
University Name: Louisiana State University

Vehicle/Team Name: Bengal Bot

Date Submitted: 5/15/16

Team Captain’s Name and E-Mail: Robert Fletcher

Team Members Names and E-Mails

Team Member Major Email address

Aaron McCloud Mechanical Eng. aaronmccloud@outlook.com

Emerson

Ashford

Computer Eng.

Robby Fletcher Computer Sc. Mapping/Pathing

Tan Nguyen Electrical Eng.

Holden

Chancey

Mechanical Eng. Motors, Wheels

Faculty Advisors Name and Statement of Integrity: Sean King

Introduction

The project undertaken by this team is the design and construction of an Intelligent

Ground Vehicle. The Intelligent Ground Vehicle will be able to navigate autonomously

through a course of obstacles to arrive at a predetermined goal location. There are

constraints for the competition including vehicle size, speed, and safety considerations.

This project was funded by our sponsor Jack Rettig, and was built at the LSU Mechanical

Engineering shop

Budget

Initially we were donated $3000 to both build this robot and travel to Rochester, MI to

compete in this competition. We realized that making this work would be extremely

difficult. We reached out to Student Government and were able to secure funding for

most of our travel (Airfare, Shipping the Robot, and a Rental Car), leaving the $3000 to

pay for the robot, competition registration, and lodging.

Below is a breakdown of how the money was actually spent.

4. Description of Mechanical Design:

This robot consists of three subassemblies: chassis, electronics, and rear caster.
The chassis is made of 304 Stainless Steel square tubing, welded together using
MIG welding. To the rear of the frame is the caster assembly. This consists of
two 5” wheels which rotate on an axis 360 degrees freely. Upon this system, the
electronic subsystem is mounted. This includes two T-64 motors, the battery,
cameras, and laptop assembly.

1

5

2

14

17

3

4

12

7

8

9
10

11

6

13 16

15

13

14

18

Part Number Material

1 02-001-A Stainless Steel 304

2 02-002-A Stainless Steel 304

3 02-003-A Stainless Steel 304

4 02-004 -A Stainless Steel 304

5 02-005-A Stainless Steel 304

6 02-006-A Stainless Steel 304

7 02-009-A Stainless Steel 304

8 02-010-A Stainless Steel 304

9 02-011-A Stainless Steel 304

10 02-012-A Stainless Steel 304

11 02-013-A Stainless Steel 304

12 02-014-A Stainless Steel 304

13 02-015-A Stainless Steel 304

14 02-016-A Stainless Steel 304

15 02-017-A Stainless Steel 304

16 02-018-A Stainless Steel 304

17 02-019-A Stainless Steel 304

18 02-020-A Stainless Steel 304

12 11

A

G

F

E

D

C

B

H

G

F

E

D

C

B

2345678910 1

12 9 8 6 4 211 10 17 5 3

H

A

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:

DIMENSIONS ARE IN MILLIMETERS

SURFACE FINISH:

TOLERANCES:

 LINEAR:

 ANGULAR:

FINISH: DEBURR AND

BREAK SHARP

EDGES

NAME DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:10 SHEET 1 OF 1

A2
Stainless Steel 304

WEIGHT:

A. McCloud 12/9/15 Chassis Exploded Drawing

1

2

1

4

Part Number Part Title
1 05-001-A Caster Support 1
2 05-002-A Caster Support 2
3 05-003-A Caster Support 3

4 05-004-A Caster

8 7

A

B

23456 1

578 246 13

E

D

C

F F

D

B

A

E

C

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:

DIMENSIONS ARE IN MILLIMETERS

SURFACE FINISH:

TOLERANCES:

 LINEAR:

 ANGULAR:

FINISH: DEBURR AND

BREAK SHARP

EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:5 SHEET 1 OF 1

A3
Various

WEIGHT:

A. McCloud 12/7/15 Caster Assembly

 3
0

.0
8

 24.00

 33.50

 3
0

.0
0

 38.00

12 11

A

G

F

E

D

C

B

H

G

F

E

D

C

B

2345678910 1

12 9 8 6 4 211 10 17 5 3

H

A

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:

DIMENSIONS ARE IN INCHES

SURFACE FINISH:

TOLERANCES:

 LINEAR:

 ANGULAR:

FINISH: DEBURR AND

BREAK SHARP

EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:10 SHEET 1 OF 1

A2

WEIGHT:

A.MCCLOUD 12/7/15 FINAL ASSEMBLY

Decision on Frame Structure:

The following Quality Table was created to choose a material for our frame:

Desired Quality Weight/100
Aluminum

Score
Stainless Steel Score

Minimal Cost 20 20 10

Maximize Density 15 10 15

Maximum Yield

Strength
15 15 10

Ease of Manufacture 20 10 18

Minimal Elasticity 30 10 30

Total Score: 100 65 83

Thus, Steel 304 was chosen due to its low elasticity, high weight, and ease of

manufacturing. The issue of steels’ high cost was balanced with the availability of

resources donated to our team.

The chosen design for our chassis is as follows:

Data Acquisition & Processing

Sensor Array Configuration

We know the maximum speed of our robot is 5 miles per hour and that we would like to

have at least three chances to spot an object before collision. Three was chosen as our

safety factor because during testing we never had more than one false read in a row. We

could have choses a safety factor of two but we wanted to maximize the amount of time

our robot has to react. Using this information, we can determine a minimum data rate for

our sensor array.

Since we are moving at a speed of 7.33 feet per second for we can define the distance

moved during for any number of cycles, where a cycle is one read from each of the

ultrasonic and serial communication, as follows.

𝐷 = (𝑁𝐶 ∗ 𝐶𝑇) ∗ 7.33

Where D is the total distance in feet, NC is the number of cycles, CT is the total cycle

time, and 7.33 is the maximum speed of the robot in feet per second.

Since we know from the competition guidelines that the tightest point of the course will

leave us 3 feet on either side we can set our maximum distance to 3 feet. Using our

desired safety factor of 3 we arrive at CT = 136 milliseconds. Which gives us a

minimum data rate of 1/136 milliseconds or 7.33Hz. This number gives the minimum

data rate if the third read happens when the robot is literally touching the object. Clearly

that isn’t want we want so we up the data rate to 10Hz or 100ms per cycle to get the

following:

𝐷 = (3 ∗ .1) ∗ 7.33 = 2.19𝑓𝑡

This means that when the robot makes its third read it will have almost 10 inches of room

left to stop. In the case of finding an object on the second read: 18 inches. First read:

27inches. For these reason we tuned our system to have a minimum data rate by limiting

the maximum read distance.

 To make sure that the sensor array was capable of maintaining this 10Hz data rate we

tested the completed array in its worst case condition, no object in range forced sensor

timeout. Using the NewPing library for Arduino we were able to set the maximum

distance our sensors will check for by changing the timeout period. We decided the

easiest way to find this maximum distance would be empirically. We started at the

maximum range for our sensors, 10 meters, took 5 reads with it pointed up at the sky and

checked the overall time from received command to finished command. We decreased

the maximum read distance by 50cm each time until we found a distance that reliably

gave us sub 100ms total cycle times. This distance is 200cm. Since 200cm is greater

than the 3ft we used in the previous calculations we know that the robot will get at least

three chances to see every object before possible collision.

Parallax Ping))) Mount

This holder will hold the Parallax Ping))) by

friction fit and keep it at a 90° angle to the sensor

plate. It mounts the part upside down but since

the sensor is not direction sensitive this will not

affect performance. As you can see we have full

access to the wiring pins from above and the part

can easily be switched out in case of failure.

We ended up having to print the mounts about

1mm larger than we originally planned to deal

with the difference dimensions between the

Pings))) we received. We added a small block of

foam to the rear of the sensor and that holds it in

place quite snugly.

Raspberry PI 2 and Camera Mount

We needed to attach our Raspberry Pi and the Pi

Camera to the frame while still maintaining the

ability to adjust the angle of the camera. The

mount shown to the right is a combination of a

store bought Raspberry Pi case and some 3D

printed parts.

The printed parts handle the attachment to the

steel pole coming out of the frame in two different

ways. The top cap is made to be a friction fit and

must be hammered into place while the bottom

one was printed with room for a tightening bolt.

This allowed us to adjust the bottom to fi the store

bought case exactly. The case is joined to the two

frame members via CA glue.

The camera mount is a modified version of user Frank26080115’s PI camera mount from

www.thingiverse.com. We added the angle adjustment mechanism located on the bottom

of the camera mount as well as thickening the back for a stronger final product. We used

the bolt to adjust the camera until we were satisfied with our field of view and then used a

drop of CA glue to fix it more permanently in place.

Emergency Button Mount

As per competition rules we need to have our

emergency button mounted on the center rear of

the robot. We decided to 3D print this mostly due

to time constraints but it does come with a few

benefits we did not immediately realize. First off

http://www.thingiverse.com/

once the PLA has been sanded it is actually quite smooth and very unlikely to cut you.

During testing this button got a lot of use and due to the high speeds the robot travel at

we ended up hurting ourselves far too often on the sharp steel of the mounting pole.

Secondly the plastic insulates the emergency buttons exposed terminals from the frame.

The way the button is made the back half actually has two exposed copper terminals that

had shorted through the frame rendering the emergency button useless. The 5mm of PLA

between the frame and the buttons terminals has guaranteed that this will never happen in

the future.

Electronics Holder

We needed a way to hold all of our computing power. This holder needed to be:

 Water resistant

o Protection from light rain and damp track conditions

 Shock resistant

o Electronics should be safe when driving over rough terrain

 Cooled

o Electronics should be kept well within their acceptable temperature

ranges

 Sturdy

o Strong enough to hold all electronics without breaking

o Must be mountable on the frame

 Accurate

o Must be square and symmetrical

o Must hold sensors at correct angles

The design shown above is 3D printed in 12 parts in white PLA (Polylactic acid) plastic

and constructed using CA (cyanoacrylic) glue. It holds both of our Arduino MEGAs, our

Lenovo ThinkPad laptop and our power rectifier PCB (printed circuit board).

3D Printing Overview

We decided to use 3D printing instead of CNC milling for two main reasons: cost and

experience. Using a 3D printer to make our parts meant that our parts would be hollow

with an internal support grid. Being hollow this parts would use less plastic than a

traditional solid one. This saves us both money, in materials, and reduces the overall

weight of the sensor array. We were also much more familiar with 3D printing than we

were with CNC milling. We wanted to make sure that out design would work the first

time due to the high cost of plastic and 3D printing allowed us the ability to print scale

models before committing to the real thing.

Total time and material bill

Due to the size constraints of the printers available to us

we had to print the box in 12 parts as shown to the

right.

The parts each took between 10 and 25 hours to print

and used between 200 and 500 grams of PLA filament.

The slicer estimates are shown in the chart below.

These numbers are what the printer thinks will happen

and as such are not 100% accurate.

As you can see printing this box took 203 hours of

combined printing time and 2.2Kg of filament. We

purchased three 1Kg rolls of Hatchbox PLA for a combined

cost of $66. If we had gone with CNC milling we would have

needed to buy a solid 16X24X3 inch of plastic and our best

estimate from McMasters was well into the $300 range.

Part Time Plastic

1 25 hrs 275 g

2 22 hrs 242 g

3 20 hrs 220 g

4 18 hrs 198 g

5 14 hrs 154 g

6 18 hrs 198 g

7 18 hrs 198 g

8 12 hrs 132 g

9 13 hrs 143 g

10 15 hrs 165 g

11 13 hrs 143 g

12 15 hrs 165 g

203 hrs 2233 g

Plastic Choice and Attachment

We needed to decide on what type of plastic to use for our printing initially we had

planned to use ABS (Acrylonitrile butadiene styrene) so that we could solvent weld the

individual components of the box together using acetone. We went as far as buying a

single Kilogram of high quality ABS and doing some test prints. We learned that while

our printers were capable of printing in ABS getting high quality warp-free parts was

beyond our reach.

The only other plastic choice that we had was PLA (Polylactic acid) which is the most

widely used printer filament on the market. PLA is very easy to print with due to its low

melting point, resistances to thermal expansion, and great inter-layer adhesion. The only

reason we didn’t want to use it in the first place is that it is immune to all the solvents we

have access to making solvent welding impossible.

After doing some research online we found that the strongest bond we could get between

two PLA parts with readily available adhesives

was with CA glue.

Which is more commonly known as Superglue in

retail settings. CA glue is effective due to its

ability to bond with the surface of PLA parts

unlike Epoxy which has a tendency to peel off

plastic surfaces upon curing. Unfortunately, even

CA glue isn’t as strong as the original plan of

solvent welding so to add additional strength we

“welded” all of the seams in our box after gluing.

This was done using the same Hatchbox PLA

filament and a soldering iron with a flat tip. The

process involves setting the soldering iron right

above the melting point of PLA (200c) and steadily running it through across the seam

while carefully feeding in filament. It took a few tries to get used to but the end result

was a set of seams that are water tight and very strong. The results can be seen above.

Electronics Box Heat

The TDP (Thermal Design Properties) is a measure, in watts, of how much heat the CPU

outputs at maximum. Ours a 4th generation Intel Core i7-4702MQ has a TDP of 33w

which we will scale to 40W just to be on the safe side and to include our other smaller

systems like the Arduinos and the rectifier PCB. Next we can convert to BTUs/hr. using

the conversion factor of 3.41giving us 136.42 BTU/hr. Using the heat removal method

we can solve for the amount of air flow needed on a 90° day to keep our box at 50° which

is a pretty standard operating temperature for mobile processors.

𝐶𝑀𝐹 =
𝐵𝑇𝑈 ℎ𝑟⁄

1.08 ∗ (𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 − 𝐷𝑒𝑠𝑖𝑟𝑒𝑑)
=

136.42

1.08 ∗ (90 − 50)
= 3.2𝐶𝐹𝑀

As you can see we only need about 3 CFM to keep our box running at 50°. Using our

dual 80mm fans, each rated at 35CFM, we can have 70CFM available. This gives a

safety factor of:

70

3.2
= 21.8

Even with the fact that we are using standard computer fans which do not deal with high

pressure situations very well we feel confident that even with sub optimal performance

our parts will not overheat over the course of a 10 minute run. During testing we have

had zero issues with component heat inside the box.

Full Sensor Array Major Design Changes

The original sensor array

design called for 4 LIDAR Lite

V2 and 5 Parallax Ping))) but

due to the aforementioned

supply problems we have been

left with only our 5 Parallax

Pings)))’s. This hasn’t

changed the overall shape of

our sensor array but it has

changed the method by which

read the sensor.

Our previous design had the

Arduino moving the servos,

calling one Ping))) and then all four LIDAR each cycle. The wait time for the servo to

get into position was when the Ping)) took its read minimizing dead time on the system.

However now we are simply calling all 5 Ping)))s clockwise around the array.

The top is now held on with a set of 3D printed hinges and held shut with four magnetic

clasps. The entire array is attached to the frame via Velcro.

Blind Spots

With the loss of the LIDARs we lost all of our

non-stationary sensors. Since all of our remaining

sensors are at fixed angles this means that we

have certain regions that will never get scanned.

As you can see to the right all of our blind spots,

areas not covered by gold, are at angles to the

front of the array. Since our robot can only drive

forward or make a zero point turn it isn’t possible

for an object to travel diagonally in relation to our

robot. These blind spots are also 30 inches wide at

their widest point and 10 inches at their narrowest

point. The average size of an object on the course

is around 18 inches wide so even it id did manage

to sneak into the blind spot it would be detected

before it could cause a collision.

Sensor Array Communication

Since we are a moving system the distance reads are only valid at the moment they are

taken. The longer we wait to use them the closer the robot actually is compared to the

recorded read. In order to maximize the freshness of the data we are using an ask first

data collection scheme. The code snippet below handles gathering commands from serial

and beginning the read cycle.

 if (Serial.available() > 0)

 {

 input = Serial.readString();

 }

 if (input == "N" || input == "n")

 {

 start = millis();

 input = "S";

Once it has received the next command order the following for loop executes to gather all

of the necessary data into an array called Distance.

for (int i=0; i<5; i++)

 {

 Distance[i] = Sonar[i].ping_cm();

 }

Now that we have all of our data we need to format it and send it back to the laptop. The

format we have choses is (D1|D2| D3|D4|D5). The parentheses are our delimiter for each

data set and the bars are a delimiter for each individual data type. The code below

handles both the formatting and the sending.

Serial.print("|");
 for (int x=0; x<5; x++)

 {

 Serial.print(Distance[x]);

 Serial.print("|");

 }

Bandwidth

Since we are using UBS serial at a baud rate of 9600 bps we need to be sure that we

won’t ever exceed this. Each cycle of reads contains five 2 byte integers and six 1 byte

characters bring our total cycle size to 16 bytes or 128 bits. At our maximum cycle rate

of 40hz we will be sending 5120 bits per second which is still less than our 9600

maximum. If at any point in the future the sensor array is upgraded, we will simply need

to re run these calculations and if needed raise the Baud rate to the next highest supported

rate.

Servo analysis

To prove that 28oz/in is enough torque we need to find the moment of inertia for our part

with the LIDAR attached. Since the weight will be relatively evenly distributed we can

assume it is a cylinder whose moment of inertia is given by:

𝐼 =
1

2
𝑀𝑅2

Which for us is equal to

𝐼 =
. 043𝑘𝑔

2
. (

. 057𝑚

2
)

2

= .0000174663𝑘𝑔𝑚2

We can then plug that into newton’s second law

𝜏 = 𝐼𝛼

With total torque as 28ozin ≈ 0.197Nm

0.197𝑁𝑚 = .0000174633𝑘𝑔𝑚2 𝛼

Solving for angular acceleration we get 𝛼 = 11322.2𝑟𝑎𝑑𝑠/𝑠2

Plugging this into ∅ = 𝜔0𝑡 +
1

2
𝛼𝑡2 with theta = 60° ≈ 1.05 radians and ω0 = 0 yields t =

.01 seconds which is less than the 0.05 seconds to rotate 60° given by the manufacturer

by a factor of 5. Since the theoretical speed is much faster than the printed maximum

speed we know the torque will not limit our rotation speed so we will be able to use the

servos max speed in our sensor array.

Furthermore given the time for 60° of rotation we can solve for the angular acceleration

necessary to rotate 60° in 0.05 seconds and use that to find the torque applied by the

servo.

1.05 = 0𝑡 +
1

2
𝛼𝑡2

𝛼 = 840 𝑟𝑎𝑑𝑠/𝑠

From this angular acceleration and the moment of inertia we can find anticipated torque

required to maintain maximum speed.

𝜏 = 𝐼𝛼 = .0146𝑁𝑚

Furthermore since servos are powered by a DC motor the relationship between output

torque and current is approximately linear. From the datasheet we are given that at 0 load

(almost 0 torque) it will draw 250ma and at max load (0.197Nm of torque) it draws

1600ma we get the line defined by the equation:

𝐶𝑢𝑟𝑟𝑒𝑛𝑡(𝑚𝑎) = 8096.45 𝑇𝑜𝑟𝑞𝑢𝑒 (𝑁𝑚) + 250𝑚𝑎

With this we can estimate that we will be using roughly 368ma per servo under normal

operating conditions. While this is not a perfect estimate it should be good enough for

preliminary design of the power supplies and regulator circuits. We will however need to

accommodate spikes in current up to 1A per servo due to inrush current.

Ultrasonic Mount Strength Analysis

To determine if out Ultrasonic holder will be strong enough to withstand the forces

applied due to acceleration we solved for the deflection of a beam and the stresses

applied at the point of contact.

𝑀𝑎𝑥 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 =
𝑃𝐿3

3𝐸𝐼

Where P is the force applied to the end of the beam, L is the length of the beam, E is the

young’s modulus, and I is the moment of inertia.

For P we used the weight of the part (9grams) and the max acceleration it can experience

(2.44m/s2) for a force of 0.02196 N. We know that this is not the actual force but it is

the easiest way to overestimate the max force. I is equal to 1.6*10-6, L is 25mm and E

was found to be between 1.4-3.2 we will be using 1.4. Using these values we have a total

deflection of:

𝑀𝑎𝑥 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 =
(. 02196)(. 25)3

(3)(1.4)(1.6 ∗ 10−6)
= 1.3 ∗ 10−18 𝑀𝑒𝑡𝑒𝑟𝑠

Furthermore, we can solve for the stress at the base of this part using

𝑊𝐼

𝑍
=

𝑊𝐼
ℎ𝑏2

4
= .000014 𝑃𝑎

ABS plastic has a yield strength of 42.5MPagiving a safety factor of:

42500

. 000014
= 3,035,714,285

We feel that given we overestimated the force applied, used the lowest estimate we could

find for young’s modulus, and still have a safety factor of 3 billion that this part, and all

subsequent sensors mounts, are sufficiently strong. We will not be showing analysis for

the other sensor mounts for this reason.

Battery Operation and Charging Time Analysis

operation timemax =
battery rating (amps ∗ hours)

current draw (amps)

 =
20Ah

58A
 ≈ 21 minutes

Our battery is rated for 20Ah our estimation of max current draw for all components

would be around 58 A. This gives us an operation time of around 21 minutes at the worst

case scenario

operation timeavg =
battery rating (amps ∗ hours)

current draw (amps)

 =
20Ah

22.41A
 ≈ 53 minutes

Since we do not expect the components to operate at maximum current draw at all times,

the expected operation time of the total system should be around 53 minutes. This would

allow us to run multiple tests before having to charge again.

𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 =
𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔 (𝑎𝑚𝑝𝑠 ∗ ℎ𝑜𝑢𝑟𝑠)

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 (𝑎𝑚𝑝𝑠)

 =
20𝐴ℎ

6𝐴
 ≈ 3.33 ℎ𝑜𝑢𝑟𝑠

The battery itself is comprised of 8 separate 3.2v 20Ah cells that was custom

manufactured by batteryspace.com. The battery has a 6A intelligent charger and it would

take approximately 3.33 hours to charge to full capacity.

Data Processing

This is our code that reads in the sensor data and maps our surroundings:

import threading

import serial

import numpy as np

import astar

Visualization Libraries

from bokeh.client import push_session

from bokeh.plotting import figure, curdoc

Testing Libraries

import time

import random

import sys

print("Initializing..")

MAP_SIZE_X = 3084

MAP_SIZE_Y = 6168

origin = [MAP_SIZE_X, MAP_SIZE_Y]

location = origin

viz = 0

if (len(sys.argv) > 1):

 viz = int(sys.argv[-1])

ser = serial.Serial('/dev/tty.usbmodem1411', 9600)

time.sleep(1)

robotMap = np.zeros(shape=(MAP_SIZE_X * 2, MAP_SIZE_Y * 2))

trans = [[-1, -.7071, 0, .7071, 1], [0, .7071, 1, .7071, 0]]

if (viz == 1):

 x = []

 y = []

 p = figure()

 c = p.circle(x, y, size=5, color="red", alpha=0.1)

 o = p.circle(origin[0], origin[1], size=25, color="purple")

 # open a session to keep our local document in sync with server

 session = push_session(curdoc())

def ultrasonic():

 ser.write(b'n')

 while (ser.inWaiting() == 0):

 continue

 s = ser.readline()

 if (viz == 0):

 print(s)

 s = s[1:-3].split('|')

 obstacles = []

 for i in range(5):

 obstacles.append([int(location[0] + int(s[i]) * trans[0][i]),

 int(location[1] + int(s[i]) * trans[1][i])])

 for i in range(5):

 robotMap[obstacles[i][0]][obstacles[i][1]] += 1

 if (viz == 1):

 c.data_source.data["x"] = c.data_source.data["x"] + [obstacles[i][0]]

 c.data_source.data["y"] = c.data_source.data["y"] + [obstacles[i][1]]

 if (viz == 2):

 print(robotMap)

 print(chr(27) + "[2J")

def camera():

print("Ready to go!")

if (viz == 1):

 curdoc().add_periodic_callback(ultrasonic, 5000)

 #

 session.show() # open the document in a browser

 #

 session.loop_until_closed() # run forever

while(1):

 ultrasonic()

This is our code that creates the path:

(Credit to Christian Careaga for basis for this code)

from heapq import *

import time

def heuristic(a, b):

 return (b[0] - a[0]) ** 2 + (b[1] - a[1]) ** 2

def astar(array, start, goal):

 neighbors = [(0,1),(0,-1),(1,0),(-1,0),(1,1),(1,-1),(-1,1),(-1,-1)]

 close_set = set()

 came_from = {}

 gscore = {start:0}

 fscore = {start:heuristic(start, goal)}

 oheap = []

 heappush(oheap, (fscore[start], start))

 while oheap:

 current = heappop(oheap)[1]

 if current == goal:

 data = []

 while current in came_from:

 data.append(current)

 current = came_from[current]

 return data

 close_set.add(current)

 for i, j in neighbors:

 neighbor = current[0] + i, current[1] + j

 tentative_g_score = gscore[current] + heuristic(current, neighbor)

 if 0 <= neighbor[0] < array.shape[0]:

 if 0 <= neighbor[1] < array.shape[1]:

 if array[neighbor[0]][neighbor[1]] == 1:

 continue

 else:

 # array bound y walls

 continue

 else:

 # array bound x walls

 continue

 if neighbor in close_set and tentative_g_score >= gscore.get(neighbor, 0):

 continue

 if tentative_g_score < gscore.get(neighbor, 0) or neighbor not in [i[1]for

i in oheap]:

 came_from[neighbor] = current

 gscore[neighbor] = tentative_g_score

 fscore[neighbor] = tentative_g_score + heuristic(neighbor, goal)

 heappush(oheap, (fscore[neighbor], neighbor))

 return False

'''Here is an example of using my algo with a numpy array,

 astar(array, start, destination)

 astar function returns a list of points (shortest path)'''

nmap = numpy.array([

 [0,0,0,0,0,1,1,2,2,3,4,5,4,3,2,1,0,0,0,0],

 [0,0,0,0,0,0,0,1,1,2,3,4,5,4,3,2,1,0,0,0],

 [0,0,0,0,0,0,0,0,0,1,2,3,4,5,4,3,2,1,0,0],

 [0,0,0,0,0,0,0,0,0,0,1,2,3,4,5,4,3,2,1,0],

 [1,1,0,0,0,0,0,0,0,0,1,2,3,4,5,4,3,2,1,0],

 [2,2,1,0,0,0,0,0,0,0,0,1,2,3,4,5,4,3,2,1],

 [3,2,2,1,0,0,0,0,0,0,0,1,2,3,4,5,4,3,2,1],

 [4,3,2,1,0,0,0,0,0,0,0,1,2,3,4,5,4,3,2,1],

 [5,4,3,2,1,0,0,0,0,0,0,0,1,2,3,4,5,4,3,2],

 [5,4,3,2,1,0,0,0,0,0,0,0,1,2,3,4,5,4,3,2],

 [5,4,3,2,1,0,0,0,0,0,0,0,1,2,3,4,5,4,3,2],

 [4,5,4,3,2,1,0,0,0,0,0,0,0,1,2,3,4,5,4,3],

 [4,5,4,3,2,1,0,0,0,0,0,0,0,1,2,3,4,5,4,3],

 [4,5,4,3,2,1,0,0,0,0,0,0,0,1,2,3,4,5,4,3],

 [4,5,4,3,2,1,0,0,0,0,0,0,0,1,2,3,4,5,4,3],

 [4,5,4,3,2,1,0,0,0,0,0,0,0,1,2,3,4,5,4,3],

 [4,5,4,3,2,1,0,0,0,0,0,0,0,1,2,3,4,5,4,3],

 [4,5,4,3,2,1,0,0,0,0,0,0,0,1,2,3,4,5,4,3],

 [4,5,4,3,2,1,0,0,0,0,0,0,0,1,2,3,4,5,4,3],

 [4,5,4,3,2,1,0,0,0,0,0,0,0,1,2,3,4,5,4,3],

])

a = astar(nmap, (19,9), (0,0))

Testing & Validation

Data Acquisition

Parallax Ping)) Speed Test

Objective

The purpose of this test is to determine at what distance the read time exceeds 20ms.

Procedure

A single Ping))) is set up 36 inches off the ground facing a piece of foam board at Xcm

and a set of 10 readings is taken. Using the Arduino’s built in millis() function at the

begin and end of the loop allows us to compute the total time for 10 reads at distance X.

the distance is reduced by 50 cm until the average per read time is below 20ms.

Results

We found that the point

at which we exceed 20

ms is somewhere

between 250cm and

300cm. This means that

we can set the maximum

read distance to 250cm

and never have any total

cycle read times greater

than 100ms.

This does not account for

serial communication

times but we tested for

that later and found that

sending the 128bits of information took at most 4ms. For this reason, we have chosen to

set the array maximum at 200cm so that our total time won’t exceed 100ms even with

serial read times.

Parallax Ping)) Accuracy Test

Objective

This test was used to determine if the ultrasonic sensors would be accurate out to our

maximum distance of 200cm.

Procedure

Set up is the same as the speed test. 36inches off the ground pointed at a large piece of

foam board. Each reading is taken 10 times at each distance and saved to a log file.

Results

The data reads are within

tolerances all the way up

to about 300cm where

they start to diverge.

This means that at our

maximum distance of

200cm we don’t need to

worry about the distance

returned being wrong by

more than 1 or 2 cm.

Which should be taken

care of by a properly

weighted grid.

The second set of data is at 150cm and we discovered after testing that it was picking up

a bit of trash at 127 cm from the start point which messed up our data at that point.

Full Array Speed Test

Objective

The purpose of this test is to further refine the data gathered in the individual speed test.

Finding an average cycle time/rate for the full sensor array in a variety of real world

conditions.

Procedure

The array is placed on the robot and a variety of obstacles (chairs, trashcans, etc.) are

placed around the array at various distances. A set of reads is taken and times. The

obstacles are moved to new locations and the test is repeated.

Results

Even in a wide open environment, i.e. nothing within 200cm, we never had our data rate

drop below 11hz. The average cycle rate from our admittedly non-exhaustive testing was

around 15hz. The maximum data rate we say was 40hz. We achieved this by setting an

object within 10cm of each sensor. We don’t expect this to happen in the course but it

did give us a nice upper bound for bandwidth calculations.

Graphs are missing because the data was stored on one of our teammates laptop which

was destroyed due to a short caused by exposed wiring one day while working on the

robot.

Movement

Two test types were performed to show the mechanical ability of our vehicle. The first

was the speed test of our vehicle.

Speed Test

Testing Objective

Test that the robot can maintain a speed less than 5 MPH

Testing Protocols

1. Provide measured distance

2. Provide acceleration distance above seven inches

3. Provide and initiate robot speed command

4. Clock times as vehicle crosses distance

Instrumentation

Stop watch, Measuring Tape, Video Camera

Data Acquisition/Processing

Time was collected as the vehicle left the first spot and arrived at the second spot. This

time was divided by the distance traveled to give the average speed of the bot over the

distance.

Testing Results and Validation

Distance (ft) Time MPH

Test 1 15 2.36 4.3

Test 2 15 2.46 4.2

Test 3 40 6 4.5

Test 4 40 6.02 4.5

Test 5 40 6.4 4.3

This test shows that the vehicle is able to maintain a speed below 5 MPH consistently.

Incline Test

Testing Objective

Verify the safety and ability of our vehicle to climb an incline of equal to or greater than

13.5 degrees.

Testing Protocols

1. Run vehicle on measured incline.

2. Adjust the center of mass by adding increments of weights to the front of the vehicle.

3. Test performance uphill and downhill incline

Instrumentation

Weights, rope, camera, controller, hill, protractor

Data Acquisition/Processing

As the center of mass was adjusted using 10 LB weights to the front of the vehicle, the

bucking of the vehicle was watched until failure occurred. The failure point was noted in

the results file.

Testing Results and Validation

This test shows the center of mass of 7.2 inches from the axis or rations is safe for

inclines under 20 degrees.

Safety

Data Acquisition & Processing

Ultrasonic Safety

The ultrasonic sensors we are using emit a burst at 40KHz which is well above the range

of human hearing. Consulting OSHA guidelines we are allowed no more than an 115dB

of output and since it is above hearing there is no weighted average for 8 hours given.

The Parallax Ping))) outputs a 40KHz burst for no longer than 200us since we do not plan

Predicted Required COM for 15-

20 Degree Incline

Test # COM (in) Incline 15-20 Degrees Bucking Performance

4.5 - 4.9 inch

Test Result 1 7.16 Uphill Pass

Test Result 2 7.16 Downhill Pass

Test Result 3 7.16 Uphill Pass

Test Result 4 7.16 Downhill Pass

Test Result 5 6.11 Uphill Pass

Test Result 6 6.11 Downhill Pass

Test Result 7 5.17 Uphill Pass

Test Result 8 5.17 Downhill Pass

Test Result 9 4.74 Uphill Pass

Test Result 10 4.74 Downhill Pass

Test Result 11 3.29 Uphill Pass

Test Result 12 3.29 Downhill Buck

Test Result 13 3.29 Uphill Pass

Test Result 14 3.29 Downhill Buck

on modifying the Parallax Ping))) is any way it will be completely safe for the

unprotected human ear.

Battery Overcharging

The battery is protected with a protective circuit module for over charge, over discharge,

short circuit protection and balance function. The battery’s charging max support current

is 16A.

The balance function will only take place during charging without a load connected it. If

a load is connected, no balancing will take place and the duration can vary from a minute

to 30 minutes to several hours depending on the difference of voltage between cells.

Electrical Hazards

According to OSHA, the main causes of Electrocution Fatalities that can apply to our

project are due to contact with live circuits, poorly maintained extension cords, and

defective power tools. Electrical Injuries are divided into two categories: Direct and

Indirect. Direct electrical injuries include electrocution, electrical shock, and burns.

Indirect electrical injuries include falls and fires.

The severity of the shock depends on the path, amount of current and duration of

exposure to the body. OSHA requires special training while working on electrical

equipment. This training teaches: safe work practices, isolation of electrical sources, test

equipment, tools and PPE.

One preventative measure that should be taken with electrical circuits is releasing stored

energy within capacitors and then testing them to see if they have been released of that

energy. Cords should be visibly inspected before use for signs of fraying wires. They

should not be placed in a high traffic area.

Safety Kill Switch

The contest rules require a wireless kill switch and a hard wired kill switch that can

immediately immobilize the vehicle. These kill switches must not be programmed and

are hardware based. The wired kill switch will be placed near the rear center of the

vehicle with a 2” diameter. The wireless kill switch will need to be operated at a

minimum range of 100 feet and has been designed to switch two 60A relays that are

hardwired to the motors

Hazards while printing with ABS and Safe Soldering Practice

When printing with ABS plastic and soldering, precautions and safety measures should

be taken in advance to prevent injury and exposure to fumes. The hazards one can

encounter while printing with ABS or soldering include but are not limited to; exposure

to fumes that can irritate the respiratory tract, skin, or eyes and cause headaches. Molten

plastic/solder can also cause major burns.

There are preventative safety measures that are recommended by OSHA, IARC, NTP and

ACGIA while handling ABS and soldering. An engineering control would be to print or

solder in a well ventilated area. Safety glasses are recommended while printing or

soldering to prevent the eyes from exposure to fumes and molten plastic. Heat resistant

clothes and shoes are recommended to prevent burns. If printing in an area that could

potentially expose oneself to high concentrations of the fumes, a NIOSH/MSHA

approved air purifying filter is recommended.

There are also some first aid measures to take if one were to injure themselves while

printing with ABS or soldering. It is recommended that one should flush their eyes with

water continuously for 15 minutes if exposed to ABS or solder. Thermal burns should be

exposed to cool water and medical attention should be sought out if burns are extreme.

There are no known effects on ingestion of ABS plastic. One should move to a source of

fresh air if exposed to fumes.

Movement

When looking into keeping the team and others that come into contact the vehicle safe,

we need to exercise caution during the manufacturing, testing, and assembly phase of our

vehicle. Due to some of the constraints set forth by IGVC, we will be required to exercise

certain safety precautions. These include the mounted and wireless emergency stop

button, along with the flashing LED lights that indicate when the vehicle is powered on

or in autonomous mode. Below is a Risk Priority Number analysis of the different parts

of our design that we believe should be made a priority when detecting issues. This

analysis consists of determining the chance of that part having issues, the severity of

those issues, and the ease of detecting the issues through observation. The part that we

found to be most vital in the overall failing of our design is the batteries, totaling a score

of 128. This coincides with our hypothesis since the battery is the power source for

almost every other component on the vehicle.

RPN

Part Severity Occurrence Detection Total

Frame 7 2 1 14

Motor 8 2 3 48

Tires 5 1 2 10

Sensors 6 4 4 96

Batteries 8 4 4 128

Wires 4 2 6 48

Welds 7 3 3 63

Laptop 4 4 4 64

Gears 6 2 7 84

While the vehicle itself has its’ own safety precautions, we must also take steps in

keeping ourselves safe during the manufacturing phase. One method of manufacturing

that we will be using is welding. In order to maintain safety protocols, we will be

following OSHA standard 1910.132 which highlights the protection of the eyes, the face,

the hands, and head protection of the welder. We will be using OSHA approved gear

such as facemasks, heat resistant gloves, and full welding coats to protect our skin from

zsparks. Another OSHA standard that we will be considering for safety is OSHA

standard 1910.303 which highlights electrical and wiring safety. We will follow these

protocols in order to prevent harm during manufacturing and assembly.

There are preventative safety measures that are recommended by OSHA, IARC, NTP and

ACGIA while handling ABS. An engineering control would be to print in a well

ventilated area. Safety glasses are recommended while printing to prevent the eyes from

exposure to fumes and molten plastic. Heat resistant clothes and shoes are recommended

to prevent burns. If printing in an area that could potentially expose oneself to high

concentrations of the fumes, a NIOSH/MSHA approved air purifying

