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INTRODUCTION 

EDT-Scipio (Scipio) was designed from every angle to be a reliable and stable platform that 

can be used for years to come. The in-house fabricated gearbox and pulley drivetrain qualify as 

an innovation and ingenuity, as well as the ease with which the top chassis can be modified to 

accommodate new sensors, electronics, and payloads.  The electrical team has spent their time 

reducing the size and complexity of the circuits required to operate the system; all while 

incorporating additional features, such as an energy monitor. A further optimized backplane 

integrates disparate systems, further reducing the complexity of wire routing by eliminating 

intermediate interfacing.  Numerous modifications to the electrical and mechanical hardware 

allows for easier access and maintenance.  These features have allowed simplification of the 

design, inherently improving performance and reliability of the unit.  Conjointly, software 

development was continued and expanded upon utilizing the Robot Operating System (ROS). 

ROS is a dedicated open-source platform for robots that provides a standard communication 

channel between software nodes that monitor the robot’s environment, make plans based on 

present and past information, and act accordingly by sending commands to the motor controllers.  

THE IGVC TEAM 

The Chicago Engineering Design Team consists of over 40 undergraduate students, with the 

IGVC team being a subset consisting of one-third of the total member base. Figure 1 provides a 

breakdown of affiliation and responsibilities. The team consists of three primary departments: 

mechanical, electrical, and software; all of which are overseen by the President and Vice-

President.  In preparation for the 2014 competition, members of EDT invested an estimated 1500 

man hours, with the primary focus on software development. This year, over 2000 man-hours 

have been dedicated to gentrifying many key facets of the aggregate design, such as the full 

renovation of the electrical systems. 

 

IGVC 2015-SCIPIO 
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DESIGN PROCESS 

In 2013 the team took on the substantial project of designing and constructing a state of the art 

autonomous platform.  In 2014, the team doubled down on this platform, focusing its efforts on 

rewriting the software brain and focusing on mechanical and electronic deficits identified during 

the 2013 competition season.  

The design process began by first understanding the design problem, and then formulating 

design objectives. After the problem was well defined and the objectives were formulated, the 

constraints and requirements limiting the design were recognized. The constraints included 

competition rules such as vehicle size, vehicle speed, and safety regulations, as well as also 

internal constraints such as cost, resources, and manufacturing capabilities. In order to measure 

how well an objective was met, metrics were developed in order to score different aspects of the 

design. Metrics pertaining to the higher level objectives were weighed heavier than those 

pertaining to lower level objectives. The metrics carrying the most weight in Scipio's 

development were cost and manufacturing capabilities. The metrics were later used in the 

conceptual design process to compare various design concepts against each other. 

 

 The conceptual design process began by determining all necessary functions the vehicle 

needed to perform. Next, all possible means to fulfill the functions were determined and inserted 

into a morphological chart in order to generate design concepts. A sample of the morphological 

chart can be seen in Table 1. Concepts were generated from this chart by making various 

               Table 1. Morphological Chart 
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Figure 2. Bottom Chassis Assembly 

combinations of the means. Many concepts were eliminated because of a failure to satisfy the 

design constraints. The overall concepts list was then reduced to four top concepts which were 

further analyzed and compared against each other. Generic drawings and sketches were made for 

each concept and the overall cost and manufacturability were estimated. A comparison chart was 

developed and the metrics were used to score the predicted performance of each concept. The 

method of assigning a score to objectives involving performance was done by researching the 

concept and making an educated estimation. After compiling the overall scores of each concept, 

the one that received the highest score was chosen. At this point the departments branched out to 

work on a detailed design section for their concentrations. The detailed design section consisted 

of engineering drawings, schematics, CAD models, and a bill of materials. Once the CAD models 

were completed, dynamic simulations and testing could be performed. Finally, parts were ordered 

and manufacturing began. 

During the manufacturing process, each department performed its own independent tests of 

components and systems. Once the mechanical and electrical systems were manufactured, 

integrated testing of all 3 systems was performed. When problems were encountered, 

improvements were suggested and implemented where required. 

MECHANICAL DESIGN 

Scipio was designed to be a reliable and stable platform such that the mechanical structure 

could be re-used in future years. The entire drivetrain is considered a mechanical innovation, as it 

is different from any previous EDT drivetrain. Scipio is composed of two main sub-assemblies, 

the top and bottom chassis, which are described in detail below.  

Bottom Chassis Assembly 

As seen in Figure 2, the bottom chassis is a steel tube frame which houses the drivetrain and 

its components. The drivetrain is a skid-steer system powered by two 3 HP brushed DC motors 

operating at 24 volts.  A skid-steer system allows Scipio to have a zero-turn radius which is 

optimal for switchbacks and dead ends. The drivetrain consists of two gearboxes, shown in Figure 

3, that were manufactured in house and drive a power transmission belt system. The gearbox and 

belt system achieve a speed reduction of 12.8 and 2.39 respectively, providing a total speed 

reduction of 30.63:1. Both of these systems are designed and manufactured within tolerances to 

achieve efficiencies greater than 93%. 

The drivetrain increases Scipio’s power and efficiency while reducing the amount of 

maintenance required. Previous chain-driven robots suffered performance issues and required 

large amounts of maintenance to compensate for backlash. In particular, chain based drivetrains 

struggled to turn the robots steadily and accurately. Increasing the speed reduction and 

establishing the wheel center ratio counteracted the effects of wheel scrub. 

Figure 3. Gearbox Skeleton View 
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Top Chassis Assembly 

 The top chassis, shown in Figure 4, is designed to 

be modular and accessible while maintaining a 

professional aesthetic. The top chassis stores the logic 

circuits, payload, and all the sensors. The top chassis is 

divided into two compartments: the electrical box, and 

payload cavity. Each area can be accessed by opening 

the corresponding hinged doors. Two five pound-force 

gas struts are attached to the inside of the payload 

cavity door to allow for ease of access to the area 

without the need to hold it open. There are also 

compression latches that secure the door in the closed 

position which are calibrated to counteract all force 

from the gas struts and vibration. Aluminum T-Slot 

framing is used as the base structure for the top chassis, 

allowing for easy assembly and future modifications. 

Aluminum panels with rubber edge-grip seals are 

fastened to the T-Slot to provide protection and 

weatherproofing. The top and bottom chassis are mated 

with four quick-release pins that provide easy 

separation for troubleshooting and maintenance.  

Innovations 

A clevis-hitch trailer was designed and constructed to provide a mobile transportation system 

to handle this equipment. The design is a simple rectangular frame with a tailgate, similar to that 

of a pick-up truck. A dual-hitch system is used to prevent jack-knifing, and allow vertical rotation 

on uneven ground. Free-rotating caster wheels that are used on the trailer allow it to follow the 

rotation of Scipio. 

Designs from previous years required operators to 

manually disconnect each individual mating between the 

upper and lower assemblies; requiring precision placement 

of cables and an extensive amount of time. Scipio’s 2015 

design implements blind-mate connectors, shown in figure 5. 

Once an operator unites the upper and lower assemblies they 

then connect the two conjoined sixteen prong connectors for 

a complete electrical connection. The female connector is 

mounted to the bottom chassis and the male is connected to 

the wires of the upper assembly. Connection and 

disconnection of the two sections requires much less effort. 

Eliminating and rerouting the remaining cables increased the 

payload volume by 17.8%.   

To improve upon the weatherproof design of Scipio 

several exterior panel mounts have been added to isolate the 

electrical systems from the external environment. To allow 

for easy access to the on-board computer system, a modular 

bulkhead has been added to the side panel.  

Figure 4. Top Chassis Mated to Bottom Chassis 

Figure 5. Blind Mate Connectors 
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Figure 6. EE Flowchart 

To achieve an optimal field of view with the camera system, a telescoping camera mount has 

been made. The height ranges from 15.75 to 29.5 inches with an adjustable viewing angle range 

of 115°. In addition, a camera housing has been manufactured to protect the camera and its 

sensitive lenses from the environment. 

ELECTRICAL DESIGN 

This year EDT 

narrowed its focus 

to reducing the size 

and complexity of 

Scipio’s electrical 

systems in addition 

to adding a few 

small features. A 

new backplane now 

integrates the 

systems and 

eliminates the need 

for the screw 

terminal block. 

These changes allow 

for simplification of 

the design, 

improving 

performance and reliability. Figure 6 shows a high level overview of the hardware and sensor 

flow.  

Power System 

Scipio uses two 12 volt 35 amp-hour sealed lead acid batteries arranged in series, resulting in a 

24V nominal system. This configuration yields 90 minutes of drive time and multiple weeks of 

standby time. Switching regulators are used for improving efficiency and providing 12V, 5V, and 

3.3V power lines for sensors and logic circuits. The RoboteQ motor controller receives the full 

potential of the batteries, and can report useful information to the computer such as battery charge 

and motor current draw. 

Emergency Stop 

The Emergency Stop (EStop) system provides the capability to disable Scipio in the event of 

an emergency. The EStop may be activated wirelessly by remote control or manually by pushing 

the onboard switch. The system is composed of a wireless handheld transmitter and a receiver in 

the vehicle. The transmitter unit has a highly visible red pushbutton switch which changes from 

“GO” command to “STOP” command when depressed. The “GO” signal must be received from 

both the onboard switch and the wireless transmitter before the vehicle is allowed to move. If no 

valid signal is received the vehicle will remain stopped. The radio module has an open field range 

of five miles and uses spread spectrum technology to provide data encryption and prevent 

interference or jamming from external sources.  

The Emergency Stop transmitter has been drastically improved with energy efficiency in 

mind. The previous design had a maximum battery life of around fifteen minutes with a nine volt 

battery which proved ineffective for the desired operation time of the robot. To correct this issue 

several changes were made. The linear regulator has been replaced with a high efficiency 
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switching regulator to reduce energy loss in the voltage conversion. A larger capacity fourteen 

volt rechargeable battery has been added to provide a wider depletion range that allows the 

regulator to provide a five volt output. The five mile range was found to be excessive for the 

given application so the 900 MHz transmitter has been set into a lower power state to reduce the 

signal strength to under a mile. 

Blinker Circuit 

    The Blinker Circuit receives different signals from the RoboteQ motor controller which 

identify which mode the robot is in. When in autonomous mode the system flashes high intensity 

LEDs attached to on the camera mount at 1 Hz. In manual/remote control mode the LEDs stay on 

to alert bystanders that the robot is powered and in standby mode. 

Motor Monitor 

The Motor Monitor is a safety centric design that informs bystanders of the robot's direction of 

travel. It does this by communicating with the RoboteQ motor controller over RS-232 to 

determine wheel velocities which are displayed as color codes on several high intensity, external 

LEDs attached to the chassis of the robot. An additional feature the system can also indicate low 

batteries by flashing the external LEDs in a unique pattern to avoid confusion with the Blinker 

Circuit. This state is triggered by a GPIO connection to the energy monitor.                                                                                                                                            

System Monitor 

The System Monitor is a multi-faceted system. The core purpose is to analyze power 

consumption of the batteries and display the information on the panel-mounted LCD screen. 

Additionally, the system monitors and reports temperature data from within the electrical housing 

of the robot, this allows the user to determine if there are imminent failures in the electrical sub-

systems.  

To fully utilize the screen size of the LCD, all of the embedded platforms' resource 

consumptions are reported graphically. This information ranges from individual CPU core 

consumption to available storage space, but due to limited screen space only so much can be 

displayed. The bottom button to the left of the LCD screen is used to toggle between the different 

embedded platform data sets easily. All communications with the embedded platforms are 

conducted over SPI.  

Motor Control 

Locomotion of Scipio is controlled by the RoboteQ HDC2450 motor controller. The motor 

controller allows Scipio to be controlled in closed loop where PID coefficients can be easily 

adjusted. Velocity commands and measurements are sent to the motor controller through RS-232 

communication. 

Sensors 

Scipio has several sensors that provide feedback to the embedded platforms. Two incremental 

shaft wheel encoders are coupled directly to the front wheels to measure the exact rotational 

position and velocity of each side of the vehicle. Each encoder produces two pulse trains with 

frequencies linearly dependent on wheel speed. The encoder sends the two pulse trains to the 

RoboteQ motor controller, which determines the wheel speed and direction of rotation. 

A Hemisphere V103 weatherproof GPS provides a heading and GPS coordinates within a 

tolerance of 23.6 inches. The heading is determined by the time difference of a signal between 

two receivers within the GPS. In the event that satellite communication is lost the GPS contains a 

gyroscope which approximates position and heading.  



 7 

A SICK Tim551 laser rangefinder with a viewing angle of 270° and a range of 32.8 feet is 

used for object detection.  

A Microstrain 3DM-GX3-25 Inertial Measurement Unit (IMU) provides filtered 

accelerometer, magnetometer and gyroscopic data in a discrete package. The IMU is mounted at 

the center of the robot for optimal data collection.  

Computer 

Scipio uses three Radaxa Rocks and one Nvidia Jetson TK1 connected together via a gigabit 

Ethernet router to distribute computational load. This removes dependence on an external power 

source and greatly reduces weight and space consumption, which were issues with the laptop. The 

Nvidia Jetson TK1 offers 192 CUDA cores which are used for image processing while the 

Radaxa Rocks are used for other computational tasks. System tests confirmed that the 

performance of the embedded platforms exceeded that of the laptop while drawing less power. 

Electrical Innovations 

The Backplane centralizes all logic circuits and sensors making it the most vital part of the 

system. The card sockets offer modularity of the logic circuits, this allows easier replacement if a 

card is damaged or rendered obsolete. High current DC-DC converters have been installed 

onboard, providing more than ten times the current capacity of the previous regulators. 

The Emergency Stop transmitter has been redesigned as higher energy efficient system 

providing a significantly longer battery life. 

SOFTWARE DESIGN 

The previous experience with Robotic Operating System (ROS) from last year prompted 

continue development of the software system using this set of libraries. ROS is a dedicated open-

source platform for robots that provides a standard communication channel between software 

nodes that monitor the robot’s environment, make plans based on present and past information, 

and act accordingly by sending commands to the motor controllers. The use of ROS allows quick 

and efficient design of modular nodes which are each made to handle specific tasks and can be 

modified, replaced, or removed without affecting the function of other nodes. Many nodes and 

libraries have also been written and shared by ROS' large online community, which is another 

benefit of ROS as it saves untold amounts of time and effort by not requiring users to reinvent the 

wheel. 

The simulation and testing tools for ROS, including the ability to "bag" data and replay it, 

RVIZ, and Gazebo, have also each proven invaluable due to their ease of use, and the capability 

to test the system as a whole, or individual components, without the use of the physical robot. 

This allows for testing to be performed while other members are making use of the robot or while 

the robot is not in a state of functionality due to repairs needed or other such issues.                                               

Software Architecture  

ROS nodes are contained in packages. Packages can be groups of nodes sharing similar 

functionality such as mapping, navigation, or individual nodes responsible for unique tasks. Data 

are collected and modified by the sensory nodes, then sent to the navigation stack. The navigation 

stack then uses the data to determine Scipio’s location, orientation, and speed. Once the current 

state is determined, it is compared to the current goal state to determine the steps needed to attain 

the desired state. The navigation stack then communicates with the motor controller and indicates 

a speed and direction of movement. The navigation stack monitors the data sent by the motor 

controllers to measure and adjust progress towards the goal. 
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Language and Libraries 

Scipio’s software is written in C++ and Python, while XML and YAML are used for mark-up 

files. The ROS API handles all primary functionality such as movement, object recognition, line 

detection, and localization. Libraries used include ROS, JAUS, gUnit, NumPy, and OpenCV for 

image processing. 

Laser Rangefinder 

Scipio’s laser rangefinder (LRF) is a SICK TiM551. Its driver is a ROS node that requires the 

parameters of the rangefinder such as the minimum and maximum viewing angle. Once launched, 

the node connects to the LRF and begins publishing "laser_scan" messages.  The navigation stack 

listens to these laser_scan messages and places the obstacles found onto its map and takes 

appropriate measures to avoid collisions.  

GPS/Compass 

A Python ROS node serves as the driver for the GPS receiver. It connects to the receiver 

through a serial connection and listens for sentences using the NMEA 0183 standard. The GPS 

internally calculates the heading using the difference in position readings between the two 

individual GPS receivers. The node converts both the position and orientation readings from 

degrees to radians and publishes them to appropriate topics for use by the navigation stack. 

The navigation stack uses the heading and GPS data to determine its position and orientation 

in the world. It compares this data to its current goal and any specified GPS waypoint to 

determine progress and any necessary adjustments. 

Line Detection 

The computer vision portion of autonomy starts with acquiring the actual camera data using 

the ROS pointgrey_camera_driver, which sends a stream of image messages to both the line 

detection and flag detection nodes. The line detection node processes the images and outputs a 

pointcloud message containing the lane marking as obstacles, which the costmaps receive and use 

as their obstacle data, stopping it from crossing the markings. 

The development of the line detection algorithms had been a bottleneck in previous years due 

to its long life-cycle of research-implementation-testing. In order to minimize the time spent on 

writing and implementing code to prototype the algorithms, a generic interface class was written 

in Python that allows the capability to write multiple algorithms and filters independently, and 

chain them together in different combinations. In other words, it allowed testing of multiple 

algorithms in parallel and tying together multiple components for testing, instead of constantly 

rewriting a single monolithic program many times (with lots of redundant boilerplate code). With 

different modules running side by side, the performance was able to be evaluated by comparing 

their outputs with the true desired output. A sample configuration of filters that were used are 

shown below in Figure 7, where nodes are circled and topics are rectangles. 
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The algorithms utilized for line detection include various basic image filters (Gaussian blur, 

median blur, erosion, dilation, subtraction, and others), as well as more advanced filters such as  

histogram equalization, histogram backprojection, RANSAC, and Hough transforms, all applied 

in series on each image acquired from the camera at approximately fifteen frames per second. 

The most problematic portion of the images for detecting lanes was the grass, because of its 

unpredictable patterns and varying color/intensity profile. It was quickly determined that relying 

on static threshold values for brightness and color were not robust enough to filter out the grass, 

and would need methods to improve reliability. The current grass-filtering algorithm builds a 2-D 

histogram (hue-saturation channels) from a training dataset, and then backprojects the current 

image pixel-by-pixel based on that pre-built 2-D histogram. In other words, it filters out a pixel in 

the current image based on the probability that it belongs in the 2-D histogram that was built 

based on the training dataset. A sample training 2-D histogram is displayed below as a heatmap, 

with the resulting filtered image using that histogram in Figure 8. 

 

Figure 8. Heatmap of constructed histogram from training image (left), where the x axis corre-

sponds to saturation values, the y axis corresponds to hue values, and the intensity corresponds to 

the relative count of those pixels. The resulting backprojected pixels are subtracted from the cam-

era input during a run, removing a lot of noisy grass areas (right). 

 

Figure 7. Chained ROS nodes and their output topics use for prototyping line detection algorithms. 
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The output from most of the filtering stages is shown below in Figure 9. Having most of the 

grass pixels filtered out, a simple blur filter (top right) was used, and then a brightest row filter 

(bottom left) was run. The brightest row filter removes all pixels in each row except the brightest 

pixel in that row. This filter works best when the robot is parallel to the lane markings. Finally, 

the remaining pixels provide an estimate for the lane markings, which is extracted using a Hough 

transform operation (bottom right). 

 

Figure 9. Debug image output of different stages of line detection algorithm. Raw camera data 

(top left) is backprojected then blurred (top right).  Then ran through a brightest pixel filter 

(bottom left) and finally a Hough transform to extract the lines (bottom right). 

Odometry and Localization  

Scipio’s location is tracked and monitored utilizing data from multiple sensors. Currently, 

three nodes provide odometry data: an IMU, GPS, and motor controller node. These sensory 

inputs are then combined into a filtered odometry output using an extended Kalman filter known 

as robot localization to produce fairly accurate odometry data. From the filtered data collected 

and observed in initial testing, the results from traversing a 50 meter by 50 meter square and 

returning to a starting point gave the results that indicated a 0.5 meter error. Notable sources of 

error originate from the inherent translational slippage of the wheels and the limited accuracy of 

the GPS.   

Each sensor provides odometry data which allows for a sense of dead reckoning. However, 

each sensor provides a reading which is relative to a different coordinate frame; the wheel 

odometry and IMU data are provided in the coordinate frame of the robots chassis, whereas the 

GPS data provides an estimate of the robot relative to the UTM coordinate frame. Once initial 

sensor data is acquired, then each of the following wheel odometry and IMU gyroscope readings 

is set relative to this initial zeroed position and orientation of the robot. This differs to the data 

provided by the GPS since the position and orientation computed is based off the latitude and 

longitude readings. A UTM to robot transformation is then applied here in order to place the 

starting position of the robot's chassis coordinate frame to also be in the UTM frame.  

The absolute position and relative velocity of the wheel odometry data can also be separated 

into two separate coordinate frames. The absolute position is considered to be in the odometry 

coordinate frame containing the pose from the start of the robot's run, while the relative velocity 
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is considered to be in the local frame of the robot, known as 'base_link'. As absolute position data 

tends to significantly drift over time, the robot now only provides its relative velocity information 

to the Kalman filter so that it can be integrated. This integrated value is then fused with the rela-

tive velocity data of the IMU.  

Mapping 

In the previous year ROS' SLAM gmapping library had been used, which builds a map using 

laser scan and odometry data as the robot runs and contains points depicting objects detected. 

However, it was deemed that this method was less efficient at keeping track of the robot's posi-

tion relative to the map coordinate frame than using an a priori map. An a priori map first gener-

ates a blank map roughly the size of the course and then adds the accumulated obstacle data from 

the laser scanner as well as detected lines generated from the line-detection node. Due to the fact 

that the a priori map has known, fixed dimensions, it is easier to keep track of the robot's position 

using this type of map than if using a map with no fixed dimensions. 

Navigation 

Localization, orientation, and obstacle and line detection information are processed by the 

Navigation Stack (NavStack) to generate the movement commands sent to the motor controllers. 

NavStack's main package "move_base" is a library native to ROS. Figure 10 shows move_base's 

interactions between sensor input and command output. 

 

Figure 10. ROS Navigation Stack Structure* 

All sensor information is sent to both the global and local cost map nodes within the 

move_base package. The global cost map represents all information Scipio has about its 

environment. It continuously saves sensor information and builds the cost map until the system is 

restarted. The local cost map is the pool of information which is acquired from the immediate 

vicinity, a 4 meter radius around Scipio. The local cost map is constantly updated but is not stored 

for future use. The global cost map is used for long-term goal decisions, and the local cost map is 

used for short-term decisions. 

As Scipio collects data from sensors, extracting useful information from disorganized data 

becomes increasingly difficult. Transforming it based on known characteristics of sensor 

                                                      

* http://wiki.ros.org/move_base 
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placement eliminates this difficulty. Converting data systematically to Scipio's point of reference 

at its center is done via a transform tree as shown in Figure 11. This allows data coming from a 

sensor such as the LRF to be adjusted by translation and rotation so as to appear that the LRF is at 

the center of the robot.  

 

 

Figure 11. Transform Tree 

The LRF is located 0.4 meters in the x plane from Scipio's center and 0.124 meters in the z 

plane from it. Every new data point the NavStack receives from the LRF will have these x and z 

offsets added to it. Point cloud messages sent by the camera driver have an x offset of 0.14 and z 

offset of 0.3. The data from the GPS driver is not transformed using offsets as the center of the 

GPS receiver coincides with Scipio's center, and GPS based altitude readings are not used. These 

sensor transforms are handled by the nodes, "tf_broadcaster", which publishes the sensor 

transform offsets, and "tf_listener", which transforms new data based on the published offsets.  

The base of the robot, "base_link" is the parent of all sensors. For data to be sent to the map 

frame, which allows the global cost map to analyze information, data from the base link frame 

must be transformed to the odometry frame. No offset is necessary here as both frames use the 

same reference point at Scipio's center.   

Once determining that navigation should continue the NavStack then analyzes the information 

acquired from the global and local cost maps and determines a short distance path that will 
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optimally decrease the distance between Scipio and its goal. Once Scipio detects an object in its 

path the local path planner will attempt to determine a direction to turn to continue navigation 

toward the target. As this path is determined, the NavStack continues to determine the long term 

path toward the goal. This is important in situations where the local path planner is unable to 

determine a path such as when Scipio has moved into a corner and must move backwards before 

continuing movement toward the goal.  

Scipio's objective is a GPS waypoint defined in software before each run. The move_base 

package determines the path that leads to the desired location. The GPS coordinates are sent to 

the NavStack in a message containing an x, y, and z location computed by the "gps_goal" node. 

Once the NavStack has received this goal the global path planner begins determining the overall 

path and the local path planner begins determining the short term paths. 

Once move_base has computed and analyzed all of the sensor information, recovery plans, 

and has picked a desired path, it sends a velocity command to the RoboteQ driver. This command 

contains a linear distance to move and an angular velocity to turn. After each velocity command 

is sent odometry information is collected from the motor controller to determine if Scipio has 

moved as commanded. If it has not then recovery behavior will be attempted to adjust Scipio 

towards the desired path. 

Joint Architecture for Unmanned Systems (JAUS) 

Scipio uses the protocol to report information about its current operating state and to receive 

waypoints for navigation. JAUS is implemented in Scipio as a ROS node built from JAUS Tool 

Set (JTS). The node listens for and responds to information requests, and sets the appropriate 

waypoint in the navigation stack. 

Testing and Simulation 

ROS contains a number of testing tools that 

expedite development and aid in the elimination 

of bugs early in the process. RVIZ, shown in 

Figure 12, is a 3D visualization environment 

developed by the creators of ROS to be used for 

testing, debugging, and simulation. Gazebo is a 

3D simulation tool compatible with ROS and 

RVIZ with a complex physics engine, allowing 

for a very accurate simulation of real 

environments. With these tools, the software 

team was able to develop individual software 

components and test them before integration. 

RVIZ displays the data being taken in by the 

sensors and sent through each topic in real time. 

The visualizer displays the sensor data as seen 

by Scipio as well as the messages Scipio publishes to each ROS topic. RVIZ uses a markup file 

containing the robot's physical information in the Unified Robot Description Format (URDF) in 

order to accurately display the robot in the environment.  

Gazebo uses URDF files to simulate the robot’s performance as well as its surroundings. 

Using additional plugins for each sensor and the motor controller, Gazebo simulates data from the 

environment being detected by the sensors publishes the data to their respective topics. Premade 

test objects such as barricades or traffic cones can be placed in the simulation environment to be 

Figure 12. Scipio Modeled in RVIZ 
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used in navigation and object detection testing. The simulation works in conjunction with RVIZ 

to display the simulated data and the active topics. Using both packages allows for software 

testing without physically operating the robot. 

SYSTEM SAFETY 

Ensuring bystander and vehicle safety was the top concern during the design process, safety 

measures were considered at all points of Scipio's design and fabrication. All exposed edges and 

corners were smoothed to prevent injury. All drivetrain components were properly enclosed and 

protected. The Motor Monitor alerts bystanders of Scipio's presence and movement. The 

RoboteQ motor controller checks for valid movement commands and ensures that no random or 

spontaneous movement will occur in RC mode. The EStop deactivates the vehicle when two 

"GO" signals are not detected. Finally, Scipio's speed is mechanically limited to 5.98 mph. 

PERFORMANCE ANALYSIS 

The performance analysis section includes the predicted performance of the vehicle versus the 

actual performance of the vehicle when tested. 

Vehicle Speed 

With 14 inch diameter wheels, a speed reduction of 30.63:1, and motors with an output of 

4400 rpm at 24 volts, the maximum theoretical speed of Scipio is 5.98 mph assuming no losses 

due to loading. Testing showed an average maximum speed of 5.59 mph, which is within 6.6% of 

the calculated speed. 

Ramp Climbing Ability 

Due to Scipio’s low center of mass and powerful drivetrain, it was expected to be able to 

climb an incline of 40°. Testing showed that Scipio was able to easily climb a 45° incline, 

significantly greater than any incline on the IGVC course. 

Reaction Time 

Taking images via the camera and processing them to detect lines is the slowest process in 

navigation. Each image takes 90 milliseconds to acquire and filter. Once the line skeletons have 

been obtained, there is negligible additional overhead to update goal progress. 

Battery Life 

Scipio can operate for a maximum of 90 minutes before the drive motor batteries must be 

replaced. 

Obstacle Detection 

The SICK Tim551 is rated to have a detection distance of up to 32.8 feet indoors and 

outdoors. 

Complex Obstacle Handling 

To determine if Scipio is stuck or has come to a corner or other obstacle which must be 

navigated around, the information from both the local and global costmap nodes is sent to a 

recovery behavior node which decides between four different recovery options as shown in 

Figure 13. If a recovery behavior cannot be achieved the system will abort the navigation to avoid 

any further unwanted movement.  
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Figure13. move_base Flowchart* 

Positional Accuracy 

Scipio now uses the Hemisphere V103 GPS Compass, which is accurate to 0.6 meters. This 

unit also contains a precision compass, which is internally filtered to increase total perceived GPS 

accuracy.  

  

                                                      

* http://wiki.ros.org/move_base 
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BILL OF MATERIALS 

Table 2 represents both EDT’s lifetime and fiscal year monetary investment in Scipio.  

Table 2. Bill of Materials 

Part Description Part Use QTY 
Retail Price 

($) 

Cost to 

Team This 

Year ($) 

Vendor 

Batteries: Power 

Sonic PS-12350 
Drivetrain Power 2 130 0 BatteryPlex 

GPS: Hemisphere 

V103 Smart Antenna 
Navigation 1 3200 0 Hemisphere 

Radaxa Rock Software 3 297 297 Radaxa 

Nvidia Jetson TK1 Software 1 192 192 Nvidia 

Laser Range Finder: 

SICK Tim 551 
Object Detection 1 2627 0 

SICK - 

Donation 

Motors: Palmer 

Industries 200 
Drivetrain 2 1100 0 

Palmer 

Industries 

Black Fly Camera Line Detection 1 250 250 Point Grey 

Camera Lens Line Detection 1 500 500 Edmund Optics 

Wheel Encoders: US 

Digital HD25-1000 

Position and Velocity 

Determination 
2 681 0 

US Digital - 

Donation 

Wireless Tranceiver: 

RadioTronix Wi.232 

928 MHz 

Emergency Stop 

Transmitter and Reciever 
2 119 0 Mouser 

Microstrain 3DM-
GX3-25 

Inertial Measurement 

Unit 
1 1600 1600 Microstrain 

Circuit Elements 

(Copper Boards, 

Microcontrollers, 

etc..,) 

Circuit board prototyping N/A 100 0 
Jameco + 

Mouser 

Switches, Wires, 

Crimps 
Various N/A 100 0 

Jameco + 

Mouser 

New Haven Graphic 

Display 160x 128 

System Information 

Display 
2 134 134 Mouser 

0.083 wall 1" x 1" x 

6' steel tubing 
Bottom Chassis Frame 6 132 132 McMaster-Carr 

Aluminum Flat 

Stock 

Gearbox 

Casings/Drivetrain 

brackets 

1 300 120 Online Metals 

Spur Gears Gear Box 10 660 0 McMaster-Carr 
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Bearings Gearbox/Drivetrain 20 660 120 McMaster-Carr 

Drive Belts (Gates 

Poly Chain) 
Drivetrain 4 312 0 

Murph Haines, 

Inc. 

Drive Pulleys (Gates 

Poly Chain 

Sprockets) 

Drivetrain 8 1548 0 
Murph Haines, 

Inc. 

Taper-Lock 

Bushings 
Drivetrain 8 176 0 McMaster-Carr 

3.50" Dia., 0.75" 

Dia., 0.625" Dia. 

Steel rods 

Drivetrain, Gearboxes, 

Wheel hubs 
3 60 0 

Murph Haines, 

Inc. 

1" T-Slotted 

Extrusion (10 Feet) 
Top Chassis Frame 4 176 124 McMaster-Carr 

T-Slotted Framing 

Accessories 
Top Chassis Frame N/A 500 400 McMaster-Carr 

Polycarbonate sheet 
Top Chassis 

Windows/Doors 
3 116 116 McMaster-Carr 

Aluminum Sheets Paneling/Bottom Plates N/A 315 315 
Stainless 

Supply 

Fasteners Fastening N/A 150 60 McMaster-Carr 

Rubber Seals & 

Stripping 
Weather proofing N/A 100 100 McMaster-Carr 

Kenda 14 inch 

Diameter tires 
Drivetrain 4 200 0 Northern Tool 

Totals $16,435.00 $4,460.00 
 

 

CONCLUSION 

EDT-Scipio represents the combined efforts of seventeen members of the Chicago 

Engineering Design Team. This year's model has seen great improvements from last years across 

all areas. Numerous mechanical modifications allow easier maintenance of Scipio and support 

new equipment and sensors. Reworked electrical systems decreased complexity while adding 

features and hardware. The decision to expand development on ROS allowed the software team 

to focus on strategy and greatly improve Scipio's navigation capabilities. Having seen 

improvements to all aspects of its design, Scipio stands as the finest of EDT's work.   
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Faculty Advisor Statement 

I certify that the engineering design documented in this report and implemented into this vehicle 

by the current student team is significant and equivalent to the work required to receive Senior 

Design credit.  

 

 

Dr. Miloš Žefran 

Department of Electrical and Computer Engineering 

University of Illinois at Chicago 


