
University of West Florida IGVC Design Report

HAL

Group members

James Davis, Major: Computer Engineering, email: jed30@students.uwf.edu

Kenny Dang, Major: Electrical Engineering email: kqd1@students.uwf.edu

Kenley Tan, Major: Electrical Engineering email: kt34@students.uwf.edu

mailto:jed30@students.uwf.edu
mailto:jed30@students.uwf.edu
mailto:kqd1@students.uwf.edu
mailto:kqd1@students.uwf.edu
mailto:kt34@students.uwf.edu

1. Team Organization

Our team is consists of three members. James Davis is majoring in Computer

Engineering, Kenny Dang is majoring in Electrical Engineering, and Kenley Tan is majoring in

Electrical Engineering. All three of us are seniors and completed part of this project for our

senior design project. James is the team leader and was the lead programmer on the team. Kenny

designed and built the chassis and the electrical system. Kenley was in charge of gathering and

testing all the components so that they could be placed on the robot.

2.1 Design Process

 At the start of our design, we completely disassembled last years robot and checked out

the parts that were still useable. Our team agreed that there should be differential drive in order

to work well outdoors and that there should be a caster in the back so that there were only two

powered motors. Once this design was agreed upon by our team and our advisor then the chassis

was built. Next we needed to make a power system. Our advisor suggested using a Mac mini for

the main computational unit on the vehicle and that needs a consistent DC power supply. It is

also not good for the operating system to be shut down by losing power. In order to circumvent

this, our design uses two power supplies, one for the motors, LIDAR, and motor controller and

another for the computer and router. The lidar and motor power system is 24V and the computer

and router system is a 12V system. We used identical car batteries for all of the systems. In order

to get a 24V output, two batteries were placed in series. Once the power system and components

were mounted all the software was tested. Due to our small team size all of the team members

participated in building the robot. Then the code that was written was tested.

2.2 Design Assumption

 There were multiple ideas we implemented in creating a design for our vehicle. We

wanted the motors to be located in the front to create a front wheel drive vehicle. This allows the

wheels to create a pulling motion instead of a pushing motion which allows for better control

when maneuvering, while also reducing the friction due to the pulling motion. Another idea was

to have the motors located at the bottom and most of the weight at the bottom half of the vehicle.

Having the weight distributed low prevents the vehicle from flipping over while turning. We

assumed the vehicle would be heavy, and opted to use wheelchair motors which are used for

moving heavy weight.

3. Design Innovation

 Compared to the previous year’s vehicle, the current vehicle, HAL, is completely

different. Instead of chain motors, we replaced the motors with electric wheelchair motors. This

prevents the faults of having chains, such as the chain coming off or debris sticking into the

chain. Last years team used both a raspberry pi and an arduino with sonar sensors. Instead of

using sonar sensors we opted to use a lidar instead. The lidar will give more resolution, higher

rate of data acquisition, and larger range. In order to find the position of the robot high accuracy

encoders were added to the vehicle. These encoders are more accurate than last years robot’s

encoders in order to map its current position. The raspberry pi and pi camera were not powerful

enough to process the images as fast as desired. Instead of the pi camera a usb camera is being

used to gather images and a ROS node is processing the images and adding the lines to the map

for the vehicle to avoid. The vision processing node is computed on the mac mini in order for it

to be fast enough to work in real time.

4. Mechanical Design

4.1 Overview

 The original plan was to use the previous frame and make adjustments to the vehicle, but

the team decided to completely scrapped the frame. The main reason being the difference in

motors between the older model and the newer model. Even though we completely remade it,

we reused most of the materials and parts from the older model.

The Functional Requirements and Specifications for the blocks are listed in Table 1-8

Table 1: Main Computer Running ROS

Requirements Specifications

Functional Must take in all sensor data and then make decisions based upon them

Performance At least 20 full program cycles per second

System Interaction Main decision making part on the robot

Operator Interaction Operator will give GPS coordinates and put it into autonomous mode

Hardware/Software Will have a mac mini running ubuntu with ros software

Table 2:Cameras

Requirements Specifications

Functional Get image data for decision making

Performance At least 30 frames per second

System Interaction Will return image data to the main computer for analysis

Operator Interaction No operator interaction

Hardware/Software Must have a base resolution of 800x600 and have at least 30 fps

Table 3:Lidar System

Requirements Specifications

Functional Identify obstacles in front of the vehicle

Performance At least 20 frames per second

System Interaction Return a stream of depth data to the main computer

Operator Interaction No operator interaction

Hardware/Software Have a minimum range of 10m and 180°

Table 4: Wireless/Mechanical E-Stop

Requirements Specifications

Functional Stops the robot

Performance Must stop the robot immediately at least 100m away

System Interaction Cuts power to the robot

Operator Interaction Presses large red button

Hardware/Software Mechanical: Cut power, Wireless: Software interrupt

Table 5: Motor Controller

Requirements Specifications

Functional Controls the motors on the robot

Performance Must maintain velocity and directions of the motor

System Interaction Receives the pulse width modulation from the main computer and returns
encoder values for tracking distances.

Operator Interaction No operator interaction

Hardware/Software Brushless motor variant of the RoboteQ motor controller

Table 6: Left and Right Motor

Requirements Specifications

Functional Moves the robot

Performance Must be capable of going at least 1 mph and no more the 5 mph

System Interaction Receives the current and voltage from the motor controller

Operator Interaction No operator interaction

Hardware/Software Brushless motor used in electric wheelchairs

Table 7: Encoders

Requirements Specifications

Functional Returns the rotation of the wheels

Performance Must be capable of returning correct data at up to 8000 rpm (max of the
motors)

System Interaction Sends data to the motor controller

Operator Interaction No operator interaction

Hardware/Software Must have 8mm shaft and be capable of running from 10-24V

4.2 Mechanical design

 We opted to have our vehicle frame to be a rectangular shape. This will allow for the

electronic components to be easily placed into the frame. The vehicle will have three wheels,

two motor controlled wheels and one caster wheel. As mention before, we are using wheelchair

motors,DG-158, for our design. Not will these motors provide more torque than our previous

motors, they also come with encoders. Having encoders will help immensely in any motor based

robot, allowing for easy speed and position control.

5. Electronic and Power Design

HAL’s power consist of two different power systems. Two 12V batteries are connected in series

to created a 24V system and a single 12V battery creates the second system. Many of the

electronic components were either 24V or 12V. Having the two power system extremely

convenient when testing. To prevent the vehicle from going to an undesired location such as a

curb we had to quickly shut down the system. Instead of shutting down the whole system, we

could just shut down the motors and LiDar and keep the computer on. This keeps our work

saved while stopping the vehicle. Our two power systems are shown in the below figures.

6.0 Software

6.1 Computational Devices

The main computational computer is a mac mini that has a 2.6Ghz intel processor and intel HD

graphics. This computer runs the robot operating system and aggregates all the sensor data. The

robot will also have a roboteq motor controller and an arduino. The arduino runs an attached gps

module and constantly reports the robot's current latitude and longitude. The roboteq motor

controller runs a script that constantly publishes both wheels current speed. The motor controller

also takes commands from the mac mini to change the velocities of the wheels.

6.2 Software Strategy and Control Decisions

The software of the robot relies on the Robot Operating System . ROS is a collection of tools for

linux that contain drivers, communication protocols, and tools for working with robots. Our

robot is running the ROS navigation stack. This stack requires a planar laser (the SICK LMS200

in our case) a base that can take data in a special ROS data format, and accurate odometry and

transform data. In order to get the motor controller to take the special messages a ROS driver had

to be written. A custom driver was written in Python to publish the current speed of the robot to

ROS and to take in the base messages and send the motor controller the new desired speed. This

allows the navigation stack to autonomously control the speed and direction of the vehicle. The

odometry data required its own special node. By using the speed of the motors that is being

constantly published the distance from the initial point of the robot is calculated. This distance is

recorded and the current distance the robot has moved is published to the stack. In order for the

stack to correctly use the planar laser data a transform must move the laser data to the center of

the robot. This is done using a static transform node that constantly transmits the position of the

laser based upon the position of the robot. The waypoint will be determined by gps coordinates

recorded from the sensor and the ones given by the judge.

6.3 Mapping

The ROS navigation stack uses two separate maps. There is a local cost map and a global cost

map. The global costmap is recorded prior to navigation by recoding all the odometry and laser

data from the other ROS nodes. Once this global cost map is recorded then it is loaded upon

initialization into the mapping server. Once a waypoint is given the global planner determines a

path to the waypoint and sends the robot on its way. Once the robot is moving then a local map is

created. The local map is created for immediate reactions on the way of the global costmap. The

obstacles are detected using point cloud data from a camera and the planar laser.

6.4 Plan for Path Following

The vehicle has a threshold of 0.2m radially in which objects cannot be. If an object is found

within that radius then the vehicle will back up and spin until an appropriate path is found. Other

than this failure state the robot continues on the path communicated to it by the global and local

planners. These planners send vectors out and compute the least cost path for the robot to

complete. We have set the commands given out to be for differential drive robots so that Any

path given to the robot is completed as a series of x and z movements. Our vehicle cannot

accomplish direct movement in the y plane.

6.5 System integration plan and Signal Processing

The sensor information from the LiDar and camera is sent to the main computer that is running

ROS, Robot Operating System. Based on the information gathered from the sensors, the main

computer will make decisions to travel in the most convenient path. The decisions are made

from a set of priorities that the team feels are most important going to least important. The

priorities from most important to least important are white line detection, object detection, and

gps location; this is shown in the below figure.

7. Failure

1. Moving directly towards the sun or shiny object disorientates the vehicle.

2. Unable to find flat or/and narrow objects.

3. The vehicle fails at avoiding obstacles in rapid succession.

8. Simulations

8.1 Technical Details of Implementation

 8.3.1 Theory and Calculations

● Power consumed by robot and prospective parts

○ Assuming 150 lb, 1.5 m/s^2, 1.34 m/s

■ Force = ma = (68.03*1.5) = 102.045 N

■ Power = (102.045)(1.34) = 136.74 W

● Necessary run time and battery amount

○ 900 ft = 0.170455 miles. 0.170455 miles/1mph = 10.2277 mins

○ Run time

■ Components 9.456 A

■ Battery 19 Ah

■ Runtime: 19/9.456 = 2 h

● Wheel diameter and minimum angular velocity

○ wheel diameter = 17 in

● Maximum weight and max weight with load

○ 250 lb-300 lb

○ load approximately 20 lb

● Straight away and turn speed

○ we want to finish in under 10 mins

○ F = c*W

■ c = .35

■ w= mg

9. Performance

9.1 Lidar

The lidar works as planned and produces the correct data and distances. This data can be

visualized using rviz in ROS. The only issue with the lidar is the boot time. The boot time

however is short enough that it is not an issue within the confines of the competition.

9.2 Motors and Feedback Controllers

The motor controller accurately moves the motors at the specified rate. The motor controller also

receives commands over serial and will execute the correct command. All data that is sent from

the motor controller reaches the computer in the correct time as well. There is only one serious

issue with the motor controller. When the motors get too much resistance then the controller

shuts down that part of the drive in order to save the motor from pulling too many amps and

burning up the motor. This should not be a huge issue in the competition because if the vehicle

hits obstacles it is grounds for disqualification.

9.3 Arduino and Mac Mini

The arduino and computer work completely as expected. There has never been an issue with

either. They also communicate with each other as programmed.

10. Current Performance

Currently the vehicle will avoid obstacles and travel to a specified waypoint on a given map. The

vehicle requires that a map of the surrounding area be created before it can properly navigate to

the specified location. The location must also exist on the map for it to navigate to the

coordinates correctly. Within the rules of the competition mapping of the competition area is

allowed. As long as the map is created correctly then the robot works well and can navigate to its

goal without much issue.

11.0 Parts List and Budget

Item Function MSRP Quantity Cost Actual Paid Notes

Sick LMS500 LiDar 5000 1 5000 0 Donated

6061 90 deg

Aluminum Fram 71.92 1 71.92 0

Previous

Team

DG-158 with E2-

500-315-NE-D-G-1 Motors 450 2 900 900

Optical

encoder

included

Microsoft Lifecam

Studio Camera 99.95 2 199.9 500

VPN1513 GPS

smart module GPS 34.99 1 34.99 0

Previous

Team

Martin Wheels 958-

2TR-I Wheels 52.29 2 104.58 0

Previous

Team

Crossbow Compass Unknown 1 Unknown 0 Donated

Mac Mini

Main

Computer 1600 1

1503.93 1503.93

12V Everstart

Powersport Battery 51.88 2 103.76 103.76

RoboteQ MDC2460

Motor

Controller 175 1 175 175

Back Castor Back Wheel 5 1 5 5

RS 232 Cable 10 1 10 10

USB to DB 15 Cable 5 1 5 5

Encoder Cable +

Transition board Cable 25.00 1 25.00 25.00

Included

with motor

controller

TP-link N300

router Router 24.91 1 24.91 24.91

CON-LC5 Connector 3.15 2 6.30 6.30

Total 8294.58 3483.14

