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ABSTRACT 
This paper presents Ohm Mk VI, a robot designed and used by the University of 

Michigan - Dearborn for the 26th Annual Intelligent Ground Vehicle Competition (IGVC). Ohm 
MK VI, used in the 2018 competition, is based off of the platform used in previous competitions. 
Changes to the electrical system has allowed the team to experiment with new technologies to 
be used on other robots within the club. The software platform was completely redesigned to 
allow for a solid foundation for future iterations.  
 
 
INTRODUCTION 

The Intelligent Systems Club of the University of Michigan - Dearborn has entered the 
2018 Intelligent Ground Vehicle Competition with two new and three returning members. The 
main goal of this year’s team is to learn and establish an understanding in Robot Operating 
System (ROS) to improve the overall efficiency of the robot and to mature the team’s knowledge 
of various robotics concepts. This year's strategy is to utilize key successes from the existing 
platform and learning how to improve upon weaknesses in the current and previous designs.  

 
The team consists of undergraduate students, many of whom plan to participate in future 

competitions. The team member composition is displayed in Table 1.  
 

Table 1: Team Ohm Composition 
Name Email Class Role 

Siddharth Mahimkar  smahmka@umich.edu Computer Engineering, Senior Captain, Software  

Matthew Abraham mjabraha@umich.edu Computer Science, Junior Software Lead 

Zachary Nelson zdnelson@umich.edu Computer Science, Senior Software 

Daniel Vanden Berg djvanden@umich.edu Electrical Engineering, Senior Electrical Lead 

Kenneth Topolovec ktopolov@umich.edu Electrical Engineering, Junior Electrical 

 
This paper will begin with a description of design innovations, then cover mechanical and 

electrical systems in finer detail. After those sections there will be a detailed description of the 
software strategy, an overview of failure modes, and the performance analysis to conclude the 
report.  
 
DESIGN PROCESS 

This year the team utilized an iterative design approach prioritizing core functionality 
across all subsystems first, through a 3-step design, test, improvement process. Each iteration 
adds new features, and moves from functioning design to functioning design. For example, in 
the first iteration, the features being implemented only encompassed basic lane detection and 
obstacle avoidance, while leaving more advanced features like mapping or high-level path 
planning, for later iterations. 
 

 



 
DESIGN INNOVATIONS 

This year’s team intended to improve on the previous year’s accomplishments by 
redesigning the vehicle's main software platform, and replacing/adding sensors in areas of 
need. Table 2 describes the areas which needed improvement and why, as well as what was 
completed to improve the vehicle. Tables 3a-c describes the cost of the robot, with “+” 
indicating actual cost to the team this year. The remainder of this report will discuss these 
improvements and how they were implemented. 

 
 

Table 2: Design Innovations and Reasoning 
Areas to be Improved 

or Added Reason for Improvement or Addition Improvement Design 

Obstacle detection 
algorithm 

Previous detection algorithm detected large 
groups of obstacles as a single obstacle and 

discarded contours 

Group and average close-by 
points to maintain contour even 

for large groups of obstacles 

Exposing obstacle 
detection data 

Makes it easier to add functionality in future 
iterations 

Raw obstacle data is now 
published in ROS instead of just 
what the control algorithm needs  

Steering Behavior 
Previous control software was given limited 

options for turns to make, making it difficult to 
find a more optimal path 

Decision for best path to take is 
placed in control software, not 
sensor interpreting software 

Weight reduction Robot is difficult to move manually,  reduce 
stress on aging frame 

Replace 2x Lead acid  with 
single 6s LiPo 

 
 

Table 3a: Electrical Cost 
Electrical  Qty Unit cost Price 

LiDAR 1 $5,000 $5,000 
GPS 1 $5,000 $5,000 

Laptop 1 $1,100 $1,100 
Camera 1 $20 $20 

6s LiPo 8 AH (+) 4 $77 $308 
6s LiPo 12 AH (+) 1 $80 $80 

Battery Management (+) 1 $50 $50 
Motor controller 1 $390 $390 

Total Electrical Cost   $11,948 
 

Table 3b: Mechanical Cost 
Mechanical  Qty Unit cost Price 

Frame 1 $260 $260 
Motors 2 $450 $900 

Total Mechanical Cost   $1,160 
 

 



Table 3c: Vehicle Cost 
Overall Category  Price 

Electrical $11,948 
Mechanical $1,160 

Estimated Retail Price $13,108 
Actual Cost $438 

 
 
 
 
 
MECHANICAL DESIGN 

The vehicle used for this year’s competition is one that has been with the University of 
Michigan-Dearborn for some time now. It has participated in numerous IGVC and Autonomous 
snowplow competitions in the past. The vehicle is made primarily of plywood and uses a 
differential drive steering control scheme which is aided by a trailing caster. The CAD model of 
the robot is shown in Figure 1. Table 4 and Table 5 provide the dimensions and weight 
distribution of the robot respectively. 

 
  

Figure 1: Robot design  
 
Structure design 

The mechanical design base of the robot was originally designed for the Autonomous 
Snowplow Competition in 2010, and has been repurposed for the past few years for the 
Intelligent Ground Vehicle Competition. The robot is made almost entirely of wood with four long 
metal threaded poles. The robot has three pieces of plywood, each which act as a level within 
the robot. The metal poles are placed vertically and  threaded through each piece of plywood. 
Each level is secured to the metal poles using two nuts to hold each level in place. 

The robot utilizes a single rear caster and propelled by twin 24 volt NPC DC motors with 
integrated 24:1 gearboxes, providing a maximum of .81 horsepower each and a maximum of 
120 rpm. The tires are 0.33m and work well on a grassy field. There is an aluminum mast that 
houses the GPS and the camera. The battery is housed in the laptop cabinet where it is easily 
accessible.  

 
 
 

 



 
 

Table 4: Vehicle dimensions  
 Vehicle Requirements 

Width  0.81m 0.61m - 1.21m 
Length  0.92m 1.21m - 2.13m 
Height  1.46m 1.82m maximum 

Mast height 0.96m - 
Mast length 1.01m - 

 
 

Table 5: Vehicle weight distribution  
Major Component Qty Weight Total 

NPC motors 2 9 Kg 18 Kg 
Drive wheels 2 4.5 Kg 9 Kg 

Caster  1 4.5 Kg 4.5 Kg 
Mast 1 4.5 Kg 4.5 Kg 

Frame 1 10 Kg 10 Kg 
Total weight   46 Kg 

 

 
Figure 2: GPS mast 

 
The payload tray was placed on the top of the robot between the legs of the mast for 

easy access to the payload. Silicone caulk was used to waterproof the laptop control box and 
other sensitive components. This waterproofing is designed to keep out moderate rainfall for a 
short time, until the robot can be moved to a sheltered area. 

 
 
 

 



 
 
ELECTRICAL COMPONENTS AND DESIGN 

 
Overview 

This year’s electrical design builds upon the design from previous years. However, 2 
major changes were implemented to improve the performance and safety of of the robot. First, 
the lead-acid batteries were replaced with LiPo batteries. Switching the power source eliminated 
85lbs from the total weight, increasing the performance of the new batteries and decreasing 
strain on the frame. It also necessitated the design of a reliable battery management system to 
maintain battery life and performance. Second, the circuit breaker was moved toward a higher 
potential to help eliminate the risk of floating voltages causing a short circuit. 

 
Power Distribution System 

There are three main supply voltages that power the components of the robot. 24v, 12v 
and 120v AC. Figure 3 shows the component voltage breakdown. 

 

 
Figure 3: Component Voltage Breakdown 

 
Batteries 

A single LiPo battery (specification provided in Table 6) will power the robot. There are 
also 3 additional identical batteries on hand, to swap out with, in the event that one battery is 
running low. The battery is located inside of the components box which allows for easy access 
to swap batteries. 

Table 6: Battery specifications 
Capacity Nominal voltage Overcharge  Charge time 

8AH 22.2v 25.2v  ~3 hrs 

 

 



 
 
Battery Management System 

Since the cells of a LiPo battery do not drain evenly, precautions have been taken to 
ensure the safety of the battery. A battery charger with cell balancing capabilities was 
purchased to ensure even cell voltages after each charge.  

A low cell voltage monitor has been connected to the battery which sounds an alarm 
when any individual cell begins to fall below 3.4 volts. When the alarm activates a signal is sent 
to the Arduino microcontroller activating an LED indicator. 
 
Power Budget 

Table 7 shows the power draw of major components along with a 30W buffer  to 
compensate for efficiency loss and minor components (i.e motor controller). The Powered USB 
hub includes all components connected. 
 

Table 7: Power Budget 
Component Average 

Consumption 
Max 

Consumption  
Operating 
Voltage  

Source 

Motors (both) 200W 720W  24 to 36 volt Battery 

LiDAR 20W 45W 10v to 30v Battery 

Powered USB Hub 10W 10W  5v DC to AC  

Efficiency  loss  30W 30W - - 

 
The total power consumptions adds up to approximately 800W. Batteries have a 177W 

capacity. This gives the robot approximately 13 minutes of runtime at maximum power 
consumption. On average total power consumption adds up to approximately 260W, the total 
runtime is approximately 40 minutes.  
 
Safety System 

On the top of the robot, there is a safety light that indicates the drive mode as per 
competition requirements. This light operates at 12v and is controlled by an Arduino Uno with a 
relay shield.  

To improve the safety of our robot, a wireless relay control system installed to work in 
tandem with a physical emergency stop button to control a solenoid. The wireless estop has 
been tested reliably out to 70m. The relay directly controls the solenoid which controls power to 
the motors.  

The wireless relay remotes have two buttons that are configured into two modes: pause 
and kill shown in Figure 4. “Pause Mode” toggles the robot from disabled to active. It is 
intended for testing or when setting up the robot. “Kill Mode” will immediately cut power to the 
motors by activating the solenoid. In order to re-enable the robot after it has been “killed”, the 
physical emergency stop button must be cycled. This is intended to force the operator to walk 
up to the robot and make sure the robot is safe to operate again.  
 

 



 
FIgure 4: Pause Kill state machine 

 
 
Sensor Suite  

Ohm use three input sensors (descriptions provided below) to help it navigate the 
course. These sensors are all processed on a laptop computer which then sends the 
appropriate commands to the motor controller as shown in Figure 5. 

 
 

 
Figure 5: Software interface 

LiDAR 
Ohm uses a SICK LMS-111 Lidar. This LiDAR is used due of its high reliability and 

accuracy and has been implemented in multiple weather conditions. The scan range is 20m at a 
frequency of 25 Hz with an angular resolution of 0.25°, and has 270° field of view.  
 
Camera 

A wide angle camera was selected to assist the vehicle detect the lanes, potholes, and 
obstacles. The Logitech C525 HD Webcam was selected because of its overall cost, and 120° 
field of view. The camera resolution is configured to output a 820 x 468 pixel videostream, is 
connected to the laptop via USB, and interfaced with OpenCV. 

 
GPS Unit 

Ohm uses the VectorNav VN-300 differential GPS.  This system is used because of 
increased accuracy and very high heading accuracy. It also has a built-in IMU which it uses in 
conjunction with a built-in Kalman filter to prevent large jumps in heading and position. 

 

 



Processor (Laptop Computer) 
Ohm uses a Lenovo Thinkpad X260. This laptop was used in previous years due to its 

robustness, small form factor, and durability. It uses an i5-6300U cpu, 8GB ram, and is dual 
booted with Windows 10 Pro and Ubuntu 16.04, the latter of which is used during competition. 
The processor is the main interface between sensors, and motors. Specifically, it takes input 
from the sensors and wireless controller and controls the motors accordingly. 
 
 
 
 
SOFTWARE 

 
Overview 

The software for this year's robot is built in part upon the previous year's code base. 
These portions of the code base consist of hardware interfaces and functionality to transform 
sensor data into a form useful for decision-making systems to interpret.  

Two main goals guided this years software design. First, the robot must have basic 
functionality above all else (i.e. lane following and obstacle avoidance). Second, the systems 
designed for that task must be well documented and modular, such that new functionality could 
be added or portions replaced in the next iteration without disturbing basic functions. 

All software running on the robot is written using the ROS framework, which allows for 
separate programs to communicate with each other over TCP/IP. This enables programs (called 
nodes in ROS terminology) to have a singular focus, e.g. identifying obstacles, motion planning, 
or communicating with motors.  

The robot operates in two modes, manual and autonomous. While in manual mode, the 
indicator on the top of the robot stays solid to indicate it is in manual mode, as per competition 
rules. Control in this mode is given by a human operator using a joystick or gamepad, generally 
a standard Xbox 360 gamepad. 

The main control algorithm for the robot runs in its own node, and sends a linear velocity 
and angular velocity for the robot to maintain. The speed of the robot is fixed, though that fixed 
speed can be changed in configuration. The main algorithm controls the heading of the robot, 
pointing it towards GPS waypoints, and away from obstacles and white lines.  
 
Obstacle Detection 

Obstacle detection is done in three steps, each in their own node. First, the data is read 
in from the LiDAR over an ethernet connection. The initial data set consists of 1080 distances, 
each representing a single ray from the sensor. First, these distances are pruned to remove 
max and min range distances. In the second step, the distances are converted into XY 
coordinates and transformed w.r.t. the robot. In the third step, points are grouped by distance, 
then split into subgroups and averaged. This allows us to maintain the contour and clustering 
found in the original data, while having a smaller footprint data set that is easier to process and 
pass around from node to node. This process is show in a simpler example in Figure 6. 

To handle noise in the data, outliers are ignored up to a configurable amount of times. 
Ignored points are left in the data in case they are part of another obstacle. 

In order to transform the detected obstacles into a format usable by the main algorithm, 
the point data must undergo one additional transformation. The motion planner must know the 
ranges of headings that are unoccupied by obstacles. These ranges are defined by a starting 
heading and an ending heading, both relative to north. The first range starts at the edge of the 

 



LiDAR’s sensing range (roughly 135° offset from the current heading) and continues until an 
obstacle is found that is close to the robot. The end heading of the range is padded to ensure 
that a buffer exists between free headings and occupied headings. 

 
Figure 6: Obstacle detection process 

 
Lane following and Pothole detection 

To detect/avoid lanes and potholes the robot treats them both as path blocking. The first 
step is to resize the original image and perform a perspective transform, then change the 
colorspace to HSV, filter for white pixels, and filter out noise. This new image will then be 
compared to a set of 21 templates which mimic the vehicle turning radius. There are 10 
templates that have various angles to the left and to the right and one through the middle. Each 
of these masks has an associated turn angle which is calculated during initialization with the 
middle template having a turn angle of 0°. The vision algorithm iterates through each template 
and calculates the number of intersections that each template produces when a bitwise AND is 
performed on the binary image. Templates that have intersections below a certain threshold are 
grouped by their turn angles and these angles are sent to the main algorithm. Figure 7 and 
Figure 8 show the process and conceptual examples respectively. 
 

 
 

Figure 7: Vision algorithm  

 



 

 
Figure 8: Potential paths the robot could take. Red indicates intersections.  

Ideal path is on the right. 
 
  

Goal Selection 
At system startup, the ordered list of waypoints is loaded and made available to the main 

algorithm. The waypoints can be either in the DMS format (degrees minutes seconds) or as 
decimal latitude and longitude pairs. If they are listed in DMS, each waypoint is converted to 
decimal latitude and longitude format when the waypoints are loaded at startup. Waypoint 
listings in either format also include a target 
heading in degrees, relative to north.  

After all waypoints are loaded, the 
main algorithm must request a single 
waypoint and hit the target position and 
heading before another request is made. 
Upon hitting all the waypoints, the robot then 
targets its starting position as its final 
waypoint.  
 
Mapping 

During testing of the previous year’s 
code, we found that the mapping solution 
and path planning solution were too tightly 
coupled to be useful. As a result, we 
decided to forgo a global mapping solution 
in favor of ensuring basic functionality.  
 
Motion Planning 

The motion planning algorithm is the 
main controller for the robot, and works in 3 
stages. All sensor data feeds into the 
algorithm, and aside from human control, it 
is the only source of motor control for the 
robot. First, the algorithm checks whether it 
has hit the current waypoint (including its 
heading), and updates the waypoint if 
necessary. Next, it computes the most direct heading needed to hit the waypoint.  

 



Once the desired waypoint heading is calculated, the algorithm then looks for an 
unobstructed lane detection heading close to the desired heading, and checks the heading 
against the range of unobstructed headings provided by obstacle detection. If a suitable heading 
is found that is found in both lane detection and obstacle detection, then it becomes the new 
desired heading.  

If no agreeable heading is found, the robot will instead turn in place and attempt to find a 
new heading that it can travel through. 

Because the heading is a range that wraps around at its end points, headings supplied 
to the PID controller must be manipulated to produce the desired behavior. The algorithm for 
this is shown in Figure 9.  
 
FAILURE MODES 

Table 8 describes the main points of failure for the vehicle along with severity and 
mitigation actions. 
 

Table 8: Failure Modes 
Possible Failures Likelihood Severity  Action 

Low battery Low  End of run 
Have multiple charged 

batteries on hand, swap 
batteries after each run 

Loss of GPS heading  Low Degradation of 
performance 

Calibrate onboard compass 
to compensate for heading 

loss 
Oversaturated 
camera input Moderate Loss of lane tracking End run, tune color-based 

lane detection 

Sensor Failure Low End of run likely Software stops robot until 
failure is rectified 

Wireless Emergency 
Stop Failure 

Very Low 
Possible damage to 

robot or injury 

Software and hardware 
emergency stop options 
have been implemented. 

 
 
SIMULATION 

In the process of writing, testing, and debugging the software, it was necessary to 
simulate while the robot was in the process of hardware maintenance and electrical redesign. 
Components were tested separately. For some components, such as the main control 
algorithm, the solution was as simple as supplying fake input data to each of the functions. 
Table 9 shows the simulations used for the major components tested. 
 

Table 9: Simulations 
Component Simulation 

Main Algorithm Spoofed input data from Camera and LiDAR 
Lane Detection Use previously obtained videos as input 

Obstacle Detection MobileSim 3 and previously obtained LiDAR 
data 

 

 



For the obstacle detection simulations, it was difficult to spoof data, so instead the Adept 
MobileRobots MobileSim 3 simulator was used to generate LiDAR data. However, it did not 
have the capability to simulate camera or GPS inputs, so different methods described above 
were used to test those components. 
 
PERFORMANCE TESTING 
 

Table 10: Performance Summary 
Category Requirements Analysis 

Speed 2.2m/s Tune software to limit speed as 
little as necessary 

Ramp Capable of climbing up to 30° 
incline.  

Tested on varying inclines. 
Confident to 30° 

Reaction Times Maintain a system update rate of 
10Hz 

Take advantage of configurable 
output rates, and limit rates in 

software where necessary 

Battery Life 30 minutes on grass with gently 
rolling slopes 

Performed endurance test on 
grass. Actual runtime ~1 hour 

Distance of Obstacle 
Detection 

Maximum obstacle detection with 
LiDAR is 20m. Robot reacts 

within 2m. 

Tune robot to react within larger 
radius if necessary 

Distance of Lane 
Detection Detect white lines  Camera can effectively see only 

~3m ahead and 1m on either side 
Behavior in Dead end 

situations 
Capable of navigating out of a 

dead end 
Have robot turn in place until a 

path can be found 
 

  
CONCLUSION 

This year the main goal was to have a solid foundation in software design and 
implementation for future iterations of the robot. Utilizing the iterative design process, we have 
implemented core functionality and laid the groundwork for future iterations. While we would 
have liked to add more advanced features such as mapping in time for the 2018 competition, 
the robot presented here is a safe, robust, and reliable platform, suitable for even more 
improvement.  
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