Design Report | 2015 Eklavya 4.0

EKLAVYA 4.0
Indian Institute of Technology Kharagpur
The Autonomous Ground Vehicle Research Group (Team AGV)
Faculty Advisor: Dr. Debashish Chakravarty
Email: dc@mining.iitkgp.ernet.in
1 Introduction

Team Autonomous Ground Vehicle (AGV), under the ambit of Center for Robotics, IIT
Kharagpur, has been pioneering the autonomous ground vehicle technology with the
ultimate aim of developing the first self-driving car of India. The team has been
participating in IGVC since its inception in 2011 with the Eklavya series of vehicles.
Eklavya 4.0, another feather in the cap of the Research Group is all set to
participate in the 23rd Intelligent Ground Vehicle Competition (IGVC), Oakland
University. With new robotic innovations, the successor of Eklavya 3.0, is a much
more simplified and powerful Eklavya 4.0 in all aspects i.e mechanical, electrical
and software. This report outlines the entire structure of Eklavya 4.0 listing out
the innovations and improvements over the previous IGVC versions.

2 Team Organization

The effort behind this project was put in by a bunch of over thirty enthusiastic
and intellectual undergraduate students from various departments of [IT Kharagpur.
This research group (AGV) works under the able guidance of Prof. Debashish
Chakraborty, Department of Mining Engineering, IIT Kharagpur, along with five co-
professor-in-charges namely Prof. D K Pratihar, Prof. P P Das, Prof. S K Pal, Prof
Manoj Mondal and Prof M Sinha. The team is divided into seven major modules,
namely Machine Learning, Computer Vision, Localization & SLAM, Control Systems,
Motion Planning, Mechanical and Public-Relations.

Prof. Debashish Chakravarthy I

Figure 1. Team Organization

AGV IIT Kharagpur Page 1

Design Report | 2015 Eklavya 4.0

3 Mechanical Design

Figure 2. Eklavya 4.0 Chassis

Figure 4. Eklavya 4.0 Rear Wheel Assembly
Figure 31. Eklavya 4.0 Steering Column

AGV IIT Kharagpur Page 2

Design Report | 2015 Eklavya 4.0

3.1 The Design Idea

Eklavya 4.0’s chassis was designed considering the compactness, easy component
accessibility, simplicity to de-assemble and accommodation of all the electric
components such that the centre of gravity remains low. The chassis has a width
of 55 cm and a 60 cm height (excluding the height of the camera mount). The
chassis is made up stainless steel pipes of diameter 1 inch and weighs 10 kg. In
the front, the steering column is connected. The links at the top are welded using
L-joints while the two bottom joints are the hinged pipe joints, which allow folding
of the chassis for packing and transportation. These joints have a locking
mechanism which locks them at 90 degrees. The rear part of the chassis includes
two small rectangular plates of 6mm at the junction of pipes which connect the
wheel hub with the chassis.

3.2 Advantages and Innovations in the new chassis

3.2.1 Steering system

Eklavya 4.0 is driven by a BLDC hub motor mounted on the wheel. It is joined to
the chassis by a plate to plate welding to an outer hollow cylindrical tube that
supports the entire steering column. It is handled by two ball bearings which allow
efficient and smooth rotation. The Steering is rotated by a “MidWest Motion”

Brushed DC Motor.

Specifications:

Length of the T stem: 20 cm

Fork length: 25 cm

Fork diameter: 3 cm

Weight: 6 kg
Experimental Results

Maximum bending moment: 53.54 Nm

Maximum stress: 585 MPa

Based on these data obtained from the experiments, it was decided to use the
steering column of a “Hero Honda Aviator”. It is joined to the axle of the hub
motor by a coupler. The coupler used is so designed to slide on the fork to
change the height of the steering column.

AGV IIT Kharagpur Page 3

Design Report | 2015 Eklavya 4.0

Advantages

The complex chain and sprocket system is replaced by a single hub motor. The
complex differential drive control is replaced by the steering control which is
much easier. It carries a BLDC hub motor with best mechanical efficiency. The
new design allows better control to the robot compared to differential drive.

3.2.2 Wheel Drive

We had used Differential drive in our last vehicle but now we changed our drive
mechanism from Differential to Steered drive method. There are many reasons for
this change. We used two different motors and a rear castor wheeled drive for
stability but there were many unexpected errors in differential drive.

Disadvantages of Differential Drive:
We had used a castor wheel drive in our old bot. This wheel used to get lock by

itself frequently that disturbs the localization of the bot. Because of this locking,
skidding takes place which also reduces friction in castor wheel. Sometimes it
needed a manual help to go back its original position. It takes more time to
make a turn because it slows down its speed while turning. These are the
disadvantages which makes us to change the driving mechanism from Differential
drive to Steering drive.

Advantages of Steering Drive

The movement of vehicle is more precisely done by front steered control wheel.
The two rear wheels are for support of the bot. There is no castor wheel which
reduces the risk of locking. Steering of front wheel is done by servo motor which
is connected to front wheel. Slipping of wheels is reduced resulting in constant
movement of bot.

Specifications:

Gear ratio: 1:1

Max Acceleration: 2.548 m/s’
Max torque without skidding 51 Nm
Average driving force on the bot 255 N
Average Motor torque 1853 Nm
Average speed 5.6 mph.

AGV IIT Kharagpur Page 4

Design Report | 2015 Eklavya 4.0

4. Electronics System

4.1 Flow of Information

@

BLDC MOTOR

©

@ Steering
- : % Angle C
A —

o Encoder | Steering MOTOR
Q \ Roboteq

LASER Scan Steering Angle
Gives current Steering Angle
Locomotion

Y | oo Back ENCODER

? Velocities
Autonomous /
Manual mode n) llﬂ
CAMERA LAPTOP BEAGLE BONE ;
To displayther
State of Charge]
. Autonomous
ool Or Manual Mode
INS [Signal
FLASH LIGHT

Figure 8. Eklavya 4.0 Flow of Information

4.2 Implementations and Innovations
4.2.1 Working on Beaglebone™

The Beaglebone Black is a development board with an ARM335x 1GHz ARM
Cortex- A8 processor from Texas Instruments with 512MB DDR3 RAM. Eklavya 4.0
uses a Beaglebone Black for processing the data from incremental encoder,
communicating with the Xbox Wireless controller for manual commands and
implementing the controls systems for precise actuation of the actuators. In
addition to being an electronics hobby board, the Beaglebone Black is also a fast
booting full-fledged Linux running Computer, which is suitable for our vehicle’s
ROS platform. BeagleBone Black has been effective in precise and fast information
exchange between the software and mechanical interfaces.

AGV IIT Kharagpur Page 5

Design Report | 2015 Eklavya 4.0

P Ry XBOX Wireless @ @
P NNER' Controller | " .

Velocity and Velocity Erll' g(]:tder Eﬁéﬁﬁter
TwistIn and Twist in Manual
A d mode :
I Left Rear Wheel Velocity | Right Rear Wheel Velocity

Target Velocity and Omega

Overriding

Layer

Roboteq Target Steering Angle I
Control -
Actuation
I (. =~

BLDC Motor |
Steering MOTOR | Brocides L

Actuation

Figure 9. Eklavya 4.0 Flow of Information in controls system
4.2.2 Wireless Remote control

In previous iterations of Eklavya, the car was controlled by a RF transmitter and
receiver remote. It led to incubation of lots of noise and led to imperfect control.
Also the range of the transmitters was something to be worried about.

To overcome these hardships, Eklavya 4.0 is controlled in the manual mode by a
Wireless XBOX 360 controller. The controller sends its data to the Beaglebone via
wireless connection. The Controller has buttons for E-Stop Enable, E-Stop Disable,
Speed Control and Steering Angle Control; with scope of implementation of cruise
control and much more remote useful functionality. The data is sent to an
overriding layer built on ROS that decides whether to use Manual or Autonomous
Control. The Flashlight Stays On or Blinks Accordingly.

Dy

==\

Figure 10. Xbox Wireless controller implementation

AGV IIT Kharagpur Page 6

Design Report | 2015 Eklavya 4.0

4.2.3 Electrical aspect of Motor Drive

Eklavya 4.0 has been upgraded with a brushless dc motor included in the drive
mechanism. This upgrade shall cater to the mechanical design requirements and
can provide large torque at high RPM. It has even reduced the weight by
decreasing the number of motors. Brushless DC motors are DC machines which
has a synchronous mechanism of rotating the rotor.

A hub motor of an electric bike was found to achieve our requirement after
repeated tests on the motor. Hence we used the hub motor of an “Oreva electric
bikes”. The motor runs on an input voltage of 48V and has a power rating of
250W. The speed control is done using Analog Input on the motor, for which the
PWM of the Beaglebone is filtered to turn it into a pulsating DC. The E-stop is
performed by manipulating the functionality of the Hall Effect sensor used in the
BLDC motor. The E-stop is achieved by interchanging the terminals of the hall
sensor and the motor stalls suddenly.

4.2.4 Battery Management System (BMS)

The previous versions of Eklavya had faced some problems regarding batteries
and their management. That included State of charge, State of health, estimated
time for complete discharge not being monitored and hence it arose the
possibility of batteries going into deep cycle further deteriorating the life of
batteries.

The main goal of a battery management system is to monitor above stated
parameters of batteries for their safety and take appropriate action for the same

Present Implementation:

The current BMS is capable of monitoring State of charge, Current drawn,
Terminal voltage, Total Pack Voltage and systematically displaying them over user
LED array display. For such purpose we have used Current sensor and Voltage

4.3 Upgrade

The following Table summarizes the changes incorporated on Eklavya 4.0 in
Electronics Subsystem.

AGV IIT Kharagpur Page 7

Design Report | 2015

Eklavya 4.0

Ideas EKLAVYA EKLAVYA 4.0 Problems resolved
3.0
Microcontrollers | Arduino Beaglebone, Beaglebone has more
and Mega. Arduino Due. number of I/O pins and a
Microprocessors faster processor.
Arduino Due also has a
faster ARM microcontroller.
Power supply | Lack of | Equipped with | Prolonging the life of
and advanced Advanced Battery | onboard batteries and
management Battery management system | estimation of power
management | and Power supply | parameters
system and | units with fault
supply detection
distribution
Drive Differential | Single front wheel | Efficient speed and
drive using | drive by BLDC Motor | direction control, less
brushed DC |steered by a Brushed | skidding, easy manipulation
motors. DC Motor. of data for odometry.
Remote control | Radio XBox 360 wireless | Clean and systematic
2.4Ghz ,4 | controller which has | control over various
channel more than 15 | functionalities of vehicles.
controller channels. Moreover, XBox provides
large number of user
button and interfaces.
Control Inbuilt Programmable Control | Tuned and implemented as
Systems control System which is | per the custom
System. controlled through | requirement.
ROS.
Table 1 : Upgrade in electronic system
AGV IIT Kharagpur Page 8

Design Report | 2015 Eklavya 4.0

5. Perception

5.1 Lane Detection

Eklavya 4.0 continued what Eklavya 3.0 featured, a machine learning based
algorithm adaptive to the fluctuations characteristic of the ambient scenery.
Grassy portions of the image were removed with a SVM classifier where features
for learning were taken as a kernel of an NxN ROl of the image. This kernel was

-
L™ "
o o %o% Legend o %o% o Legend
L J L .
® (0% QC? ® Grass . o 0010) ® Grass
. Light Grass . Light Grass
- Dead grass = Dead grass
Lanes Lanes
* Other White Strips d Other White Strips
PO - :o & Other Obstacies i e .0 & Other Obstacles
. .
A R S mn o=,
.
St . e & ot -~ L

Figure 12. Image Clustering

classified as grass or non-grass based on a polynomial SVM classifier. This
classifier test was used at each pixel of the image to remove the grassy portions.

A major change implemented in Eklavya 4.0 is the shadow removal technique. As
shadows change the HSV values of regions slightly, when the effects became
more prominent the classifier was unable to produce satisfactory results. The
image was first converted to the YCrCb colour space. The standard deviation was
then calculated of the Y channel. All pixels with intensity less than 1.5 times the
standard deviation were classified as shadow pixels and the image was converted
into a binary one. Window based thresholding was done to improve the accuracy
and then the shadow was removed with colour correction and Y channel
adjustment of the image.

T

Figure 13. Original Image Figure 14. Image After Shadow Removal

AGV IIT Kharagpur Page 9

Design Report | 2015 Eklavya 4.0

Curves were generated by the classifier based on results over shadow removed
images. Although this gives a few false positives, most of the lanes are classified
as non-grass. Also, grass offered a more uniform patch compared to lanes as the
lane portions in the image varied with variations in brightness and lightning
conditions. Lanes also exhibit non-uniform thickness. The next task was
determining the number N, size of the kernel. It was observed that the code’s FPS
increased with N and the classification accuracy decreased with N. By
experimentation the value of N was kept between 7 and 12 when tested on a
640x480 image with a first generation i5 processor.

Figure 15. Original Image Figure 16. Image After Grass Removal

Finally the image was transformed to a top down view using inverse perspective
transform (IPT). This helped the planner work with ease.

Figure 17. Original Image Figure 18. Image After IPT

5.2 Obstacle Detection and Fusion

The white strips in the obstacles and the white ladders interfere with the lane
detection algorithm as they occur as false positives and thus have to be removed
before lane detection. Initially a color based algorithm was applied to extract the
non-white portions of the barrels and dilate them so that they cover the white

AGV IIT Kharagpur Page 10

Design Report | 2015 Eklavya 4.0

strips lying in between them. Still, the problem prevailed in certain cases,
especially with the white ladders. Thus, instead of a color based filter, the LIDAR
data was used to erase parts of the image which coincided with the LIDAR
readings. After this step, the image contained only the lanes and some random
noise. The lane was further filtered by a color based threshold algorithm followed
by an edge detection algorithm which resulted in high lane detection probabilities
with very few false positives.

5.3 Map Fusion

The output of the lane detector comes after undergoing Inverse perspective
transform. Lidar data is already in a similar world frame. SVM Classification
Results for Grass Removal comes with some offset (x, y, 8) compared to the lane
map. Both these maps are corrected for the relative offset and their union is
taken as the final fused map. Note that the lanes are being concerned as non-
walkable for all future purposes.

Figure 19. Output at different steps, from original image (left) to grass Removal
(centre) and obstacle removal with lidar data (right)

A point cloud is created storing the final lane pixels which is then used to
generate a costmap for the planner. This new approach removed much of the
noise as the point cloud can be analysed to find the lanes and thus remove any
arbitrary pixels falling in between them and also increased the efficiency of the
whole setup. The point cloud system approach ensured that the whole image
need not be traversed multiple times as only the points of interest were stored in
the cloud. This cut down on the time complexity and also minimised the lag
between the different subsystems running.

AGV IIT Kharagpur Page 11

Design Report | 2015 Eklavya 4.0

6. Planners
Waypoint Waypoint Lane Nose
Navigator Selector Navigator Navigator
Finite State
Machine
Obstacle
Localization Mapping

Local Planner

|

Twist message

Figure 20: Planner Data Flow
6.1 High Level Planner

In the Navigation System of Eklavya 4.0, the lane-navigator and the waypoint-
navigator node will be continuously publishing targets on their respective ros
topics. But, there can be only one target depending on the situation in which our
bot is in. So, there has to be a system which selects between the two targets.
This job is achieved by the High Level Planner. In the next few lines, we will
describe its basic structure.

The High Level Planner in Eklavya 4.0 has been implemented using the concept of
Finite State Machine (FSM). An FSM is basically an abstract machine consisting of
a finite number of states. The machine can only be in a single state at one
particular instant.

The FSM implemented in our high level planner consists of two major states:
1. Lane-Navigator state.
2. Waypoint-Navigator state.

The transition between these two states is defined on the following line:
1. If the bot is in the waypoint zone(ho man’s land), then the FSM is in its
Waypoint-Navigator state.

AGV IIT Kharagpur Page 12

Design Report | 2015 Eklavya 4.0

2. If the bot is not in no man’s land and can see the lanes, we make a
transition to the Lane-Navigator state of the FSM.

Along with these states we have also incorporated the states for test and
autonomous modes in our FSM implementation so as to take testing under
consideration.

The most important advantage of implementing FSM in Eklavya 4.0 is that it is
possible to incorporate certain other special cases in the high level planner
without disturbing the earlier structure.

6.2 Global Planner

The Global planner is responsible for generating a high level plan for the
navigation stack to follow. Given a goal that is arbitrarily far away from the robot,
the Global planner will create a series of waypoints for the local planner to
achieve.

The current implementation of the navigation stack uses a grid-based Global
planner that assumes the robot is circular in shape and it produces waypoints
for the robot that are optimistic for the actual robot footprint, and may in-fact be
infeasible.

The Global planner takes in sensor data in the form of point-cloud messages and
LIDAR data in the form of laser-scan messages it uses these information to create
the Global costmap. The static map layer represents a largely unchanging portion
of the costmap, like those generated by SLAM.

If the bot is in Waypoint navigation mode then our Global path planner plans a
sequence of the waypoints in two ways:-
1. It first goes to the nearest waypoint and then continues traversing all the
waypoints in the least distance order.
2. It first plans a path so that it can traverse all the waypoints by covering
the minimum distance by using the greedy algorithm.

Then the Global planner checks if the robot has reached the target or not. It gets
this information from two ways:-

1. It checks the local planner status if it has reached the goal or not.
2. It checks if the GPS coordinates of the robot is within a threshold distance
from the goal or not.
If the robot is unable to reach the target then the Global planner switches to
recovery mode and does either of the following:-
clear_costmap_recovery - A recovery behavior that reverts the costmaps used by
move_base to the static map outside of a user-specified range

AGV IIT Kharagpur Page 13

Design Report | 2015 Eklavya 4.0

rotate_recovery - a recovery behavior that performs a 360 degree rotation of the
robot to attempt to clear out space.

Then after this Global planner informs the High-level planner if it has reached the
goal or not and waits till the High-level planner gives the next target.

6.3 Local Planner

Base local planner provides a controller connecting the robot with the
planner.

Like the global planner, local planner creates a value function in the form
of a grid called cost-map calculating the costs of traversing the cells of the
grids.

The controller using the cost-map of the planner sends the direction of
traversal and velocity to the bot.

The principle of local planning is the search for a suitable local plan in
every control cycle. For that purpose, a number of candidate trajectories
are generated. For a generated trajectory, it is checked whether it
collides with an obstacle. If not, a rating is given to compare several
trajectories picking the best.

Two types
1. Trajectory Roller
2. Dynamic Window Approach

The basic idea of both the Trajectory Rollout and Dynamic Window Approach
(DWA) algorithms is as follows:

1. Discrete values of the bot’'s movement parameters are taken and it is
simulated to check the trajectory possibilities that may arise.

2. Then each such possibility is evaluated on the basis of :- proximity to
obstacles, proximity to the goal, proximity to the global path, and speed
and a score is assigned to each trajectory possibility.

3. The highest scoring trajectory is chosen and is passed to the bot for
execution and this is repeated.

We have preferred DWA over TR since it samples from stepwise achievable
velocities (given max acc.) whereas TR samples over the set of achievable
velocities (given max acc.) over the entire forward simulation.

AGV IIT Kharagpur Page 14

Design Report | 2015 Eklavya 4.0

Time
ROS Time: | 2151 68 ROS Elapsed: |601.52 Wall Time: |1427057338.05 Wall Elapsed: | 1447.23 Experimental

Reset 15fps

Figure 21: Occupancy Grid from LIDAR

Costmap
In a particular situation, the decision of path to be chosen is taken by first
forming the intersection of global and local cost map.
The move_base node maintains the common cost map and implements the
global navigation tasks.
Costmap is made using a decay function by allocating values to the points
following the rule:- the region closest to the obstacle will be allotted the
greatest value and the area where there is practically no effect of the
obstacle will be allotted the lowest value.
Since the bot is considered a point object, the region enclosing the object
with a radius of the bot is allocated substantially high values than the rest
of the costmap.
The points that do not qualify in either of the above cases are decided on
the basis of other factors.

7. Localization

One of the most important requirement for automating a robot is its localization.
By localization, we mean that the robot must, all times, have a fairly accurate
idea about its position in a given map or environment. If a robot does not know
where it is, it cannot decide what to do next. In order to localize itself, a robot
has to have access to relative and absolute measurements that contain
information related to its position. The robot gets this information from its

AGV IIT Kharagpur Page 15

Design Report | 2015 Eklavya 4.0

sensors. The sensors give it feedback about its movement and environment
around the robot. Given this information, the robot has to determine its location
as accurately as possible. What makes this difficult is the existence of uncertainty
in both the movement and the sensing of the robot. The uncertain information
needs to be combined in an optimal way. We have done so using the Extended
Kalman filter algorithm, which is a kind of Bayesian filter.

Prediction step

—»= Basedone.g.
physical model

. } /

Prior knowledge Pr ke
of state ~ Xi—1[k—1

Next timestep l::k:|.ﬁ.-—1
k—k+1 Xk |k—1
P;‘_| L Update step Measurements

Compare prediction -e—
Xele : ‘
* | to measurements Yk .
Output estimate
. of state

Figure 22: The Kalman Filter Algorithm

To localize the robot, we use three inputs - odometry data (from encoder), IMU
data and GPS data (from Vectornav INS). Since, the data received from each of
these sensors is inherently noisy, we use the Extended Kalman Filter algorithm.
The Extended Kalman Filter is the non-linear version of Kalman Filter which is
used widely to produce estimates of unknown variables (linear Gaussian systems)
using a Bayes Filter algorithm that uses a series of measurements observed over
time (containing noise and other inaccuracies). These measurements tend to be
more precise than those based on a single measurement alone. The EKF employs
a local linearization using Taylor's theorem, to employ the Kalman filter algorithm
(which uses a linear model) to nonlinear problems.

7.1 Mapping

The filtered odometry data is then fed into the Gmapping algorithm along with the
input from the LIDAR (Laser Scan). GMapping is a highly efficient Rao-Blackwellized
particle filter to learn grid maps from laser range data and form a map showing
the obstacles around the robot. It uses the filtered odometry data to get the
pose of the robot and merges the data with the laser scans received from the
LIDAR to produce a map of the robot’s environment. The map of the environment,
thus produced is used by our navigation and path planning module.

AGV IIT Kharagpur Page 16

Design Report | 2015

Eklavya 4.0

8. Cost Report

ltem Quantity Cost (USD) Cost To Team (USD)
Hokuyo UTM-30LX LIDAR 1 4974 4974
VectorNav VN-200 Rugged 1 2600 0 (Sponsored)
OREVA BLDC Motor 1 100 0 (Sponsored)
Logitech QuickCam Pro 9000 |1 110 110
BeagleBone Black 1 60 60

Arduino Due 1 35 35

Midwest Geared DC Motor 1 300 300

Lenovo Z510 1 900 900

Xbox 360 Wireless Controller 1 35 35

Autonics E50S8 Encoders 2 350 350

Roboteq MDC2230 1 275 275
Miscellaneous Circuit Elements | N.A. 50 50

Lead Acid Batteries (Tentative) | 5 175 175

Bearings (28mm) 2 70 70

Rubber Wheels 2 30 30

Steering Column 1 75 75

Building Materials &| N.A. 110 110
Fabrication

Total 10249 7549

AGV IIT Kharagpur

Page 17

Design Report | 2015 Eklavya 4.0

FACULTY ADVISOR STATEMENT

This is to certify that the engineering design present in this vehicle is
significant and equivalent to the work that would satisfy the requirements of the
senior design or graduate project course. Eklavya 4.0 has witnessed significant
improvements on the previous bot Eklavya 3.0 in the arcas of mechanical design.
electrical power distribution, efiicient control, system architecture and intelligent
navigation. [wish the team all the success for IGVC 2015.

: Profensor
Dkg - Dapertment of Mining Enaineering
5 g_, Indiem Institute of Technolog
()

lf_:'u._uu-”'_n.'r 72 5807

aq

Professor Debashish Chakravarty,
Dept. Of Mining Engineering,
[I'T KHARAGPUR

AGV IIT Kharagpur Page 18

