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ABSTRACT  

 

This paper presents the Pinguino robotic platform developed to compete in IGVC for 2017. An octogonal 

aluminum frame houses a powerful powertrain capable of near zero-point turns and allows for off-road 

operation complete with a cantilever suspension system on the back caster. Inside the frame is a removable, 

custom-made, delrin plastic electronics box with a custom-made control board, motor controllers, power 

supply circuitry and LIDAR receiver. Although the LIDAR is attached to the front of the base, all other 

sensors including cameras and GPS antennas are mounted on a 71” sensor tower to increase field of view 

and location accuracy, respectively. To process sensor inputs, a laptop is housed in the frame of the sensor 

tower to protect it from outdoor elements. The Robot Operating System (ROS) is used as a programming 

environment to take advantage of pre-existing, open-source packages such as path planning and image 

preprocessing. Innovations in the software system include multi-rate Kalman pose estimation, fusion of 

LIDAR with monocular cameras, line fitting with the RANSAC [2] algorithm, 3D map-based path 

planning, and the ability to create and load reusable maps of the environment. 

 

INTRODUCTION 

 

Oakland University is honored to enter Pinguino into the 25th annual Intelligent Ground Vehicle 

Competition (IGVC). Penguino’s software systems include computer vision, pathfinding, LIDAR, and GPS 

which were all integrated using Robot Operating System (ROS). Penguino also features a custom built 

microcontroller designed specifically to meet IGVC requirements. All of these systems are housed on a 

two-wheeled platform utilizing differential drive steering. 

 

 

 
Figure 1 - The Robotic Platform Pinguino 
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DESIGN PROCESS  

 

A classic ‘V-Model’ design process was followed to develop Pinguino; see Figure 2. After defining the 

requirements of Pinguino, a design was formed using Solidworks and a detailed simulation environment 

was created to develop the navigation system; see Figure 3. After implementing the design and integrating 

the various components, a rigorous test cycle began where consistent failure points were identified and 

rectified through both minor adjustments and larger design changes as necessary. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
          Figure 2 - The design process of the build Figure 3 - CAD Rendering of Pinguino 

 

MECHANICAL DESIGN 

 

Before starting the mechanical design, it was necessary to account for each requirement of the 

competition including size and speed constraints, sensor positioning, and payload carrying capability. 

Although each of the requirements was adequately accounted for, size constraints and propulsion type were 

the main considerations while designing Pinguino. In order to satisfy the design constraints and ensure a 

sturdy and reliable platform, the team decided to improve on a previously attempted octagonal shape for 

the base. As in this previous design, Pinguino is equipped with differential drive to allow the robot to 

perform zero-point turns, but many improvements have been made pertaining to the structure of the base 

and sensor tower. Although it was unfortunate that our 2016 model lacked enough space in the base, was 

difficult to disassemble/reassemble, and lacked a suspension for off-road navigation, we have learned from 

the past and have kept these shortcomings in mind when designing this year’s new and improved robot. 

Base 

The mechanical base consists of the same octagonal frame, but its size has been increased to 36” x 28” 

x21” tall, which allows enough room for the electronics box as well as the payload to be stored inside the 

base itself. The batteries are positioned so that they offset the weight of the motors towards the front. The 

material used for the frame of the base is square extruded aluminum with 1/16” wall thickness and is held 

together using rivets and custom steel brackets created with our waterjet machine. This combination leads 

to a durable base that remains lightweight while still able to withstand motor torques and shocks from the 

suspension with ease. 
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Due to extensive CAD modeling in Solidworks beforehand, Pinguino’s base is able to house all 

necessary components within the base in a compact manner. The components contained within the base 

include two lithium phosphate batteries, battery charger, payload, electronics box, and motor assemblies. 

To obtain a center of mass low to the ground, the motor assemblies were placed at the bottom of the base 

horizontally along with the two batteries. The design’s ample space gives the option to include additional 

components and rearrange current components allowing for continuous structural optimization. In order to 

keep the inside components protected from weather, a large polycarbonate sheet was custom cut to the 

dimensions of the octagonal base and secured on top. This polycarbonate material also serves as the 

mounting surface for the LIDAR allowing it to attach at the front of the base where it is most beneficial.  

Sensor Tower 

Pinguino also features a sensor tower where a large part of processing and data collection takes place. 

This tower includes cameras used to identify lines and colors, GPS antennas to determine accurate location, 

and also houses the laptop in a weather-safe laptop tray for easy access on-the-fly. The sensor tower sits on 

top of the base, stands at 71” tall, and increases to a width of 36” to allow more spacing between the GPS 

antennas to therefore increase accuracy. Cameras are mounted at the top front of the tower as high as 

possible without passing the IGVC-specified height to allow for a wide field of view in front of the robot. 

The E-stops are mounted in in the sides of the sensor tower four feet off the ground to allow easy access in 

case of an emergency. A great improvement in the sensor tower from last year is the ability to remove it 

entirely from the base of the robot. This feature allows Pinguino to better fit through doors and be more 

easily transportable. All sides of the sensor tower are protected from the elements by sheets of custom cut 

polycarbonate just as it is done in the base. 

 

 

 

 

 

 

 

 

 

 

 
                   Figure 4 - The Base for Pinguino Figure 5 -  Velodyne LIDAR   
 

ELECTRONIC DESIGN 

 

Pinguino’s electrical layout is similar in structure to that of last year’s entry, Schildkröte, albeit with an 

additional year of refinement. The majority of the electronic complexity of the robot lies in its custom-

printed motor control board. This PCB contains the necessary regulators to power some of the external 

sensor as well as all of the processing power required to convert the usb commands sent by the computer, 

along with encoder information, into UART commands to control the H-bridge. As in previous years, our 

objective was to make the electronics modular for easy off-chassis integration, diagnostics, and testing. 

Pinguino’s electronics, with the exception of some harnesses, are housed in a custom-made delrin plastic 
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box shown below in Figure 6. This allows the electronics of the robot to be removed entirely for ease of 

modification. The use of delrin plastic is an improvement from last year’s aluminum electronics box since, 

by utilizing this material, the risk of shorting out components due to the housing has been eliminated. 

 

 

 

 

  

  

 

 

 

 

 
                
 
                Figure 6 - Electronics Box Figure 7 - Sabertooth 2x60 Dual Motor Driver 

 

The motor controller utilized in Pinguino is a Sabertooth 2x60 dual-channel H-bridge shown in Figure 

7. We have used this component in previous models and has proven to be robust and reliable and allows 

for high current draw for the motors as well as flexibility in software control. This H-bridge is capable of 

60A continuous draw per channel which is much more than what Pinguino needs to optimally function. 

With a 6V to 30V input range, we can easily transition between using a 24V or 12V topology for our system. 

Sabertooth allows for packetized serial commands to be sent to control the speed and direction of our motors 

as well as a software E-Stop from our microcontroller. This will be the second year that we incorporate 

synchronous regenerative motor drivers, allowing the robot’s batteries to be slightly recharged whenever 

the robot is decelerating. 

 

Drive Control Board  

  

Last year we introduced a custom drive control board built around the Programmable System-on-Chip 

(PSoC) 5LP from Cypress Semiconductor. While introducing this brand new hardware component to our 

system, we found many bugs with our hardware design, but have now made revisions to use a similar board 

as our drive controller. The chip contains 24 Universal Digital Blocks (UDBs) as well as an ARM processor, 

which allows it to make use of a synthesis of hardware and firmware.      

      

 

 

 

 

 

 

 

 

 

 

 

 
             Figure 8 - Custom Controller Board                 Figure 9 - PCB Layout of Controller Board 
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The use of a PSoC allows for the following features: 

● Interface between motors and laptops using USB communication 

● Allow Pinguino to be controlled with an RC radio transmitter 

● Low level control of Sabertooth Motor Controller 

● Read encoder signals from the motors 

● Control the emergency shutoff relay for the motors 

● Read motion data from an IMU 

● Allow quick embedded development 

This board is able to perform these function through the following methods: 

● The PSoC reads the encoders using hardware, ensuring accurate readings 

● Serial or PWM is used to control the Sabretooth H-bridge 

● A mosfet is used to switch a 12V relay 

● RC radio receiver is read using PSoC hardware, giving accurate readings 

Figure 9 shows a block diagram of Pinguino’s power distribution system. Pinguino’s power comes from 

a 12V Lithium Ion battery. Due to the possibility of high amperage draw from the motors, both 8 gauge 

wire [3] and a 35A inline fuse are necessary. Using this size wire gauge helps to avoid heat build up in the 

connections around it during times of continuous high current draw. A circuit breaker is used to switch the 

power on and off to the power distribution system. The operator has the ability to power-up the embedded 

control board and sensors separate from the H-bridges for testing and safety purposes. The battery can be 

conveniently charged on-board, or quickly replaced by another set to achieve optimal runtime. Power and 

ground were distributed using two terminal rails; one for power and other was for ground. This allows an 

even distribution for both common ground and power among the elements of the electronic bay.   

 

 
 

 

 

 

 

 

 

 

 

Figure 10 – Power Distribution System 

Pinguino will be re-using the same GPS and Lidar used on previous year’s robot as they allow for the 

most accurate obstacle detection and heading information given the hardware that we have available. The 

Trimble BX982 GNSS GPS Antenna and receiver shown below in Figure 10 as this allows for an increased 

true heading accuracy of less than a tenth of a degree based on the manufactured datasheets with a 

recommended 2 meter baseline. This is an improvement from previous IGVC competition robots that had 

a tolerance of 1.5m. 
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              Figure 11 - Trimble GPS Antennas                   Figure 12 - Trimble GPS Receiver 

 

This year’s model will consist of the following sensor array:  

● Trimble BX982 GPS receiver ○ 20 Hz, with centimeter accuracy, shown in Figure 11.  

● Velodyne VLP-16 LIDAR sensor ○ 100 meter range, 360° FOV and ±15° Vertical FOV, 20 Hz, 

shown in Figure 5.  

● InvenSense MPU-6000 6-axis gyro and accelerometer, integrated shown in Figure 8.  

● US Digital E3 Wheel 2500 CPR encoders  

● DX6i wireless R/C aircraft joystick 

● Embedded controller-based manual control and wireless E-stop  

 

Safety Considerations 

Many precautions were taken into account when designing Pinguino's emergency stop system. Both 

hardware and software based E-Stops were implemented. The E-Stop system disconnects power from the 

motors with a 12V 80A relay. This is accomplished by either triggering one of the side mounted, OMRON 

E-Stops or by turning on the software E-Stop remotely. A DX6i joystick is used for disabling the motor 

output wirelessly. The DX6i has a range of several hundred feet. To protect against a variety of failure 

conditions, the drive control system automatically turns off the motors if it fails to receive commands from 

the computer or joystick after 200 ms.  

 

COMPUTING HARDWARE 

 

Embedded Controller 

     The microcontroller module receives data from the encoders and imu, providing the lower level 

processing involved in directly controlling the motors based on computer inputs. Similarly, the embedded 

controller interfaces directly with the DX6I remote control module during manual control operation. 

Laptop Computers  

 

The computing platform we are using is a single Lenovo Thinkpad P50. The specifications of the laptop 

are a 2.8-3.7GHz Intel Xeon Quad Core Processor, 16GB of RAM, a 256GB SSD, and a NVIDIA Quadro 

M2000M GPU. These specifications were chosen due to the following requirements, a processor that allows 

for multiple concurrent threads, a plethora of RAM for complex calculations, a SSD to account for 

vibrations, and a mathematics driven graphics card for increased speed of complex calculations. For 

operation system we use Ubuntu 16.04 that runs ROS Kinetic. Finally, USB and Ethernet are used to 

communicate with various sensors and the micro controller. 
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ROS SOFTWARE PLATFORM AND SENSORS 

 

Pinguino’s software is implemented on middleware called Robot Operating System (ROS). ROS is an 

open-source development environment that runs on various Linux Distributions, such as Ubuntu. The 

community has created many resources for learning ROS and distributing packages for common robotic 

functionality. Popular packages include general-purpose mapping and planning packages and drivers for 

sensors, such as LIDAR, Cameras, and GPS Units. These packages allow for faster development and 

implementation of sophisticated navigation algorithms. 

 

Efficient Node Communication  

 

A ROS system consists of a network of individual software modules called “nodes”. Each node is written 

in C++ or Python and runs independently of other nodes. Nodes can communicate between each other on 

“topics” via “messages”. A topic is the name given to a group that a node can “subscribe” to. To send 

messages to the group, a node “publishes” a message to the topic and all subscribers receive that message. 

A major upside to this system is that it can be kept locally on the computer or messages can be sent over a 

network via ethernet. The modularity of this system allows easy development of reusable code and shortens 

implementation time of new code. 

 

Debugging Capabilities 

 

One of the most powerful features of ROS is its debugging capabilities. Messages can be recorded in 

“bag” files or displayed in real time on a GUI. Bag files can be played back with modifiers such as a 

different speed, between selected times, or only specific topics. Bag files also record a timestamp with every 

message so that playback can be recreated as if it were being played in real time. These bag files allow for 

testing software without needing physical access to sensors, allowing for development and testing to occur 

at any time. The debugging capabilities are especially helpful for testing mapping and vision algorithms to 

help identify and reproduce failure cases. 

 

Another capability of ROS is a reconfiguration GUI that allows users to change parameters on the fly. 

This tool is invaluable since robotic vehicles often require precise adjustment of several parameters; 

therefore, being able to change these parameters while the algorithms are running proves to be very 

beneficial. 

 

Simulation  

 

Gazebo is an open source simulation environment with a convenient interface to ROS. Imitation IGVC 

courses were constructed to test the artificial intelligence of Pinguino. These courses contain models of 

objects encountered where Pinguino is used, i.e. the courses are grassy with lines, barrels, sawhorses, and 

fences to emulate Pinguino in the IGVC course as real as possible. Furthermore, simulation specific data 

required for Gazebo to create correct results from the simulation, such as but not solely including the 

moments of inertia and mass of specific parts on the robot and the physical body of the robot. This 

simulation is useful for development as it not only allows us to test how the robot acts but also collect data 

on what the sensors see inside the simulation. 

 

Line Vision  

 

Since IGVC is held outdoors, noisy images are a constant concern when attempting to use a lane 

detection algorithm. Stagnant noise such as dead grass and clover as well as exposure variances due to 

clouds each affect images in their own way and make it nearly impossible to design a robust algorithm to 

accurately detect the white lines. For instance, Figure 13 is a good example of why detecting these lines 
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with traditional image processing is complicated. Due to this complexity, an intelligent, self-learning 

algorithm was utilized to detect white lines with less noise sensitivity using Artificial Neural Networks 

(ANNs). ANNs have been used to train Pinguino to extract white lines and discard the majority of noise in 

the image. 

  
Figure 13 - Diagram of the Navigation System.  

 

LIDAR System 

Due to the way stereo vision operates, the mesh acquired is often imperfect and distorted. The Velodyne 

Puck on the other hand, produces a large very accurate mesh with few imperfections and minimal distortion. 

The Velodyne Puck uses a 16 laser array with +- 15 deg vertical viewing angle, and 360 deg horizontal. 

While the max range of the Puck is 100m, the easiest and most accurate distance to find barrels is within 

the first 10m. Due to the low speed requirements for the competition a larger radius is not needed as the 

objects will not be approaching faster than 5mph allowing for more than enough time to react. 

Barrel Detection 

 

After each scan from the LIDAR, the pointcloud is simplified and cropped to a 6m cube centered around 

the LIDAR. A Progressive Morphological Filter is then applied to the dataset. This separates the data into 

two distinct groups, one which is the ground and another which is classified as “non-ground” or objects. 

The objects point cloud is then filtered through a clustering algorithm to find each individual object. Once 

individual objects are separated, a cylinder fitter is used to check for the approximate size of a barrel. Once 

the barrel is identified and verified it is added to the costmap. 

NAVIGATION SYSTEM  

 

Kalman Filtering 

 

The Kalman Filter provides the ability to predict the position and orientation of the robot, deriving it 

from the State Sensors’ input as shown in Figure 13. The different inputs are added together and updated 

with the fastest sensor to available accurate determination of position and orientation in between slow but 

precise GPS updates. The orientation is represented using quaternions, due to the discontinuity of Euler 

angles. For adding the measurement of the orientation data the quaternion gets normalized and transformed 

into an angle. The yaw angle can be represented by a 2D vector. The sensors providing data to the Kalman 
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Filter include the GPS, which provides orientation and position, the IMU, which provides acceleration and 

orientation, and the wheel encoders, which provide velocity. 

 

Mapping 

 

Information gets placed on the map using Pinguino’s mapping algorithm. The map is represented in 3D 

as 5 planar layers. All of the estimated position and orientation data is time-stamped and uses the ground 

plane as a reference. Sensors can mark and clear space on the map. A sensor is clears space by projecting 

rays through the 3D space of the map starting at the sensor. As the rays move through spaces not occupied 

by objects the sensor clears those spaces on the map. Two instances of the mapping algorithm are used to 

do this, the local and global. The local map is a 15 meter square with a 5 cm resolution while the global 

map is 100 meters and has a 10 cm resolution. The global map is initialized beforehand if there is already 

data that can be used to create one. 

 

 

  
  
     
   Figure 14 - Example of Mapping Procedure    Figure 15 - Reactionary Avoidance 
 

 

Global Path Planning  

 

The global path planner uses a global map create a path to the goal with the least cost. Any occupied 

squares on the map are inflated to account for the robot’s width, these squares are known as having lethal 

cost, and then they are further inflated using an exponential cost function to account discourage the 

pathplanner from getting to close to objects. The path planner is not allowed to plan through squares that 

have lethal cost however they are allowed to plan through the other inflated square if necessary. The global 

planner makes use of Dijkstra’s algorithm, this algorithm guarantees that the planner will find the most 

optimal path to the end goal given the restrictions of the costmap. 

  

Reactionary Avoidance  

  

The last stage in the path planning is reactionary avoidance. This makes use of a local map which is a 

smaller version of global map that follows the robot and updates representing any new obstacles as the 

robot moves. If a new object is detected by the sensors the local path planner must update the global path 

to avoid the object. The local planner does this by projecting out different trajectories for the robot to travel. 

These trajectories all start from the center of the robot and extend out in all directions. The Reactionary 
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avoidance then finds what trajectory best fits the global plan without hitting the object. Some additional 

space is left for safety to ensure that the robot does not drive too close to the object. 

 

PERFORMANCE ANALYSIS  

 

Maximum Speed 

 

Pinguino's motors spin at approximately 130 RPM at nominal load. Using this speed with 12.5 inch 

diameter wheels, the calculated maximum speed is 4.8 mph. This speed is within the rules of IGVC.  

 

Ramp Climbing Ability 

 

At nominal load, the drive motors provide 230 in-lbs of torque. Assuming a realistic vehicle weight of 

115 lbs, this corresponds to a max slope of 19 degrees. However, experiments have shown that Pinguino 

can handle much steeper slopes, up to approximately 30 degrees, although the motors will perform outside 

of the nominal operating envelope. 

 

Reaction Time  

     

     The computer systems are made to respond to sensor data at the rates they are provided. This is 

convenient, but also means that decisions can only be made at the slowest rate of sensor data, 20 Hz as 

shown in Table 1. 

 

Battery Life 

     At peak draw for the two batteries, 360 W could be delivered at any given time. This would go through 

the combined battery charge completely in 30 minutes. However, this will likely not be the case, as the 

motors are not expected to require peak draw very often if at all. At the same time, a convenient battery 

charging circuit allows for the robot to charge from any standard AC wall plug without the need for 

detaching the batteries from the chassis. Thus, even if the robot can only sustain a 30 minute lifespan, the 

batteries would be easily recharged. 

 

Obstacle Detection 

 

The Velodyne LIDAR has a range of about 100 meters, and has 16 360-degree scan lines at angles 

between -15 and +15 degrees.  The cameras are oriented to see 4 meters away from the vehicle. 

 

GPS Accuracy 

The Trimble BX982 GPS receiver is accurate to within 1 centimeter using the RTK technique. It also 

utilizes a second antenna to provide heading information.  Position updates are sent at 20 Hz, but the Kalman 

filter algorithm fuses the GPS readings with the rest of the sensors to provide faster position updates. 

 

VEHICLE EQUIPMENT COST 

A breakdown of the cost of the components on Pinguino is shown in Table 2. 

 

CONCLUSION 
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Pinguino has proven to be a rugged, efficient, reliable vehicle that performs well while driving on any 

kind of terrain. The new robot design shows promising results, and the Oakland University team has great 

confidence going into this year’s competition. 

 

Table 1. Sensor Data Rates Table 2. Cost Breakdown of Vehicle 

Sensor Data Type Frequency  Item Cost 

Kalman Filter Position and 

Orientation 

200 Hz  Trimble BX982 $5000 

Velodyne LIDAR Obstacles 20 Hz  Thinkpad Laptop $1500 

uEye Cameras Lane 

Obstacles 

20 Hz  Velodyne VLP-16 Lidar $8000 

    uEye Camera x2 $917 

    Camera Lenses x2 $150 

    12V Battery x2 $420 

    Motors, Wheels, Speed Reducers $1397 

    Frame Material $650 

    Sabertooth Dual 60A Motor Driver $190 

    NETGEAR Gigabit Router $73 

    Total $18297 
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