
 1

IGVC	
 2015	
 -­‐	
 SNOWFLAKE	

SNOWFLAKE: IGVC 2015 DESIGN
REPORT

UBC	
 Snowbots	

University	
 of	
 British	
 Columbia	

Aashish Karna
Albert Lagman
Andres Rama
Andrew Kang

Anmol Jawandha
Anni Wang
Anson Yam
Arjun Sethi
Bardia Beigi
Ben Chow
Calvin Xu

Clarissa Gunawan
Edbert Candra

Edward Li
Emma Tam

Finn Hackett
Jame Lee
Jamie Ye

Jannicke Pearkes
Jarek Ignas-menzies

Jason Raymundo
Jay Dahiya

Jay Paul
Jennifer Ling

Johnny Li
Jonathan Harris

Justin Liang
Kirk Wong
Maxwell Li

Maya Schuller

Nancy Pang
Nicholas Leung

Nicholas Wu
Otto Lau

Rishabh Singal
Ryan McDonald
Simon Jinaphant

Tabitha Lee
Vincent Yuan
Viral Galaiya
Vivian Wong
Winnie Mui
Yuqing Du

Ziyue(Grace) Hu

In memory of Dr. John Meech

INTRODUCTION

Snowflake is a brand new robot designed and constructed by UBC Snowbots this year. Snowflake has a
square chassis supported by two primary wheels and four omni-wheels. One LIDAR sensor is used for
obstacle detection, and three cameras on a tower are used for computer vision. Multiple software strategies
are employed to allow Snowflake to navigate the IGVC course swiftly and precisely. This report will
describe our team’s organization, design strategy, and the mechanical, electrical and software elements of
our vehicle. The report includes a detailed cost analysis and will end with our aspirations for the upcoming
competition.

TEAM ORGANIZATION
UBC Snowbots consists of UBC students from a variety of engineering departments, and the faculty of
computer science. There are three main divisions of the team – the mechanical division, the electrical
division and the software division as one can see in Figure 1 below. Each division is managed by the team
leads. As we are a large team, each division is further split up into sub-divisions and then into project
groups. Typically 2-3 students work on a particular project. The entire team meets every week for three to
four hours and project sub-divisions meet at additional times as required by their tasks

 2

Figure 1. Team Organizational Structure

MECHANICAL DESIGN

The robot was divided into three distinct modules, the drive train, housing and tower. Throughout the
design process, ideas were communicated amongst our sub-divisions, and we later unified our assemblies to
form the robot. SolidWorks was used to design all components to confirm all design parameters which will
be described in detail in the following sections.

Figure 2. Snowflake - From Design to Reality

MATERIAL SELECTION
The robot is composed of three materials: aluminum 5052 sheet metal, corrugated plastic and acrylic. The
chassis of the robot is made from bent aluminum sheet metal. This material was chosen for its
machinability, strength and light weight. Certain parts of the robot require weatherproofing and clear
acrylic was used to shield the components without obstructing the view. In cases where opaqueness and
thermal shielding was desired to protect against direct sunlight, white corrugated plastic was used.

 3

DRIVETRAIN
The drivetrain is composed of two modular sections that are connected via two large brackets. These
brackets were carefully designed to handle expected loads, while keeping the overall infrastructure
modular. Each drivetrain module consists of two omni-caster wheels and one driven pneumatic wheel.

Figure 3. SolidWorks Model of the Drivetrain and Power Train 	

The pneumatic wheel provides some suspension, which can be adjusted by adjusting the height of the caster
wheels. The caster wheel mount was specifically designed to be adjustable and allows for the incorporation
of additional suspension in the future.

Figure 4. Adjustable Mounting Brackets for the Caster Wheels	

POWERTRAIN
The powertrain consists of two gearboxes, each with a gear ratio of 12.75:1. Each gearbox is connected to
two brushed 12V DC motors. Calculations were made in order to assess whether the motors and
accompanying gearbox would be sufficient to propel the vehicle.

HOUSING
The housing module holds the standard payload and accommodates the robot’s electrical system and
computer.

 4

Figure 5. Housing Model and Pop-out Platforms

Since the computer has the highest demand for accessibility, the computer compartment is retractable and
was designed with the programmer’s seated height in mind.

Figure 6. Comfortable Seating Position for Direct Programming	

The electrical compartment is accessible from the opposite end of the robot. Here, our engineers can
perform electrical maintenance as needed without disrupting our programmers. To further improve the
accessibility to the electrical system, we designed the compartment to be removable. Finally, since most of
the human interaction to the robot occurs from the back end, we conveniently placed all of the electrical
switches and payload there.

TOWER
The purpose of the tower is to optimize the position of our robot’s sensors. This module holds our vision
sensing equipment and our GPS antenna. The vision sensors were strategically elevated in order to increase
our robot’s range of view. We used this necessity to our advantage, as it also allowed us to isolate our GPS
antenna from interference. The tower module also has an adjustable height feature to optimize our vision
placement.

We chose a strut channel as our platform to mount our sensors. Strut channels allow for easy positioning
and secure mounting of sensors such as cameras and antennas. It is made out of fiberglass to eliminate any
interference to the antenna that may be caused by nearby metal.

 5

Figure 7. Tower Module with Cameras Mounted

SPEED
To obtain an idealized maximum speed of the robot, a rolling resistance test was conducted and a least
squares fit was used to find an approximate linear relation between the pulling force required to maintain
the robot at that particular speed.

The rolling resistance and speed of the robot were then converted to angular velocity and torque exerted to
the motor shaft using the properties of the drivetrain:

Gear ratio: 12.75 Wheel diameter 0.2m

Speed
𝑘𝑚
ℎ
×
1000𝑚
1𝑘𝑚

×
𝑤ℎ𝑒𝑒𝑙 𝑐𝑦𝑐𝑙𝑒
𝜋0.2𝑚

×
1ℎ

60𝑚𝑖𝑛
×
12.75 𝑚𝑜𝑡𝑜𝑟 𝑐𝑦𝑐𝑙𝑒
1 𝑤ℎ𝑒𝑒𝑙 𝑐𝑦𝑐𝑙𝑒

= 336.9 𝑅𝑃𝑀

Force to pull robot 𝑁×wheel radius× !.!! !"##$!"#$%&%'
! !"##$!"#$%&

= 0.1 𝑁𝑚 exerted on drive train

Torque exerted on drive train× !.! !"#$%& !" !"# !"#$!"#
 !"#$%& !"!#$!% !" !"#$% !"#$%

× !"#$%& !"#$!"#$%&' !"#$% !"#$%
!".!! !"#$%& !" !"#$!"#

×
!.! !"#$%& !" !"#$!"#"$

!"#$%& !"#$!"#$%&' !"#$% !"#$%
= 0.01751 𝑁𝑚 exerted to each motor

Force to pull robot N = 0.001969 Nm exerted to each motor

Figure 8. Measured Rolling Resistance Converted to RPM vs. Torque	

The obtained rolling resistance in [mNm] is plotted to scale against the manufacturer's motor curve to
acquire the ideal case operating speed and load of the robot. Since the manufacturer uses a 12V supply for
the motors and our robot uses an 11.1V supply, the motor curve was adjusted appropriately.

 6

The point of interest lies where the rolling resistance of the robot matches the performance curve of our
drive motors at the supplied voltage. In addition, two more curves are plotted. These include current draw
to each motor and the required angular velocity of the motor at the required speed (1 MPH).

Figure 9. Measured Rolling Resistance Overlaid with Motor Curve	

From Figure 8 we can see the absolute maximum speed and current draw that the motors in our drive
system can output. The maximum speed of our robot in the idealized case corresponds to a motor angular
velocity of 4300 RPM, or 12.8 km/h (7.9 mph). This also corresponds to a current draw of 18 A to each
motor. However since our E stop is only capable of carrying 20 A to two switches, we decided to limit the
current to each motor at 10 A such that their combined current at most would be within 20 A.

With this design requirement, our robot will operate at a maximum of 7.3 km/h (4.536 mph).

RAMP CLIMBING CAPABILITY
Given that the gradient is to not exceed 15% (~8.5 degrees), and knowing the characteristics of our robot,
some simple calculations we performed in order to assess whether or not our robot can traverse through
inclines found in the auto-nav course. The following table lists our values used in the calculations.

Parameter Value

Weight of Vehicle, m 37.6kg
Gear ratio 12.75
Max motor output 0.12Nm
Number of motors 2
Wheel radius 0.1m
Coefficient of Friction, mu 0.35
 Table 1. Ramp Climbing Analysis
Figure 10. Free body diagram

From our calculations, we have a pushing force of 60N, and a static weight of 55N along the incline. This
means that our vehicle is capable of keeping itself static on an 8.5 degree incline. Although it may not be
able to propel itself as it cannot overcome static friction, the vehicle will be capable of climbing the incline
as long as it approaches it with some momentum.

 7

ELECTRONIC DESIGN

The mandate for this year’s electrical division was to produce a professional, reliable and safe design.
Fuses, current and voltage monitors are in place to protect from short circuits and over/under-charging the
batteries. The wiring is neat and components requiring frequent attention are positioned with a high degree
of accessibility.

POWER DISTRIBUTION SYSTEM

Figure 11. Drive System Layout

The power for the four motors onboard Snowflake is provided by four lithium polymer (LiPo) batteries
capable of providing 11.1V at 7500mAH. The entire circuit is placed on a platform that is easily detachable
from the robot in the event that components need to be repaired or replaced.

Figure 12. Electrical Platform

Two essentially separate circuits power each of the two motors in one gear box. Each circuit has two LiPo
batteries connected in parallel. We used 14 AWG wires which were calculated to be within the range of the
maximum current of 20 Amps flowing through the wires.

 8

Before entering the E-Stop, the power is distributed through 20 Amp fuses. The fuses are used to make sure
that the battery is protected against short-circuits and excessive currents. We used a fuse block so that burnt
out fuses can easily be replaced.

Two additional 11.1V LiPo batteries connected in series power the LIDAR.

Our power system includes an external battery for the laptop to allow for extended use. Our cameras are
powered through a USB connection to the USB hub connected to the laptop.

OPERATING LIFE
Our design implements the use of four 7500 mAh 30C LiPo batteries (one for each motor). A LiPo battery
has a relatively steady voltage over discharge, and a steep voltage drop past the 80% discharge. To keep our
LiPo batteries operational, we recharge them after 80% (6 Ah) discharge.

To simplify calculations, the analysis has been performed on one motor with the assumption that current is
equally drawn by all 4 motors.

Battery life at minimal speed:

1 motor ! !"##$%&
! !"#"$

× !.! !!
! !"##$%&

×0.8 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 = 6 𝐴ℎ charge available

Current to move robot at 1 mph = 2.5A

6 𝐴ℎ charge available × !
!.!! !"#$!!"#$

= 2.4 ℎ𝑜𝑢𝑟𝑠 availble

Battery life at maximum speed:

Current to move robot at 7.9 mph = 10A

6 𝐴ℎ charge available × !
!"! !"#$!!"#$

= 0.5 ℎ𝑜𝑢𝑟𝑠 available

Figure 13: Estimated Battery Lifetime at Different Speeds

EMERGENCY STOP SYSTEM
Our emergency stop system on Snowflake is implemented by using a 1NO+1NC emergency push button
located at the center of the robot’s width and at a height of approximately 3.5ft from the ground. Our
emergency stop switch is manual and does not involve any software to stop the vehicle.

 9

FIRMWARE

Figure 14. Integration of Sensors with Electrical System

An APM 2.6 microcontroller is used for controlling and communicating with the electrical systems.
Ardupilot, an autopilot based on Arduino was used to write the firmware controlling the vehicle’s motion.

The vehicle has three main states: autonomous, remote controlled, and stopped, which can changed through
the radio controller. When it is set to autonomous mode, serial communication is used to send a twist signal
from the laptop to the microcontroller. Under remote control, a wireless communication signal is sent from
the radio controller to the microcontroller’s receiver.

The signals are then processed by the microcontroller using functions from the hardware abstraction library
(HAL). After processing, the microcontroller sends Pulse Width Modulation (PWM) signals to the
Electronic Speed Controls (ESCs) which control the two wheels independently, thus moving the robot in its
desired direction.

Encoders are used to calculate the speed of the robot. Due to the high resolution of our encoders, the
encoder output is first processed by an Arduino Uno, and then using I2C protocol, the position is sent to the
microcontroller. In addition, the microcontroller also receives information from the compass, battery
monitor, and wireless stop.

The compass and encoder count are combined to calculate the velocity of the vehicle, which is then sent
back to the computer to be processed as feedback.

As a safety precaution, the two wheels will stop if the battery monitor detects the battery voltage to be
below 9V, if a current above 19.5A is drawn, or if the wireless stop is activated.

LED ALERT SYSTEM
Green LED strips are mounted on the front, back, and sides of the tower to ensure that the safety light can
be easily viewed from all directions. A separate circuit utilizing discrete logic drives the LED’s operation
modes.

 10

SOFTWARE STRATEGY

The software has been developed in C++, using Robotic Operating System (ROS), Open Computer Vision
(OpenCV) and Open Simultaneous Localization and Mapping Libraries (OpenSLAM) libraries.

The software system receives three fundamental inputs: GPS information from the GPS, LIDAR scans from
the LIDAR, and video streams from the cameras. The data from these inputs is distributed via ROS
messages to the system, which processes and updates the speed and direction of the robot.

This year UBC Snowbots has implemented two software strategies: an advanced mode and a basic mode.
The advanced mode incorporates sophisticated mapping and path finding algorithms, whereas the basic
mode utilizes much simpler algorithms for navigation.

BASIC MODE

In basic mode, velocity vector and a priority are created by each processing node. The priorities are then
compared to determine a final velocity vector for the robot.

Figure 15. Basic Mode Block Diagram

ADVANCED MODE

The primary strategy (advanced mode) combines the data from all inputs to create a two dimensional map
of the competition space. A path finding algorithm is then applied to the map to determine the velocity
vector of the robot.

Figure 16. Advanced Mode Block Diagram

 11

VISION SYSTEM

The vision system of the robot uses three camera inputs which from which the shape of the path painted on
the field is constructed. This shape is then transformed into a bird’s eye view of the field for use in the path-
finding and mapping algorithms.

Figure 17. Advanced Mode Vision System

CAMERA

Three Logitech C615 HD Webcams are being used to collect data for the vision system. These cameras
were chosen due to their economical price and 74° field of view. The cameras are placed with their fields of
view overlapping by 10° which gives us a resultant field of view of 182°. The images are merged using an
image stitching algorithm.

 Figure 18. Mounted Cameras

IMAGE STITCHING

The image stitching algorithm receives images from the three cameras as input. The images are then
stitched together using the “Stitcher” function defined within OpenCV. This function utilizes the overlap
between adjacent images to create a single image. A delay of 5 ms is added to the function, which produces
an output of 200 fps.

FILTERING

The goal of the filtering process is to extract the white lines painted on the grass from the surrounding
environment. This is achieved by first applying a Gaussian blur to the image to remove high frequency
noise. The image is then transformed into HSV colour space and separated into Hue, Saturation and Value
channels. A threshold is then applied to the Hue channel to extract the white from the background.

To mask the white appearing on obstacles such as cones another filter is applied in parallel to the image.
The orange from the cones is filtered and a mask is applied around the region of interest.

The two binary images are then combined using a logical AND to remove the interference from white lines
appearing on obstacles.

 12

Figure 19. Extraction of White Lanes from Background

BIRD’S EYE VIEW PROJECTION

For the bird’s eye view transformation, the input video is converted into a bird’s eye view so that AI can
map the vision information. The program takes the four corners of the plane of the ground in the input
video and transforms them to the corners of the output video.

Figure 20. Bird’s Eye View Transformation of Lanes in a Practice Area	

LIDAR
The SICK LMS 291-S14 LIDAR uses a rotating laser beam to measure distances to obstacles by analyzing
the time of flight of the reflected beam. The LIDAR is mounted in the front of the robot and has a scanning
angle of 180 degrees and a range of 30m.

The ROS node for LIDAR runs concurrently with the sicktoolbox_wrapper, which translates raw data from
the LIDAR into useful data that can be read by the LIDAR node. The LIDAR node then takes the translated
data and can do the following:

• Publish the data to the Mapping node where the LIDAR data can be combined and processed
along with other data, or

• Process the LIDAR data and makes decisions based on object distance and the robot state, then
publish the decisions in form of a Twist Message directly to the robot’s driver node.

GPS
The Piksi RTK Kit by Swift-Navigation is used to provide GPS information. The Piksi GPS Module
includes two Piksi OEM boards, two GPS antennas, and 915 MHz two robotics radios to support RTK
(Real Time Kinematics) functionality. This GPS was chosen because it can have a positioning accuracy of
less than 10cm. The Piksi GPS development boards included within the kit consist of a GPS receiver and an
on-board microcontroller that supports both USB and UART for more flexible design

 13

.

Figure 21. GPS Outputting Single Point Position Solutions While Walking Around an Intersection

The sb_gps ROS node provides hardware data acquisition with the help of GNSS library and SBP library
by Swift-Navigation. After acquiring data, the node also performs the calculations providing the system
with direction and angle from the current location to the next way point.

NETWORKING SYSTEM

Networking was developed using the JAUS++ framework (from ACTIVE-IST). The networking module’s
purpose is to ensure JAUS compliance of the system, and to map from required JAUS commands to
internal commands using the ROS framework.

These commands are as follows:

• Local Waypoint Driver (ability to travel toward a single GPS waypoint)
• Waypoint List Driver (ability to travel along a list of local GPS waypoints)
• Velocity State Sensor: axis-aligned linear velocity (forward only), yaw rate
• Local Pose Sensor (reports local pose relative to a global pose)
• Local Pose contains position in Lat/Lon format, as well as Yaw.

DESCRIPTION OF MAPPING TECHNIQUE

The main purpose of our mapping system is to generate a local environment map that is used to update an
internal global environment map. The local map generation will be implemented in our custom ROS
mapping node. The mapping node will then pass the processed local map to a path-finding node, which will
map the local map onto the global map, and execute the algorithm, which uses the global map. This entire
process is looped through until the ROS system is aborted.

Figure 22. An Overview of the Mapping System: The Blue Nodes Represent ROS Nodes.

 14

HECTOR MAPPING
Our mapping system uses the hector_mapping ROS node, which utilizes the SLAM (Simultaneous
Localization and Mapping) method. This node primarily relies on data from the LIDAR instead of
odometry, as the LIDAR’s fast update rate can provide more accurate and precise results. The node
publishes the gathered data in the form of an occupancy grid, along with useful localization data such as
position and orientation. In addition, the hector_mapping node provides us with the ability to customize the
map resolution and update thresholds, making it a versatile system.

Figure 23. Sample Map of a Hallway in the UBC Civil and Mechanical Engineering Building Created
Using Hector Mapping

LOCAL MAP GENERATION
The main local map generation is implemented in a custom ROS mapping node that processes and
combines local environment data from the cameras and LIDAR. While the cameras’ images are processed
by our ROS vision node, the LIDAR scans are processed by an open-source ROS node called
hector_mapping. The mapping node combines the occupancy probability values from the two local map
grids into a single local map that is sent to the path-finding node, where our internal global environment
map is initialized and maintained.

Figure 24. A Summary of the Local Map Generation

LOCAL TO GLOBAL MAP
The path-finding algorithm requires a global map, regardless of how incomplete the map may be. The
algorithm also needs to know which area of the global map is being updated to avoid recalculating the path
over the entire global map. During every ROS loop iteration, the local map received from the mapping node
is mapped onto a global map that is initialized in the path-finding node. This operation is performed by
transforming the local map matrix into the orientation and position on the global map with the assistance
from the GPS compass as well as relative position changes based on Hector Mapping data. Upon

 15

consolidating this information, the map is then ready for the path-finding algorithm to update its current
path.

Figure 25. The Two Local Maps are Combined to Generate a Single Local Environment Map, Which will
be Sent to the Path-finding Node to Update the Global Environment Map.

SYSTEMS INTEGRATION

The following section describes the algorithms in place to lane following, waypoint navigation and
collision avoidance. The basic is used in the event that the advanced mode fails and thus allowing the robot
to have a back-up software system.

BASIC MODE

BASIC LANE FOLLOWING ALGORITHM

The basic lane following algorithm extracts the slope of the white lines close to the robot using a least
squares fit. The slopes of the lines are then used to extrapolate the lines to their intersection point. The
deviation of their intersection point from the centre of the image is then used to update the robot’s velocity.

Figure 26. Lane Following Algorithm: Robot Direction is Adjusted so that Centre
 of the Image (Green) is Aligned with the Centre of the Path (Orange) at the Horizon (Green)

BASIC GPS WAYPOINT NAVIGATION ALGORITHM

The algorithm used for calculations mainly surrounds the Haversine formula shown below that calculates
the distance across a sphere provided the longitudinal and latitudinal coordinates along with the radius of
the sphere we are traversing.

 16

BASIC COLLISION AVOIDANCE ALGORITHM

The LIDAR node utilizes the LIDAR to determine the throttle and steering of the robot using force field
navigation. For each object that a laser beam detects, a repellent force is assigned. The magnitude of the
repellent force is inversely proportional to the distance between the robot and detected obstacle, and its
direction is pushing against the robot.

𝐹!"# =
−1

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

This force is used to calculate the x-total and y-total, which is the sum of all of the repelling force vectors
acting on the robot (x-total being the magnitude, y-total being the direction). The robot then makes steering
and throttle decisions based on these values.

The LIDAR also uses safety zones to determine the throttle value. There are three zones: green zone for
when the robot is a safe distance away from any obstacles, orange zone when a robot is approaching an
obstacle, and red zone in which an obstacle is in the robot’s immediate vicinity. The robot responds to the
three zones as: go straight, slow down and turn, or stop then turn, respectively. This method has a simple
logic and ensures a fast response time for the robot.

BASIC COMMANDER

The control unit for the robot in basic mode is a finite state machine designed for the basic course at IGVC.
The commander keeps track of the number of waypoints passed, indicating whether the robot is in no man’s
land or on the path and uses a set of priorities to create a weighted sum of the velocities calculated by the
vision, LIDAR and GPS nodes.

ADVANCED MODE
PATH FINDING ALGORITHM

Popular algorithms, such as Dijkstra and A*, are capable of determining the shortest path in an obstacle
filled environment; however, these algorithms are only suitable for a fully mapped environment where
nothing will change during the path calculation. Our situation required an algorithm that can determine an
initial path based on the limited data provided by the LIDAR and vision system, and update its resultant
path as the robot traverses the environment and discovers more obstacles. For this reason we have chosen to
implement the D* Lite algorithm.

8.6.2 COMMAND FOR ROBOT MOVEMENT

Once D* Lite finds the current optimal path to the goal waypoint, a new linear and angular velocity will be
sent to Snowflake to direct it. To determine Snowflake’s new linear and angular velocity, a local path
(essentially the first portion of the optimal path) will be estimated and smoothened out to mimic a more
realistic vehicle movement.

 17

Figure 27. When Reaching a Point on the Path with a Sharp Direction Change, Snowflake’s Linear
Velocity Will Decrease as its Angular Velocity Increases to Accommodate for a Smoother Movement.

ATTENTION GIVEN TO SAFETY, RELIABILITY,
DURABILITY AND FAILURE MODES

FAILURE POINTS IDENTIFICATION AND RESOLUTION
The following potential failure points of our robot were identified and a corresponding solution was found
to minimize the possibility of failure.

OVERCURRENT TO POWER TRANSMISSION CABLES

The power supplied to the brushed DC motors is monitored by voltage and current meters and is controlled
by PWM from the ESC’s. In case overcurrent arises due to a programming error going undetected, fuses are
placed at the bottleneck wire gauge at its rated ampacity.

DRIVE WHEEL CONTACT

Since our robot maneuvers using 6 wheels and does not incorporate a spring damping mechanism, there is a
possibility that it may bottom out with the driven wheels off contact from the ground. To prevent this, the 4
caster wheels can be adjusted beforehand, and the driven wheels can be deflated to provide some
suspension.

STALL MOTORS

Although preventing a stalled motor beforehand is difficult, we can reduce the severity of this occurrence
by minimizing the amount of time for which the motor is stalled. This is achieved by constantly polling the
rotary encoder when power is supplied to the motors.

BATTERY MONITORING

The voltage of the LiPo batteries is monitored by the firmware using an inline LiPo battery monitor. This
monitor automatically stops the robot if the voltage in any of the battery packs goes below a threshold
voltage of 3.3V.

CHALLENGING OBSTACLES

In the case of a challenging obstacle (dead end or island) Snowflake is programmed to slowly back up and
try again. Upon a third failed attempt the robot will switch to basic mode, and if that fails Snowflake will
slowly start turning to find a different path.

 18

COST ANALYSIS

The estimated overall cost of Snowflake was as follows.

 Retail Price Cost to Team
Electronic Speed Controllers $160.00 $160.00
Motor Encoders $60.00 $60.00
APM Microcontroller $160.00 $160.00
Logitech Webcams $200.00 $200.00
Sick LIDAR $4,500.00 -
Piksi GPS Moldule $1,235.00 $1,000.00
ASUS Laptop $2,000.00 -
USB Hub $50.00 $50.00
Laptop Power Pack $120.00 $120.00
Electrical Hardware $100.00 $100.00
Sheet Metal and Machining $1,161.00 $461.00
Brushed DC Motors $112.00 $112.00
Gear boxes $132.00 $132.00
Acrylic & Plastic $120.00 $120.00
Wheels $258.00 $258.00
Mechanical Hardware $700.00 $700.00
 Total Cost $11,068.00
 Total Cost to Team $3,633.00

CONCLUSION

Over 50 members of UBC Snowbots worked on the design and construction of Snowflake this year. Our
design has greatly improved over last year’s entry with a brand new mechanical and electrical design, and a
more sophisticated software strategy. The mechanical design greatly emphasizes adaptability, accessibility
and innovation through its modular design and unique features. The electrical design emphasizes both
reliability and safety. It uses feedback systems to monitor voltages, currents, and position to minimize the
damage that could be caused by over-discharged batteries and stalled motors. Safety mechanisms such as
the E-stop and fuses are also in place in case of a failure. Both the mechanical and electrical systems have
been extensively tested and are performing very well. This year’s software strategy is sophisticated and
customizable, allowing the robot to utilize a number of different strategies to complete the Auto-Nav
challenge. New sensors such as a LIDAR with a 30m range, a GPS with 20 cm accuracy and a camera
system with a 180 degree field of field have also greatly improved our performance. The team is looking
forward to bringing Snowflake to this year’s IGVC and excited to see the results of the competition.

