list of procedures than those listed in this report is available. It was built quickly thanks to multiple
outside tests  that  are very  well  documented.  This  tool  allows  for  rapid diagnostics  and problem solving,  whether  the
problem is software-related or hardware-related. In addition, each component has its driver in the form of an ROS node. To
make problem solving quicker during a failure, the diagnostic is made on these nodes.

There is at least one backup for each of Capra6.2's components. Only a few do not have one for budgetary reasons. Strict
procedures are in place to reduce the risk of breakage or failure, for example during transport and maintenance. These
components are the Fisheye Lens, the LIDAR, the IMU and the Dual GPS Antenna. The latter are expensive because they
have excellent durability and reliability.

OVERRALL SYSTEM PERFORMANCE & COST ESTIMATION
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Table 6. Overall System Performance

Parameter Theorical Trial Data

Top speed 4.4 mph ~3.35 mph

Ramp vlimbing ability (15° slope) 3.8 mph ~2.79 mph 

Reaction time 50 ms ~68 ms

Battery life 5 hrs ~4 hrs

Physical obstacles detection range 20m @ 270° ~20m @ 270°

Visual obstacles detection range 10m @ 160° ~10m @ 160°

Effectiveness in dealing  with switchbacks 99% ~99%

Effectiveness in dealing  with center islands 99% ~98%

Effectiveness in dealing  with deadends 90% ~86%

Effectiveness in dealing  with traps 99% ~95%

Effectiveness in dealing  with potholes 90% ~83%

Table 7. Cost Estimation

Component Retail price
(USD)

Cost to team
for 2014-2015

(USD)

Building materials 3,000.00 0.00

Batteries 2,500.00 0.00

Wheels & Tires 350.00 0.00

Smart Motors 5,500.00 0.00

LIDAR 2,700.00 0.00

GPS 20,000.00 0.00

IMU 5,000.00 0.00

Camera 1,000.00 0.00

Electrical Compoents 2,500.00 0.00

Computers 5,400.00 0.00

TOTAL 47,950.00 0.00


