
 

 

Blue Marble Security Enterprise: Autobot Team 

Charlie 

 

 April 21, 2017 

Team Captain: Haden Wasserbaech hwasserb@mtu.edu 

Other Members: Trevor Peffley tbpeffle@mtu.edu 

 Alex McInerney armciner@mtu.edu 

 Christian Baker cjbaker1@mtu.edu 

 Collin Staudacher cestauda@mtu.edu 

 Brian Terry 

Nathan Duprey 

bmterry@mtu.edu 

naduprey@mtu.edu 

 

 

  

I hereby certify, as the faculty advisor, that the design and engineering of the vehicle outlines in this report to be 

entered in the 2017 Intelligent Ground Vehicle Competition has been significant and equivalent to what might be 

awarded credit in a senior design course.  

 

Dr. Glen Archer, Faculty Advisor  

 



 
2 

TABLE OF CONTENTS 
Conduct of Design Process, Team Identification and Team Organization 4 

Introduction 4 
Organization 4 
Design Assumptions and Design Process 4 

Innovations 5 
ROS 6 
Debug Screen 6 

Mechanical Design 6 
Overview 6 
Structure and housing 7 
Suspension 8 
Weatherproofing 8 

Electronic and Power Design 8 
Overview 8 
Power Distribution 8 
Electronics Suite 9 

Nvidia Jetson TX1 9 
ZED Stereo Camera 9 
EVK-M8N 10 
Razor 9DOF IMU 10 
Custom Interfacer 10 
Victor SP Motor Controller 11 
Motors 11 
Encoder Interface 11 

Safety Devices 12 
Blinking Light 12 
Wireless Emergency Stop 12 
Mechanical Emergency Stop 12 

Software Strategy and Mapping techniques 12 
Overview 12 

GitHub 12 
Obstacle Detection 13 
Map Generation 14 

Line Tracking 14 
Occupancy Grid 15 

               



 
3 

Goal Selection and Path Generation 15 
Gazebo 15 

Failure Modes, Failure Points and Resolutions 16 
Software Failures and Resolutions 16 
Mechanical and Electrical Failures and Resolutions 16 
Failure Prevention Strategy 16 

Performance Testing To Date 17 

Initial Performance assessment 17 
 

 

 

  

               

https://docs.google.com/document/d/1Pkul4Wi93gW0OzkKQgJmwtwcvD-B12Exym8HjmnHbZc/edit#_Toc448665130
https://docs.google.com/document/d/1Pkul4Wi93gW0OzkKQgJmwtwcvD-B12Exym8HjmnHbZc/edit#_Toc448665130


 
4 

CONDUCT OF DESIGN PROCESS, TEAM IDENTIFICATION AND TEAM ORGANIZATION 

INTRODUCTION 

Michigan Tech’s entry into the Intelligent Ground Vehicle Competition is designed within the Blue Marble Security 

Enterprise as part of the Engineering Enterprise program. The design of this vehicle was started in January 2015, 

meant to replace the vehicle previously used in the competition. The team is composed of undergraduate students 

ranging from sophomore to senior status within the Electrical and Computer Engineering departments. 

ORGANIZATION 

The team is organized on the basis of administrative responsibilities and technical responsibilities. The three main 

administrative roles are Project Manager, Documentation Chief, and Financial Manager. The Project Manager is 

tasked with overseeing team organization, planning, and ensuring that the team stays on the critical path. The 

Documentation Chief ensures that the entire design process is properly documented, manages repositories, and 

ensures that all paperwork required from the department are completed and filed properly. The financial manager 

ensures that our budget is properly balanced and seeks out additional funding if necessary. 

Technical responsibilities are given based on class standing, background knowledge, project familiarity and 

interests. Generally, the more senior members are paired with the junior members to ensure that knowledge is 

passed down appropriately. 

The use of a Gantt Chart was utilized to be able to keep track of tasks that each member is responsible for 

throughout the course of the semester. This included set dates that each task should start and be done by. 

Table 1.1: Membership Information and Roles 

Last Name First Name Email Administrative Role 

Wasserbaech Haden hwasserb@mtu.edu Project Manager 

Peffley Trevor tbpeffle@mtu.edu Financial Manager 

Duprey Nathan naduprey@mtu.edu Documentation Chief 

McInerney Alex armciner@mtu.edu N/A 

Baker Chris cjbaker1@mtu.edu N/A 

Staudacher Collin cestauda@mtu.edu N/A 

Terry Brian bmterry@mtu.edu N/A 

 

DESIGN ASSUMPTIONS AND DESIGN PROCESS 

Project requirements were initially derived based on the IGVC 2015 Rulebook. Additional requirements were 

gathered based on what was learned from our previous design, physical constraints imposed on us by our 

laboratory setting, and monetary constraints. The design history of this vehicle is outlined in the chart below. 

 

               

mailto:bmterry@mtu.edu
mailto:njsymanz@mtu.edu
mailto:hwasserb@mtu.edu
mailto:phmiller@mtu.edu


 
5 

Table 1.2: Vehicle Development History 

Spring 2015 Initial Requirements Capture 

Part Selection  

Chassis Design  

Electronic Design 

Mechanical and Electrical Validation 

Fall 2015 Wireless Controller Redesign and Validation 

Sensor Node Development  

Mapping Development 

Pathfinding/Obstacle Avoidance Development 

Spring 2016 Pathfinding Validation 

Image Processing Development 

Goal Selection Development and Validation 

Control Algorithm Development 

Summer 2016 Vehicles First Competitive Attempt 

Won third place in Design competition 

Fall 2016 Switched to ROS for robot framework 

Replaced multiple sensors with ZED camera 

Switched to Jetson TX1 as robot computer 

Minor mechanical hardware modifications 

        Spring  2017 Replaced broken wheel encoder 

Fixed voltage ringing issue 

Created framwork and basic structure for image 
detection and map generation 

Finished wheel odometry 

Completed path generation 

Added support for changing line detection on 
the fly 

INNOVATIONS 
This vehicle’s design addresses several of the issues seen with our previous design. The previous design had 

significant mechanical modifications from its conception to its last competition. Because of this, many of the 

electronics were not easily accessible, making maintenance difficult. To prevent this from happening, the chassis 

was designed with 80/20 extruded aluminum, making any future chassis modifications significantly easier to 

perform. This also makes transportation of the robot much simpler. Most of the electronics are located inside of a 

weather resistant pelican case shown below. This case is only partially mounted to the chassis and can be easily 

removed for hardware changes, bench testing, or to make chassis modifications much simpler. 

               



 
6 

Figure 1.1: Electronics Housed in Pelican Case 

ROS 

We chose to use ROS (Robot Operating System) as the basis of our software system. ROS runs on top of Linux and 

is used for handling all back-end communication between nodes, providing data logging capabilities, sensor data 

replay, and plug-and-play capabilities with various popular sensors. Because ROS is the industry standard for 

mobile robotics and has extensive community support, there are many built in libraries in addition to freely 

available ones developed by the community. These libraries are able to perform useful tasks such as navigation, 

obstacle detection, mapping, localization, and much more. Due to these attractive features we determined that 

ROS is the best platform available for the development of a robot such as ours. While in years past ROS was not as 

developed or widely used, it has become goto standard for many mobile robotics applications and is now used in 

many self-driving cars, nearly all academic robotics, and is even being used for an increasing amount of factory 

automation. Due to the wide adoption of ROS it has been significantly easier to find documentation than some of 

our previously used platforms. 

Debug Screen 

We have greatly utilized our nicely placed debug screen directly 

on our robot for code edits, to view the current generated map, 

and to see live sensor readings. This will be handy at 

competition to be able to make any on the fly code edits and 

changes before the robot competes.  

MECHANICAL DESIGN 

OVERVIEW 

The chassis was designed to comply with IGVC Competition rules as well as our physical constraints in our 

laboratory. These requirements, as gathered from the IGVC Rules, are outlined in the table below. 

Table 2.1: Mechanical Requirements 

               



 
7 

Requirement Details 

Vehicle Type Ground Vehicle; Must have direct contact to the ground 

Length Minimum: 3ft Maximum: 7ft 

Width Minimum: 2ft Maximum 2ft 8in (Doorway Width in Laboratory)  

Height Maximum: 6ft 

 

STRUCTURE AND HOUSING 

The structure of the vehicle (Figure 3.1) is composed of 80/20 and aluminum sheeting when appropriate. This 

material was chosen based on its light-weight properties and modularity. A three-wheeled design was chosen with 

two 29” bicycle wheels in front and an unpowered caster wheel in the rear. This is based on the previous design, 

which had little issues with mobility, and was chosen for this vehicle because of its mechanical simplicity. One 

small issue included when the wheel got stuck in the wrong direction when trying to go up a hill or when a 180 

degree turn was made. To help solve this and decrease the amount of friction from the large back caster wheel, 

tape was wrapped around the entire wheel which has proved to be effective with allowing for better movement of 

the robot. All of the electronic components, minus the wires to and from the motors and external components, are 

housed in a water resistant pelican box. 

 

Figure 3.1: Vehicle Structure Model 

SUSPENSION 

Based on our previous robot designs we determined that suspension is not needed. 

               



 
8 

WEATHERPROOFING 

A majority of electronics are placed in a weather resistant pelican case. Some smaller electronics are currently 

outside of the main case such as the ZED camera, GPS antenna, E-Stop, Monitor, and wheel encoders. Most of 

these components are weather resistant and the screen, which is not, can be covered with a 10mm bisquick water 

deflection system. 

ELECTRONIC AND POWER DESIGN 

OVERVIEW 

Our electronics system was designed with the chief criterion being ease of implementation and power efficiency. 

We ultimately decided to take advantage of the powerful communication backend of ROS and designed the system 

with a distributive computing model in mind. 

POWER DISTRIBUTION 

 

Figure 4.1: Power Distribution 

The vehicle is powered by a 12V Deep-Cycle marine battery. With our current setup, we expect a typical run time 

of just over 2 hours on a constant run. However, empirical testing has shown runtimes closer to 6 hours. If all 

               



 
9 

motors are running at full power, we calculated that the battery could sustain 45 minutes worth of run time. 

Knowing this and the typical competition usage is only about 10 minutes or less on the course, we know that our 

battery will last for more than what we will need it to at competition. In case of a unknown power shortage, we do 

have a backup battery that can be easily swapped in only a couple minutes to be able to get back on the course 

while the other battery is charging. 

 

Figure 4.2 Estimated Run Time 

ELECTRONICS SUITE 

NVIDIA JETSON TX1 

The Nvidia Jetson TX1 was picked for its powerful and efficient chipset (Tegra 

X1) and it's robotics friendly platform. It features a quad core ARM Cortex A57 

CPU as well as a separate single core low power CPU that is great for reduced 

power consumption. Additionally it contains a Maxwell architecture GPU with 

256 CUDA cores with about ​1 TeraFLOPs of compute power. Nvidia also 

provides a​ specially optimized OpenCV library specifically for the Jetson TX1 to 

provide significantly improved image processing performance. Because the 

Jetson is actually a very small module it can be installed in different carrier 

boards similar to how a CPU can be installed in different motherboards. The carrier 

board that comes with the Jetson allows for a large voltage input range of 

5.5-19.6VDC, this make is very easy to run from the onboard battery without the use of a dedicated buck boost 

converter. The many peripheral interfaces such as UART, I2C, CAN bus, SPI, USB, Ethernet, and CSI camera 

interface. The is very useful in the robotics applications as the interfaces used in sensors vary greatly. 

               



 
10 

ZED STEREO CAMERA 

Image acquisition is fulfilled by the ZED 2K Stereo Camera.  The ZED camera is a stereo depth sensing camera.  It is 

able to take in RGBD values, so each point has a color and depth value.  This can be used to replace the LIDAR as a 

much cheaper alternative for depth mapping.  The ZED camera has a 110° range of vision which is more than twice 

the range of the Raspberry Pi camera modules that it is replacing from last year. It can calculate a depth ranges for 

0.7 - 20m. Since we are only dealing with short ranges as a slow speed, the camera will give us more data at short 

ranges than a LIDAR could even though the LIDAR gives more further ranged data. The ZED software package also 

performs some tracking to determine the orientation of the camera. This additional odometry data can then be 

fused with the IMU, wheel encoders, and GPS to provide a more accurate pose estimation. The ZED camera 

connects to the Jetson TX1 over USB 3.0 and has dedicated support through NVIDIA. 

EVK-M8N 

The ublox EVK-M8N is a GPS evaluation kit based on the ublox M8 chipset. This module has multiple interfacing 

modes including an onboard USB to UART adapter allow easy connection and integration with linux. The unit can 

be powered straight from the USB port and eliminates the need for an external power supply. The included active 

antenna provides a stronger, more accurate GPS fix when compared to some passive ceramic antennas that are 

typically used in many cheaper modules.  

RAZOR 9DOF IMU 

The Razor IMU is a low cost 9 DOF IMU that connects over USB. The IMU performs some of the sensor fusion of the 

3 axis accelerometer, gyroscope, and magnetometer onboard before sending the pose estimation over USB. The 

IMU is easily integrated in linux through the provided driver and sample code. 

CUSTOM INTERFACER 

While the custom interface board that was designed last semester worked 

well enough to drive the robot, there were enough changes and extra 

features wanted to necessitate a new design. The new design would still 

need to perform the same main function as the previous design: receiving 

drive commands from the Jetson. The board is responsible for turning 

commands from the Jetson into PWM signals for the motor controllers. 

Additional functions include handling manual control of the robot with a 

standard RC controller, reading the quadrature encoders on the drive 

motors, and controlling the status lights on the robot. The new board 

connects to the Jetson over USB and shows up as a basic serial device in 

software. 

Previously, a PIC32 microcontroller was used as the processor but for the 

revised design, an ARM Cortex M4 was used. The microcontroller used was 

one of NXP / Freescale’s Kinetis K20 devices, specifically the MK20DX256. This was 

               



 
11 

picked because it is the same device used for the Teensy 3.2, a low-cost, open-source microcontroller development 

board. The basic Teensy schematic was used as the starting point for the new interface board. 

Main power for the board is taken care of by a high-efficiency buck converter to step down the 12 volts from the 

battery to 5 volts for powering the RC receiver and wheel encoders. The 5 volts from the buck converter is further 

stepped down to 3.3 volts with a linear regulator to provide stable, clean power for the microcontroller. The 12 

volt input is routed directly to the stack light and each light is turned on by a low-side MOSFET switch. The specific 

buck converter used in the design can handle up to 17 volts input and can supply up to 2 amps on the 5 volt side. 

Figure 4.6: Interface board PCB design 

The new design has been mostly successful, however there were a couple hardware-level bugs that need to be 

fixed in the next revision. The biggest problem was a reversed footprint for the micro USB connector. This was able 

to be worked around by soldering a USB cable directly to the board but a new PCB should be manufactured. The 

connectors for the encoders also turned out to be reversed, but this was easily worked around by re-arranging the 

wires in the connectors. All these issues have been fixed so a new board can be ordered and assembled at the start 

of the next semester. 

VICTOR SP MOTOR CONTROLLER 

The motor controllers have a small form factor and have passive cooling while maintaining high performance. It 

has a wide input voltage (6-16 volts) that is a perfect fit for our 12 volt system. They can handle 60 Amps 

continuous current draw and are controlled over a PWM interface. 

MOTORS 

The NPC-T64 motors were chosen based on the team's prior 

experience and their built in gearbox. The gearbox has 

mounting points that allow it to be easily integrated into the 

mechanical design. The motors are rated for 24 volts but 

provide ample power when run at 12 volts. 

ENCODER INTERFACE 
The previous version of the robot used an off-the-shelf USB encoder module made by 

Phidgets, but this was eliminated as the new interface board handles the encoders. The 

microcontroller used on the board has hardware-level support for encoders, so this change 

               



 
12 

does not put extra work on the CPU of the microcontroller. This change also simplifies the code on the Jetson for 

reading encoders, as the raw encoder count is directly transmitted over serial when the Jetson requests it. No 

additional drivers or libraries are needed. Since the interface board both reads the encoders and controls the 

motors this will make it possible to implement PID control for more consistent robot 

motion. 

SAFETY DEVICES 

BLINKING LIGHT 

The blinking light design that was used for the previous robot had many good aspects 

so this design was improved upon for the Charlie. Three lights, one red, yellow, and 

green, were used again Charlie. The multiple lights allow the team to communicate 

more from the robot when it is at a further distance from the team. A new board was 

made that would allow for easier interface with the lights. Soldering the new board 

allowed members of the team to gain valuable surface mount soldering experience. 

The red light signifies that the robot is stopped and cannot move, the yellow light 

represents manual control mode and the green light indicates autonomous mode.  

WIRELESS EMERGENCY STOP 

Our wireless emergency stop is built into the control system; the robot will stop moving 

if the signal from the RC controller is lost or if a dedicated switch on the controller is 

toggled. 

MECHANICAL EMERGENCY STOP 

A mechanical emergency stop is mounted facing the rear of the vehicle, as per IGVC 

rules. Activating this button will cut off power to the motors via relays. 

SOFTWARE STRATEGY AND MAPPING TECHNIQUES 

OVERVIEW 

Our software system distributes core functionality across several nodes on several pieces of hardware. Each node 

is capable of communicating with each other via ROS (Robot Operating System). ROS is an outstanding platform to 

use above what was used in previous years due to its many libraries of prewritten code that helps heavily with 

navigation and obstacle avoidance. Since it is open source, there is also plenty of forums filled with helpful 

information regarding bugs and issues that others face so that individual projects can debug their systems more 

easily. Since ROS is filled with nodes, the multi-node approach allows us to made changes to each core system 

independently without disrupting development on a different node. This approach also allows us to take 

advantage of the NVIDIA Jetson TX1s exceptional multi-tasking abilities with its powerful hardware. This node 

network is summarized in the figure 5.1 below.  

GitHub 

We use GitHub as a way to keep all of our code organized. Every change is pushed onto the repository and 

submitted with a comment with what was changed, so each member knows what had been edited. This allows us 

               



 
13 

to have issue tracking (continuity) to roll back if a newer revision of the code does not work or breaks some other 

code. We also have a wiki page to be able to have easy documentation access. Here we keep some useful 

commands and other code that is useful to have on a regular basis with working on the robot code. 

 

Figure 5.1: Network design 

Given how the higher level nodes such as navigation and mapping rely heavily on the lower-level “reader” nodes, 

our design employed a bottom to top design approach where the core functionality of each lower-level node was 

stress-tested and validated before the development of the higher-level nodes that rely on the integrity of the data 

coming out those nodes. 

OBSTACLE DETECTION 

The ZED camera has been an outstanding sensor to map the area around the robot using ROS’s built in functions to 

gather points and plot them on the world. It is proving to be reliable in multiple lighting conditions. The main plan 

is to use the ZED camera, imu, gps, and encoders to help create an accurate map. ROS takes in the stereo camera 

data and will note points that are at a specific height above the ground to flag as an obstacle. There is also the 

capability to train the system to learn what a barrel looks like for increased reliability that can be further looked 

into. 

               



 
14 

  

Figure 6.1: ZED camera in 3D printed mount 

MAP GENERATION 

LINE TRACKING 

Our line tracking software pulls the raw camera images from the ZED camera that are already available in ROS. This 

means that we don’t need another camera to do line detection. 

Using OpenCV, the line tracking software takes image data in from ROS and runs a perspective shift on the image 

to make later distance calculations easier to perform. It then filters the image based on color,  and runs that 

through a canny edge detection filter. We then run a Hough Transform on the resulting image to give us lines 

(Figure 7.1). This Hough transform allows us to disregard any unintentional detection that occurs from things like 

white flowers in the grass. These lines are then populated onto a point cloud to be sent back to ROS to be added to 

the occupancy grid as obstacles. 

We also have written a calibration program for our color filtering. This program allows us to quickly calibrate our 

line tracking for any situation using sliders and a visual representation of the final filtering. It also allows anybody 

on the team to calibrate the camera without much knowledge of the system. In our testing we were able to go 

from no calibration to competition ready calibration in less than five minutes. 

 

Figure 7.1: Image processing system  

               



 
15 

OCCUPANCY GRID 

The objects detected from the ZED camera data are overlaid onto the lines detected from our cameras. These 

systems are married together into their final form as an occupancy grid. This occupancy grid is published via ROS. 

 

Figure 7.2: Vehicle’s occupancy grid 

GOAL SELECTION AND PATH GENERATION 

Goals are selected by running through an ordered list of GPS waypoints stored in a text file. The selected GPS 

waypoint location is given in degrees longitude and degrees latitude.  

These points are then input into ROS as goals. ROS then utilizes the occupancy grid it has generated from the 

mapping node to determine the shortest path between the vehicle and the GPS waypoint. The resulting path is 

stored and the vehicle is commanded to move along the generated path. 

GAZEBO 

This useful software helps to be a virtual representation of how our robot will act in the real world. It includes a 

comprehensive, real time physics engine capable of simulating complex robot behavior. Using gazebo we are able 

to construct virtual simulations of outdoor environments complete with glare, ambient sensor noise, coefficients 

of friction, and varying terrain height and grade. This allows us to replicate almost any environmental conditions 

the robot might have to operate in. 

In addition, gazebo also offers us the ability to tack almost every aspect of the simulated robot in real time. This 

includes: all ROS components, simulated power, wheel slippage, and much more. Gazebo also offers the ability to 

playback the simulation for further analysis of any bugs that may be found. Since the full code was not complete 

while the weather conditions outside were inadequate for testing, we did most of our testing directly on the robot 

in inside and outside conditions since it was the easiest to test with. 

               



 
16 

 
Figure 7.3: Model can be used to put accurate sensor locations on robot 

FAILURE MODES, FAILURE POINTS AND RESOLUTIONS 

SOFTWARE FAILURES AND RESOLUTIONS 

The most likely source of failure in software is an error in the data that is sent into the mapping node. If the data 

points do not properly correspond with their real-life positional relationship with the vehicle, then we are prone to 

collisions with obstacles. The address this concern, we apply probabilistic filters to all data coming of the nodes 

that feed into the mapping node to help eliminate any extraneous data. Our mapping node also creates a “no-fly” 

zone around all obstacles and lines. This gives our path-following algorithms a large margin for error and minimizes 

the effects of both failures with our control algorithms and mapping nodes.  

MECHANICAL AND ELECTRICAL FAILURES AND RESOLUTIONS 

Our chassis has several redundant supports to minimize the effects of any mechanical failure in the chassis.  

All devices in our system are properly connected with fuses to minimize the possibility of an electrical failure from 

damaging our more sensitive electronics.  

Our sensitive electronics are all enclosed within the body of the vehicle, which is enclosed between the two front 

wheels. In the case of a motor lockup or a control failure, all sensitive electronics are properly protected from 

damage. 

FAILURE PREVENTION STRATEGY 

While we have planned for more redundant safety features, we lack the human and monetary resources to 

implement them at this stage in the vehicle’s design. Currently, our chief failure prevention strategy is less about 

preventing failures, but more minimizing the risk of failure. To do so, we have design each system with 

               



 
17 

exceptionally large margins for error at the expense of vehicle efficiency. Our navigation node will also cease 

operation if any of the nodes that it relies on fail.  

PERFORMANCE TESTING TO DATE 
Because we focused on the core systems, our testing focused on competition of a qualifier-like course. This course 

consisted of a 5 meter long lane indicated by two perpendicular white lines separated by five feet painted on 

artificial grass and a single barrel. 

Before ROS was implemented ,additional navigation tests were performed to test the robustness of our older 

pathfinding system by giving the vehicle a waypoint 10 meters in front of it and placing three to five barrels in its 

path. 

Figure 9.1: Field Testing Qualification Course 

INITIAL PERFORMANCE ASSESSMENT 
Our newly design vehicle outperforms the previous designs in past years—which struggled to even qualify even 

after three years of development. We do not expect the vehicle to perform every task during the auto-nav portion 

of the competition as the new ROS driven vehicle is still in its infancy, but should be able to complete the 

qualification course. 

Testing does suggest that a chassis modification might be necessary to either redistribute weight off of the caster 

wheel or move over to a four-wheeled design. Both of these modifications would aid in the vehicles mobility and 

ease the burden on future control development. Our trouble comes when the robot wants to move from the 

forwards direction to the backwards direction. Since there is a good amount of weight on the caster wheel and 

that the swivel bearings are not the greatest, the wheel has a hard time rotating accordingly. This would require a 

large redesign of a main component in the semesters to come. 

               



 
18 

Figure 9.2: Occupancy Grid of Dillman Lawn 

 

Figure 9.3: Occupancy Grid of Qualification Like Course 

               


