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ABSTRACT 

 
This paper presents the Mantis 2.0 robotic platform developed to compete in IGVC for 2015. Innovations 

in the electrical system include custom designed and fabricated H-bridges, and a custom embedded 
microcontroller board, in addition to the removable housing and controllers with military grade connectors. 
Innovations in the software system include multi-rate Kalman pose estimation, effective interpretation of stereo 
vision data, fusion of LIDAR with monocular cameras, line fitting with the RANSAC algorithm, 3D map-based 
path planning, and the ability to create and load reusable maps of the environment. 

 
INTRODUCTION 
 

Oakland University is proud to enter Mantis 2.0 into the 23rd annual Intelligent Ground Vehicle 
Competition (IGVC).  Mantis 2.0 is a two-wheel drive platform, employing differential drive steering. Custom 
electronics, including an H-bridge and an embedded microcontroller board, were designed to meet the specific 
requirements of the IGVC vehicle.  All software systems, including stereo vision processing and map-based path 
planning, were simulated and integrated in the powerful Robot Operating System (ROS) environment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 - The Robotic Platform Mantis 2.0 



 

Figure 3 - CAD rendering of 'Mantis 2.0 

DESIGN PROCESS 
 

A classic ‘V-Model’ design process was followed to develop Mantis 2.0, shown in Figure 2. After defining 
the requirements of Mantis 2.0, a design was formed using CAD, and a detailed simulation environment was 
formed to develop the navigation system, see Figure 3.  After implementing the design and integrating the various 
components, a rigorous test cycle began, where consistent failure points were identified and rectified through minor 
adjustments or larger design changes. 

Figure 2 - The design process used to build Mantis 2.0 
 

MECHANICAL DESIGN 
 

At the beginning of the design phase, based on past IGVC 
experience, it was mandated that Mantis 2.0 must be able to perform a 
zero-point turn. This capability greatly simplifies the path planning and 
control. The simplest and most widely used drive method that enables 
zero-point turns is differential steer. Additionally, differential steer 
simplifies the mechanical aspects of the drive train, since it operates 
solely on wheel rotation, and does not require any additional moving 
parts. 

An electric wheelchair, shown in Figure 4, was selected as 
the platform due to its durability, suspension, and interfacing 
capabilities. Using a medical grade drivetrain has proven beneficial 
in its reliability. Limiting vibrations to the electronics and sensors on 
board was a concern. The wheelchair’s unique rocker suspension 
contains two independent links that suppress vibration and large 
impulses. Two centrally driven tires with four supporting castors 
create a tight turn radius with the turn axis in the center of the 
footprint. The wheels are driven by brushed DC motors. The top of 
the wheelchair base is a flat mounting surface with an existing bolt 
pattern.                                                                                                                       

The superstructure mounted on top of the wheelchair base 
provides a waterproof enclosure for the laptops and electronics. The 
cameras are mounted angled downwards near the top to maximize the 
field of view. Additional cameras are mounted at half height on either 
side to add close range and side visibility. The GPS antenna is 
mounted at the very top positioned over the drive wheels. The LIDAR 
sensor is mounted center front to get 240 degrees of visibility, shown in Figure 5. 



 

 
 
 
 
 
 

 
 

 
 
 

 
 

Fig 5. Enclosed LIDAR   a 
           Fig. 4 - The wheelchair base for Mantis 2.0 
 

The superstructure frame is composed of 1”x1” extruded aluminum tubing with a 1/16th thick wall. 
Aluminum was selected for its low density and high strength to mass ratio. Individual tubes are riveted together so if 
a part needs to be replaced it can be easily drilled out and substituted. The steel rivets keep structural integrity and 
prevent the frame from flexing while preventing the permanent and 
cumbersome disadvantages of welding and bolting. The light 
aluminum superstructure, the wheelchair base contributes the majority 
of the mass. This places the center of mass in the center of the drive 
wheels, about 6 inches above the ground. 
        
 

 
 
ELECTRONIC COMPONENTS 

 
Mantis 2.0 is designed with a fully modular electronics bay, shown in Figures 7 and 8.  This efficient design 

allows for the main power systems to be separated from the chassis via series a of easy disconnects. The main power 
systems of the robot include circuit breakers, solid state relays, H-bridges, and drive controls. 
 

          
                   Figure 7 - Electronics Box Rear.                                          Figure 8 - Electronics Box Front 

The electrical connections were military grade connectors, were used for higher durability, see Figures 9a 
and 9b. The removable electronics allows for easy off- chassis integration, diagnostics and testing. The connectors 
were set at both sides of the electronic bay; they were identified per connector and based on I/O numbers for 
universality between the power and load distributions.  

 

Figure 6 - Mechanical Suspension 



 

Figure 12: Novatel GPS 

a).   b).  

Figure 9 a & b: Both sides of the suitcase connectors 

 
 The connectors were installed by different IO headers for each 

feature; such as 2-Pin headers for LED, 4-Pin headers for Switches. Some 
were set using different genders for the connectors, this provided protection 
and consistancy. See Figures 10.  

Mantis 2.0’s H-bridges are completely custom-designed PCBs. 
Based on past experience with other H-bridges such as IFI’s Victor series, it 
was desired to use an H-bridge that is more flexible, robust, and capable of 
chopping the motor power at a much higher frequency.  A conventional 
single-channel PWM signal controls the speed and direction of the H-bridge 
output. 

 
Key features of the H-bridges shown in Figure 11 are: 

 
● On-board fuses 
● Automatic fan control 
● Reverse battery protection 
● Over-current protection 
● Over-temperature protection 
● Serviceable components 

  
Mantis 2.0 is equipped with an array of sensors that allow it to 

detect obstacles, compute its location, heading, speed, and be operated in a 
safe and reliable manner. All the sensors make it possible for Mantis 2.0 to 
locate itself and have a high precision when maneuvering.  

 
The sensor array consists of: 

 
● NovaTel FlexG2-Star GPS receiver 

○ 8 Hz, less than 1 meter accuracy, shown in Figure 12. 
● 4 uEye UI-2220SE color USB 2.0 Cameras 

○ 768x576 resolution, ½” CCD sensor, 50 Hz, also shown in Figure 12.                           
● Hokuyo UBG-04LX LIDAR sensor 

○ 4 meter range, 240 degree field of view, 35 Hz, shown in Figure 5 (above). 
● InvenSense ITG-3200 tri-axis gyro, integrated shown in Figure 13. 
● Honeywell HMC5843 tri-axis magnetometer, integrated shown in Figure 13. 
● US Digital E3 Wheel 2500 CPR encoders                             
● DX6i wireless R/C aircraft joystick 

o Embedded controller-based manual control and wireless     
E-stop 

 

Figure 10: Modular design in the 
connector headers 

Figure 11 - H-Bridge Sensors 



 

Drive Control Board 
 

The embedded controller board is a custom PCB that was designed specifically for Mantis 2.0. The 
motivation to do so resulted from using off-the-shelf FPGA and microcontroller development boards in the 
past which were not specifically designed for the application, shown in Figure 13.  The embedded control 
board is designed to satisfy all hardware needs, and provide the flexibility of a commercially available 
development board without the extra bulk and space of unused functionality.  
 

Key features of the embedded control board are: 
 

● 32-bit Microchip PIC microprocessor 
● Dedicated hardware quadrature counters to efficiently 

perform high-resolution encoder data processing 
 
● Integrated accelerometer, gyro, and magnetometer for robust 

robot pose estimation 
● High speed USB communication 
● Battery voltage monitoring 
● Power switches and distribution 
● General I/Os, input capture, PWM 

                  
      

 
Power Distribution 

Figure 14 shows a block diagram of Mantis 2.0’s power distribution system.  The power for the 
robot comes from two 12V AGM batteries, wired in series to make a 24V system. The entire electrical 
system is routed through a main circuit breaker for protection. The operator has the ability to power-up the 
embedded control board and sensors separate from the H-bridges for testing and safety purposes. The H-
bridges are driven through dual custom solid state relay PCBs for redundancy.  The relay boards are 
galvanic isolated preventing incorrect ground return paths from occurring.  The batteries can be 
conveniently charged on-board, or quickly replaced by another set to achieve optimal runtime.   

Power and ground were distributed using two terminal rails; one for power and other was for 
ground.  This allows an even distribution for both common ground and power among the elements of the 
electronic bay. 

 

 
Figure 14 - Power Distribution System. 

Figure 13- Custom Embedded 
Controller Board. 



 

Safety Considerations 
 

Many precautions were taken into account when designing 
Mantis 2.0's emergency stop system. In addition to two conventional 
turn-to-release E-stop switches, shown in Figure 15, a DX6i joystick 
is used for disabling the motor output wirelessly. The DX6i has a 
range of several hundred feet.  To protect against a variety of failure 
conditions, the drive control system automatically turns off the motors 
if it fails to receive commands from the computer or joystick after 
200ms.                                                                            
A                                                                                                                          Figure 15 - Emergency stop 

 
COMPUTING HARDWARE    
Embedded Controller 

The microcontroller runs a Real-Time Operating System (RTOS) to manage its tasks.  Data from the 
inertial sensors is gathered at a rate of 200Hz and streamed to a laptop using custom USB drivers. 

 
Closed loop velocity control is critical to accurately follow a plan generated by higher level software. 

Closed loop velocity PI controllers were implemented on the embedded microcontroller for each wheel. The 
control loop is the highest priority task in the operating system of the microcontroller, and runs at 100 Hz. The 
velocity feedback is reported to higher level software for localization. Velocity commands come from higher level 
software and the DX6i wireless joystick. 

 
Laptop Computers 

 
All high-level processing is performed on two Lenovo Thinkpad W530 laptops.  Their processor is a quad 

core, 3.4 GHz Intel i7, and has 16 GB of RAM. To make the laptops robust to the vibration encountered on a 
ground vehicle, a solid state drive is used instead of a conventional hard disk drive. The operating system is 
Ubuntu 14.04, and runs the “I” distribution of ROS. An ethernet switch manages the communications between all 
the devices. 

 
ROS SOFTWARE PLATFORM 

 
Mantis 2.0's software systems are implemented on the Robot Operating System (ROS) platform. ROS is an 

open-source development environment that runs in Ubuntu Linux.  There is a multitude of built-in software 
packages that implement common robotic functionality.  Firstly, there are many drivers for common sensors like 
LIDAR, cameras and GPS units.  There are also general-purpose mapping and path planning software modules 
that allow for much faster implementation of sophisticated navigation algorithms. 

 
Efficient Node Communication 

 
A ROS system consists of a network of individual software modules called “nodes”.  Each node is 

developed in either C++ or Python, and runs independently of other nodes.  Communication messages between 
nodes are visible to the entire system similar to an automotive CAN bus. Inter-node communication is made 
seamless by a behind-the-scenes message transport layer.  A node can simply “subscribe” to a message that 
another node is “publishing” through a very simple class-based interface in C++. This allows for the development 
of easily modular and reusable code, and shortens implementation time of new code. 

 
Debugging Capabilities 

 
One of the most powerful features of ROS is the debugging capability. Any message passing between two 

nodes can be recorded in a “bag” file.  Bag files timestamp every message so that during playback, the message is 
recreated as if it were being produced in real time.  This way, software can be written, tested and initially verified 
without having to set up and run the robot. 
 

Bag playback is especially helpful when testing the mapping and vision algorithms to visualize and reproduce 



 

failure cases. 
 

Another convenient debugging feature is the reconfigure GUI.  This is an ROS node that allows users to 
change program parameters on the fly using graphical slider bars.  This tool is invaluable, since most robotic 
vehicle controllers require precise adjustment of several parameters, and being able to change them while the 
program is running is very beneficial. 

 
Simulation 

 
Gazebo is an open source simulation environment with a convenient interface to ROS. To rigorously test 

Mantis 2.0’s artificial intelligence, simulated IGVC courses were constructed.  These courses contain models of 
commonly encountered objects: grass, lines, barrels, and sawhorses. The configurations are designed to emulate 
the real IGVC course as accurately as possible.  The simulation environment proved invaluable to the 
development process, since, unlike recorded data, the simulation responds to robot decisions and generates 
appropriate simulated sensor data. 

 
Figure 16- Block Diagram of the Vision System Modules. 

 
           Figure 16 provides a block diagram overview of the vision pipeline. A front facing stereo camera pair, left 
and right side short range monocular cameras, and a LIDAR scanner comprise the sensors utilized by the vision 
system. From the stereo pair input, the stereo matcher feeds the plane extractor with 3D point cloud data that is 
filtered by the plane extractor into domain specific height data used by the flag and line detection units. The line 
detector additionally uses the short range monocular cameras fused with the LIDAR to compensate for blind spots 
left by the narrow field of view of the front facing stereo pair. The flag and line point clouds outputs are inputs to 
the navigation system. 
 

Stereo Vision 
 

Most LIDAR sensors can only detect objects on  one plane. At past competitions, this limitation caused 
problems, especially in the case of the sawhorse-style obstacles, seen in the foreground of the image in Figure XX.  
The horizontal bar of the obstacle would not be in the scan plane, thereby  going  undetected,  and the vehicle 
would frequently try to fit between the two legs of the obstacle. 

 
Mantis 2.0 addresses this severe sensor limitation by using stereo vision.    Applying open-source functions for 

stereo image matching, the images from the stereo camera pair are processed to generate a 3D cloud of points 
corresponding to everything in the frame. 



 

 
 
 

 
 

 
 

 
  

 
 

 
 
 
 
 
 
The two stereo cameras are mounted eight inches apart near the top of the robot. The image capture is 

hardware synchronized to make sure the left and right images are always matched, even at high speeds.  Some 
obstacles of uniform color do not have enough texture to find confident matches between images.  Because of this, 
data near the center of the uniform obstacles tends to be absent, while edges, grass, and everything else is reliably 
detected and mapped to a 3D point. 

 
Figure 9 shows an example image and the corresponding point cloud.  Each point in the cloud is marked with 

the color of the image pixel is corresponds to.   On top of the point cloud is LIDAR data, indicated by the yellow 
squares.  This example shows how much information the LIDAR misses in certain situations, and exemplifies the 
capabilities of a carefully implemented stereo vision system. 

 
Automatic Camera Transform Calibration 

 
To calibrate the transform from the cameras to the ground, an automatic algorithm was developed using a 

checkerboard. Assuming the checkerboard is flat on the ground, the 48 vertices in an 8x6 grid are optimally fitted 
to a plane equation to detect the camera position and orientation. This transform is used to place stereo and 
LIDAR data on the map from different coordinate frames.  Figure 10 shows an example of how the transform 
calibration is performed on a real image.  The calibration algorithm has proven to be very reliable and yields very 
accurate point clouds. 

Figure 19 - Example of the Automatic Transform Calibration Procedure. 
 

Figure 18 – Example Stereo Point 
Cloud and LIDAR Scan 

Figure 17 - Dual cameras 



 

Plane Extraction 
 

The plane extractor is responsible for analyzing the raw point cloud output from the stereo matching 
algorithm.  The goal is to generate images that contain only pixels within a certain height window, and black out 
the rest.  Specifically, the two planes of interest are the ground plane, where the lines will be detected, and the flag 
plane, which is used for the flag detection algorithm.  The height window to detect points on the ground plane is 
adjusted according to experimental results, and the height window for the flags is set according to the expected 
height of the flags on the course.  

Additionally, the height information of obstacles is used to eliminate obstacle pixels from the generated 
ground  plane  image  in order to make the line detection  algorithm more robust. Figure XX shows examples of 
ground plane image generation, where pixels corresponding to points above the ground are blacked out, as well as 
regions of the ground pixels that correspond to where objects meet the ground. Notice how the resulting image 
primarily contains just grass and line pixels. 

 
a)  Simulated Images 

                                        
b)  Real Images 

Figure 20 a & b - Example ground plane images in 
simulated and real scenarios. 

LIDAR-Image Fusion 
 

LIDAR data is used to remove objects from the monocular camera images. Each LIDAR point is projected onto 
an image using the known geometric transform and camera intrinsic parameters. Each projected point creates a 
vertical black line, resulting in an image with only pixels near the ground and black everywhere else. The final 
output is similar to the output of the plane extraction algorithm. 
 
Line Vision 
 

Based on our previous experience in designing lane detection algorithm for the IGVC path, we had always 
encountered the problem of noisy images. The noise in the images; represented by ‘dead grass’ for example, makes 
it almost impossible to design a robust algorithm to detect the while lane without being affected by the noise. 
Consider the following samples of raw images that makes the usage of traditional image processing technique so 
complicated to detect the while lines only.For the reasons mentioned above, we have concluded that we need an 
intelligent and self-learning algorithm to detect while lines with less sensitivity to the noise. The Artificial Neural 
Networks have been used to training our robot to extract while lines in the image and discard most of the white noise 
in the image.   
 

 
 

 

 

 

Fig 21. Line detection 



 

Every neural network has a learning algorithm, which modifies and tunes the weights of the network. The 
self-tuning of the ANN is related to the learning function that measures the error in the prediction of the network. 
The learning algorithm in this case is the 'mean least square', in which the network tries to minimize the error to 
achieve the target error based on the features we pass to the network. This technique of learning is called a 
supervised learning, which occurs on every epoch (cycle) through a forward activation flow of outputs. The equation 
we have used in this assignment can be characterized as shown below: 

 
                                   Fig 22. Training process flow 

 
 
Prediction 

Every received raw image is divided into a set of sub-images. Every 
sub-image is passed to the ANN model to predict the label it belongs to. The 
returned parameter from the prediction algorithm is a vector, whose length 
equals the number of the labels. Every index of the label has a value that 
indicates the likelihood that image belongs to that label. The label that has the 
maximum value is the winner label. If the winner label is a white line, a point is 
recorded into a vector of points to be published to the navigation algorithm. 
 
 
 
Remarks 

The problem we find the most complicated is to distinguish between a 
white line and the edge of the whole barrel. Given that our training data is 
mainly describe the while line as a set of connected white pixels grouped next to 
a set of connected green pixels. All the characteristics mentioned above to 
create the while line model apply exactly to the edge of a white barrel on a 
green grass. 
 
 

Fig 23. Vision logical flow 

 



 
Figure 27 - Diagram of the 

Navigation System. 

Figure 26 - Example Flag Negotiation Logic. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Model fitting is especially effective with dashed lines, occlusions, and gaps. Even though parts of the line may 
be missing, the parts all fit a single 2nd order polynomial model. Other approaches such as clustering would 
separate each piece and leave gaps. Figure 12 shows an example scenario where a barrel blocks part of the line 
from view, however RANSAC was able to fit a 2nd order polynomial to the line and fill in the gap. In the figure, 
blue is LIDAR data, red is the projection of all pixels determined to be close to white, and green is the optimal 
model fit output. 

 

 
Figure 25 - RANSAC Block Diagram 

 
Flag Detection 

 
The flag plane image from the 

input is fed to the flag detector. In this 
image, red and blue flags are 
separated by thresholding hue. To 
direct the robot towards the correct 
path, artificial lines are drawn on the 
map. Red flags draw to the right, and 
blue flags  draw  to  the  left.  This  
blocks  invalid paths and funnels the 
robot into the correct path.  Figure 13 
shows a simulated flag scenario 
illustrating this approach, where 
artificial lines are shown in white. 

F 
 
 

Figure 24 - Example Lane Detection RANSAC Model Fit 
 



 

Figure 29 - Example of Global Plan 
Computed from 3D Map. 

Figure 28 - Example of the 
Mapping Procedure. 

NAVIGATION SYSTEM 
Kalman Filtering 

The Kalman Filter fuses data from many sensors to accurately estimate position and orientation. Each sensor 
updates at a different rate, and the filter updates with the fastest sensor, 200Hz. This results in accurate dead- 
reckoning between slow GPS updates. To avoid the discontinuity of traditional Euler angles, the orientation is 
represented using a quaternion. In the two dimensional case, the yaw angle can be represented by a 2D vector. 
Figure 27  shows  information  about  the  sensors  being fused together, and which state variable each is 
measuring.   

 
Mapping 

 
The Kalman Filter was found to be accurate enough to build a map without Simultaneous Location and 

Mapping (SLAM). SLAM requires a cluttered environment to match incremental data, but obstacles on the IGVC 
course are relatively sparse. 

 
Mantis 2.0's mapping algorithm places time-stamped 

information on the map using the Kalman estimated 
position and orientation. The map is represented in 3D 
as 5 planar layers. Object information from three sources 
is placed on the map: 3D stereo data, LIDAR data, and 
detected lines. Line data is on the ground plane, LIDAR 
data is parallel to the ground plane and elevated, and 3D 
stereo data is present in all heights. 

 
Each sensor can mark and clear space on the map. 

Clearing is done by tracing a ray through 3D space from 
the sensor source to the obstacle, and clearing every cell 
in that path. Two instances of the mapping algorithm, 
global and local, run in parallel. The local map is a 15 
meter square with 5 cm resolution. The global map is a 
100 meter square with 10 cm resolution. The global map 
can be initialized a priori with a map generated from a previous run. 

                                                               
 

 
Global Path Planning 

 
The global planner uses the global map to select the path to a 

goal point with minimum cost. The occupied squares on the map 
are inflated using the robot’s width and an exponential cost 
function. The  global planner is  not  allowed to plan a path 
passing through any inflated square. 

 
Furthermore, the cost function allows the path planner to 

choose the optimal path, even in both cluttered  and  open  
environments.  The  global planner implements Dijkstra's 
algorithm, and is an open-source package built in to ROS. 

 
Figure 17 shows an example of a global path output from the 

planner. The differently colored cubes represent the different layers 
of the 3D voxel grid map.  The orange squares represent the inflated 
2D projection of the 3D voxels onto the ground plane. 

 
            

 



 

Reactionary Avoidance 
 

Reactionary avoidance uses the local map to avoid collisions. This is the last stage in the path planning, and is 
responsible for overriding commands that would cause a collision. Future collisions are detected by simulating 
trajectories along evenly spaced turning radii. The best trajectory is the one closest to the requested command that 
doesn’t result in a collision. A safety factor is also applied to avoid driving unnecessarily close to objects. The 
speed of the trajectory is scaled inversely by the angular velocity to prevent quick turns which could smear data on 
the map. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 30 - Reactionary Avoidance 
 
 
JAUS Protocol and Code  
 In the Jaus Code for Mantis 2.0 there is a Software Development Kit called openjaus that helps lessen the 
difficulty of programming jaus into our robot. OpenJaus is a open codebase that allows us to alter the code in 
openjaus for adding in our own features. Our jaus code links ROS to Openjaus using a local socket through two C++ 
nodes. The first node is a ROS node and the second node is the Openjaus node, which receives jaus messages from 
the Judges computer. The ROS node receives the data from the Openjaus node through the socket to send to a 
callback, then broadcasted as a ROS message to tell other nodes what to do. The way the callbacks are managed is 
through a certain jaus message is received by the Openjaus node. The Openjaus SDK tells the node which callback 
to execute. The jaus nodes are executed by a ROS launch file, which then activates other launch files to start other 
nodes to activate other parts of the robot. To alter the network connection data there is a custom built GUI that is 
developed in java to easily change the data files that the openjaus node reads to connect to the assigned port number, 
ip address and and whether to use UDP or TCP communication. The data file is a simple text file that the Openjaus 
node reads when the node is started. This allows for quick alterations to the network configuration file with the least 
amount of error, since the GUI program manages the changes. 
 

 
Figure 28 – Image of the GUI program 

 
 
OpenJaus Description 
 Openjaus is built by the company Openjaus LLC. and is a simple C++ SDK for JAUS communication. The 
software is open code base to allow you to code your own features into the software. OpenJaus has a statemachine 
architecture along with an Event service message engine. Overall the software is capable of running on windows and 
linux.  

Fig 31. OPEN Jaus Logo 



 

PERFORMANCE ANALYSIS 
 

Maximum Speed 
Mantis 2.0's motors spin at 157 RPM at nominal load, so combined with 15 inch diameter wheels, the resulting 

maximum speed is 10.3 mph.  This estimate correlates with the observed performance. 
 

Ramp Climbing Ability 
 

At nominal load, the drive motors provide 101 in-lbs of torque.  Assuming a realistic vehicle weight of 150 
lbs, this corresponds to a max slope of 18 degrees.  However, experiments have shown that Mantis 2.0 can handle 
much steeper slopes, up to approximately 30 degrees, although the motors will perform outside of the nominal 
operating envelope. 

 
Reaction Time 

 
The artificial intelligence systems were designed to handle data from the sensors at the sensor's maximum 

frequency, thereby allowing the robot to make new decisions at the slowest sensor sampling rate of 20 Hz or 50 
ms. Sensor data rates are shown in Table 2 below. 

 
Table 1. Sensor Data Rates 

 
Sensor Data Type Frequency 

Kalman Filter Position and Orientation 200 Hz 
Hokuyo LIDAR Obstacles 35 Hz 
uEye Cameras Lane Obstacles 20 Hz 

 
 
Battery Life 

 
The high capacity AGM batteries on Mantis 2.0 provide a total of 39 AH.  The sensor suite, controller board, 

and peripherals consume a total of approximately 2 amps.  Testing has shown that the drive motors consume a 
total of 25 amps maximum in grass, the environment typically encountered at IGVC.  Based on these 
observations, total battery life is approximately 1.5 hrs. The large battery capacity coupled with efficient 
electronics lends itself to extended testing and runtime. 

 
Obstacle Detection 

 
The Hokuyo LIDAR has a range of about 4 meters, but has shown to provide very low-noise distance 

measurements.  The stereo cameras are oriented to see 5 meters away from the vehicle, but experiments show that 
the 3D point cloud measurements are most reliable within 4 meters. 

 
GPS Accuracy 

 
Under normal conditions, the Novatel FlexPackG2-Star GPS receiver is accurate to within 1 meter, which is 

enough positional accuracy to reach the waypoints on the Auto-Nav Challenge course. However, the Kalman filter 
algorithm fuses the GPS readings with the rest of the sensors to eliminate some of the noise and to provide faster 
position updates based on dead reckoning. 

 
VEHICLE EQUIPMENT COST 

 
A breakdown of the cost of the components on Mantis 2.0 is shown in Table 2 below. 

 
 
 

 



 

Table 2. Cost Breakdown of Vehicle 
 

Item Cost Cost to Team 
FlexG2-Star GPS Unit $1,000 $1,000 

Two Lenovo Laptop $3,052 $3,052 
Hokuyo LIDAR $3,500 $3,500 

uEye Cameras $1,834 $1,834 
Camera Lenses $300 $300 

Batteries $320 Donated 
Motors $724 $724 
Wheels $420 $420 

Frame Material $665 $665 
H-Bridges $600 $600 

Wheel Encoders $480 $480 
Misc. $120 Donated 

Total: $13,015 $12,575 
 

 
 
CONCLUSION 

 
Mantis 2.0 has proven to be very rugged, efficient and reliable, performing well while driving on any kind of 

terrain.  The new artificial intelligence design shows promising results, and the Oakland University team has great 
confidence going into this year’s competition. 
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