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1. Team Organization 

Our team is consists of three members. James Davis is majoring in Computer 

Engineering, Kenny Dang is majoring in Electrical Engineering, and Kenley Tan is majoring in 

Electrical Engineering. All three of us are seniors and completed part of this project for our 

senior design project. James is the team leader and was the lead programmer on the team. Kenny 

designed and built the chassis and the electrical system. Kenley was in charge of gathering and 

testing all the components so that they could be placed on the robot. 

2.1 Design Process 

 At the start of our design, we completely disassembled last years robot and checked out 

the parts that were still useable. Our team agreed that there should be differential drive in order 

to work well outdoors and that there should be a caster in the back so that there were only two 

powered motors. Once this design was agreed upon by our team and our advisor then the chassis 

was built. Next we needed to make a power system. Our advisor suggested using a Mac mini for 

the main computational unit on the vehicle and that needs a consistent DC power supply. It is 

also not good for the operating system to be shut down by losing power. In order to circumvent 

this, our design uses two power supplies, one for the motors, LIDAR, and motor controller and 

another for the computer and router. The lidar and motor power system is 24V and the computer 

and router system is a 12V system. We used identical car batteries for all of the systems. In order 

to get a 24V output, two batteries were placed in series. Once the power system and components 

were mounted all the software was tested. Due to our small team size all of the team members 

participated in building the robot. Then the code that was written was tested. 

2.2 Design Assumption 

 There were multiple ideas we implemented in creating a design for our vehicle.  We 

wanted the motors to be located in the front to create a front wheel drive vehicle. This allows the 

wheels to create a pulling motion instead of a pushing motion which allows for better control 

when maneuvering, while also reducing the friction due to the pulling motion.  Another idea was 

to have the motors located at the bottom and most of the weight at the bottom half of the vehicle.  

Having the weight distributed low prevents the vehicle from flipping over while turning.  We 

assumed the vehicle would be heavy, and opted to use wheelchair motors which are used for 

moving heavy weight. 

3. Design Innovation 

 Compared to the previous year’s vehicle, the current vehicle, HAL, is completely 

different. Instead of chain motors, we replaced the motors with electric wheelchair motors. This 

prevents the faults of having chains, such as the chain coming off or debris sticking into the 

chain. Last years team used both a raspberry pi and an arduino with sonar sensors. Instead of 

using sonar sensors we opted to use a lidar instead. The lidar will give more resolution, higher 

rate of data acquisition, and larger range. In order to find the position of the robot high accuracy 

encoders were added to the vehicle. These encoders are more accurate than last years robot’s 

encoders in order to map its current position. The raspberry pi and pi camera were not powerful 

enough to process the images as fast as desired. Instead of the pi camera a usb camera is being 

used to gather images and a ROS node is processing the images and adding the lines to the map 



for the vehicle to avoid. The vision processing node is computed on the mac mini in order for it 

to be fast enough to work in real time. 

4. Mechanical Design 

4.1 Overview 

 The original plan was to use the previous frame and make adjustments to the vehicle, but 

the team decided to completely scrapped the frame.  The main reason being the difference in 

motors between the older model and the newer model.  Even though we completely remade it, 

we reused most of the materials and parts from the older model. 

 
The Functional Requirements and Specifications for the blocks are listed in Table 1-8 

 

Table 1: Main Computer Running ROS 

Requirements Specifications 

Functional Must take in all sensor data and then make decisions based upon them 

Performance At least 20 full program cycles per second 

System Interaction Main decision making part on the robot 

Operator Interaction Operator will give GPS coordinates and put it into autonomous mode 

Hardware/Software Will have a mac mini running ubuntu with ros software 

 

Table 2:Cameras 

Requirements Specifications 



Functional Get image data for  decision making 

Performance At least 30 frames per second 

System Interaction Will return image data to the main computer for analysis 

Operator Interaction No operator interaction 

Hardware/Software Must have a base resolution of 800x600 and have at least 30 fps 

 

Table 3:Lidar System 

Requirements Specifications 

Functional Identify obstacles in front of the vehicle 

Performance At least 20 frames per second 

System Interaction Return a stream of depth data to the main computer 

Operator Interaction No operator interaction 

Hardware/Software Have a minimum range of 10m and 180° 

 

Table 4: Wireless/Mechanical E-Stop 

Requirements Specifications 

Functional Stops the robot 

Performance Must stop the robot immediately at least 100m away 

System Interaction Cuts power to the robot 

Operator Interaction Presses large red button 

Hardware/Software Mechanical: Cut power, Wireless: Software interrupt 

 

Table 5: Motor Controller 

Requirements Specifications 

Functional Controls the motors on the robot 

Performance Must maintain velocity and directions of the motor 

System Interaction Receives the pulse width modulation from the main computer and returns 
encoder values for tracking distances. 

Operator Interaction No operator interaction 

Hardware/Software Brushless motor variant of the RoboteQ motor controller 



 

 

  



 

Table 6: Left and Right Motor 

Requirements Specifications 

Functional Moves the robot 

Performance Must be capable of going at least 1 mph and no more the 5 mph 

System Interaction Receives the current and voltage from the motor controller 

Operator Interaction No operator interaction 

Hardware/Software Brushless motor used in electric wheelchairs 

 

Table 7: Encoders 

Requirements Specifications 

Functional Returns the rotation of the wheels 

Performance Must be capable of returning correct data at up to 8000 rpm ( max of the 
motors) 

System Interaction Sends data to the motor controller 

Operator Interaction No operator interaction 

Hardware/Software Must have 8mm shaft and be capable of running from 10-24V 

 

4.2 Mechanical design 

 We opted to have our vehicle frame to be a rectangular shape.  This will allow for the 

electronic components to be easily placed into the frame.  The vehicle will have three wheels, 

two motor controlled wheels and one caster wheel.  As mention before, we are using wheelchair 

motors,DG-158, for our design.  Not will these motors provide more torque than our previous 

motors, they also come with encoders.  Having encoders will help immensely in any motor based 

robot, allowing for easy speed and position control.   

5. Electronic and Power Design 

HAL’s power consist of two different power systems.  Two 12V batteries are connected in series 

to created a 24V system and a single 12V battery creates the second system.  Many of the 

electronic components were either 24V or 12V. Having the two power system extremely 

convenient when testing.  To prevent the vehicle from going to an undesired location such as a 

curb we had to quickly shut down the system.  Instead of shutting down the whole system, we 

could just shut down the motors and LiDar and keep the computer on.  This keeps our work 

saved while stopping the vehicle. Our two power systems are shown in the below figures.    

 



 

 

6.0 Software 

6.1 Computational Devices 

The main computational computer is a mac mini that has a 2.6Ghz intel processor and intel HD 

graphics. This computer runs the robot operating system and aggregates all the sensor data. The 

robot will also have a roboteq motor controller and an arduino. The arduino runs an attached gps 

module and constantly reports the robot's current latitude and longitude. The roboteq motor 

controller runs a script that constantly publishes both wheels current speed. The motor controller 

also takes commands from the mac mini to change the velocities of the wheels. 

 

6.2 Software Strategy and Control Decisions 

The software of the robot relies on the Robot Operating System . ROS is a collection of tools for 

linux that contain drivers, communication protocols, and tools for working with robots. Our 

robot is running the ROS navigation stack. This stack requires a planar laser (the SICK LMS200 

in our case)  a base that can take data in a special ROS data format, and accurate odometry and 

transform data. In order to get the motor controller to take the special messages a ROS driver had 



to be written. A custom driver was written in Python to publish the current speed of the robot to 

ROS and to take in the base messages and send the motor controller the new desired speed. This 

allows the navigation stack to autonomously control the speed and direction of the vehicle. The 

odometry data required its own  special node. By using the speed of the motors that is being 

constantly published the distance from the initial point of the robot is calculated. This distance is 

recorded and the current distance the robot has moved is published to the stack. In order for the 

stack to correctly use the planar laser data a transform must move the laser data to the center of 

the robot. This is done using a static transform node that constantly transmits the position of the 

laser based upon the position of the robot. The waypoint will be determined by gps coordinates 

recorded from the sensor and the ones given by the judge. 

 

6.3 Mapping 

The ROS navigation stack uses two separate maps. There is a local cost map and a global cost 

map. The global costmap is recorded prior to navigation by recoding all the odometry and laser 

data from the other ROS nodes. Once this global cost map is recorded then it is loaded upon 

initialization into the mapping server. Once a waypoint is given the global planner determines a 

path to the waypoint and sends the robot on its way. Once the robot is moving then a local map is 

created. The local map is created for immediate reactions on the way of the global costmap. The 

obstacles are detected using point cloud data from a camera and the planar laser. 

 

6.4 Plan for Path Following 

The vehicle has a threshold of 0.2m radially in which objects cannot be. If an object is found 

within that radius then the vehicle will back up and spin until an appropriate path is found. Other 

than this failure state the robot continues on the path communicated to it by the global and local 

planners. These planners send vectors out and compute the least cost path for the robot to 

complete. We have set the commands given out to be for differential drive robots so that Any 

path given to the robot is completed as a series of x and z movements. Our vehicle cannot 

accomplish direct movement in the y plane. 

 

6.5 System integration plan and Signal Processing 

The sensor information from the LiDar and camera is sent to the main computer that is running 

ROS, Robot Operating System.  Based on the information gathered from the sensors, the main 

computer will make decisions to travel in the most convenient path.  The decisions are made 

from a set of priorities that the team feels are most important going to least important.  The 

priorities from most important to least important are white line detection, object detection, and 

gps location; this is shown in the below figure. 

 



 
 

 

 

 

7. Failure 

1. Moving directly towards the sun or shiny object disorientates the vehicle. 

2. Unable to find flat or/and narrow objects.  

3. The vehicle fails at avoiding obstacles in rapid succession. 

8. Simulations 

8.1 Technical Details of Implementation 



 

 8.3.1 Theory and Calculations 

● Power consumed by robot and prospective parts  

○ Assuming 150 lb,  1.5 m/s^2, 1.34 m/s 

■ Force = ma = (68.03*1.5) = 102.045 N 

■ Power = (102.045)(1.34) = 136.74 W 

● Necessary run time and battery amount 

○ 900 ft = 0.170455 miles.  0.170455 miles/1mph = 10.2277 mins 

○ Run time 

■ Components  9.456 A 

■ Battery 19 Ah 

■ Runtime: 19/9.456 = 2 h 

● Wheel diameter and minimum angular velocity 

○ wheel diameter  = 17 in 

● Maximum weight and max weight with load 

○ 250 lb-300 lb 

○ load approximately 20 lb 

● Straight away and turn speed 

○ we want to finish in under 10 mins 

○ F = c*W 

■ c = .35 

■ w= mg 

 

9. Performance  

9.1 Lidar 

The lidar works as planned and produces the correct data and distances. This data can be 

visualized using rviz in ROS. The only issue with the lidar is the boot time. The boot time 

however is short enough that it is not an issue within the confines of the competition. 

9.2 Motors and Feedback Controllers 

The motor controller accurately moves the motors at the specified rate. The motor controller also 

receives commands over serial and will execute the correct command. All data that is sent from 

the motor controller reaches the computer in the correct time as well. There is only one serious 

issue with the motor controller. When the motors get too much resistance then the controller 

shuts down that part of the drive in order to save the motor from pulling too many amps and 

burning up the motor. This should not be a huge issue in the competition because if the vehicle 

hits obstacles it is grounds for disqualification. 

9.3 Arduino and Mac Mini 

The arduino and computer work completely as expected. There has never been an issue with 

either. They also communicate with each other as programmed. 

 



10. Current Performance 

Currently the vehicle will avoid obstacles and travel to a specified waypoint on a given map. The 

vehicle requires that a map of the surrounding area be created before it can properly navigate to 

the specified location. The location must also exist on the map for it to navigate to the 

coordinates correctly. Within the rules of the competition mapping of the competition area is 

allowed. As long as the map is created correctly then the robot works well and can navigate to its 

goal without much issue. 

 

  



 

11.0 Parts List and Budget 

 

Item Function MSRP Quantity Cost Actual Paid Notes 

Sick LMS500 LiDar 5000 1 5000 0 Donated 

6061 90 deg 

Aluminum Fram 71.92 1 71.92 0 

Previous 

Team 

DG-158 with E2-

500-315-NE-D-G-1 Motors 450 2 900 900 

Optical 

encoder 

included 

Microsoft Lifecam 

Studio Camera 99.95 2 199.9 500  

VPN1513 GPS 

smart module GPS 34.99 1 34.99 0 

Previous 

Team 

Martin Wheels 958-

2TR-I Wheels 52.29 2 104.58 0 

Previous 

Team 

Crossbow Compass Unknown 1 Unknown 0 Donated 

Mac Mini 

Main 

Computer 1600 1 

 

1503.93 1503.93  

12V Everstart 

Powersport Battery 51.88 2 103.76 103.76  

RoboteQ MDC2460 

Motor 

Controller 175 1 175 175  

Back Castor Back Wheel 5 1 5 5  

RS 232 Cable 10 1 10 10  

USB to DB 15 Cable 5 1 5 5  

Encoder Cable + 

Transition board Cable 25.00 1 25.00 25.00 

Included 

with motor 

controller 

TP-link N300 

router Router 24.91 1 24.91 24.91  

CON-LC5 Connector 3.15 2 6.30 6.30  

Total    8294.58 3483.14  

 


