
 University of Michigan Dearborn
 Ohm Mk VI

Team Members: S. Mahimkar, M. Abraham, D. Vanden Berg,
Z. Nelson, K. Topolovec

Faculty Advisors: Dr. M.Putty, Dr. S. Rawashdeh

DATE: 5/15/2018
Team captain: S. Mahimkar

I, Dr. Samir Rawashdeh of the Department of Electrical and Computer Engineering at the
University of Michigan Dearborn, certify that the design and development of this sixth iteration of
the Ohm vehicle by the individuals on the design team is significant, unique to this iteration of
the vehicle, and is equivalent to what might be awarded credit in a senior design course.

X___

ABSTRACT
This paper presents Ohm Mk VI, a robot designed and used by the University of

Michigan - Dearborn for the 26th Annual Intelligent Ground Vehicle Competition (IGVC). Ohm
MK VI, used in the 2018 competition, is based off of the platform used in previous competitions.
Changes to the electrical system has allowed the team to experiment with new technologies to
be used on other robots within the club. The software platform was completely redesigned to
allow for a solid foundation for future iterations.

INTRODUCTION

The Intelligent Systems Club of the University of Michigan - Dearborn has entered the
2018 Intelligent Ground Vehicle Competition with two new and three returning members. The
main goal of this year’s team is to learn and establish an understanding in Robot Operating
System (ROS) to improve the overall efficiency of the robot and to mature the team’s knowledge
of various robotics concepts. This year's strategy is to utilize key successes from the existing
platform and learning how to improve upon weaknesses in the current and previous designs.

The team consists of undergraduate students, many of whom plan to participate in future

competitions. The team member composition is displayed in Table 1.

Table 1: Team Ohm Composition
Name Email Class Role

Siddharth Mahimkar smahmka@umich.edu Computer Engineering, Senior Captain, Software

Matthew Abraham mjabraha@umich.edu Computer Science, Junior Software Lead

Zachary Nelson zdnelson@umich.edu Computer Science, Senior Software

Daniel Vanden Berg djvanden@umich.edu Electrical Engineering, Senior Electrical Lead

Kenneth Topolovec ktopolov@umich.edu Electrical Engineering, Junior Electrical

This paper will begin with a description of design innovations, then cover mechanical and

electrical systems in finer detail. After those sections there will be a detailed description of the
software strategy, an overview of failure modes, and the performance analysis to conclude the
report.

DESIGN PROCESS

This year the team utilized an iterative design approach prioritizing core functionality
across all subsystems first, through a 3-step design, test, improvement process. Each iteration
adds new features, and moves from functioning design to functioning design. For example, in
the first iteration, the features being implemented only encompassed basic lane detection and
obstacle avoidance, while leaving more advanced features like mapping or high-level path
planning, for later iterations.

DESIGN INNOVATIONS

This year’s team intended to improve on the previous year’s accomplishments by
redesigning the vehicle's main software platform, and replacing/adding sensors in areas of
need. Table 2 describes the areas which needed improvement and why, as well as what was
completed to improve the vehicle. Tables 3a-c describes the cost of the robot, with “+”
indicating actual cost to the team this year. The remainder of this report will discuss these
improvements and how they were implemented.

Table 2: Design Innovations and Reasoning
Areas to be Improved

or Added Reason for Improvement or Addition Improvement Design

Obstacle detection
algorithm

Previous detection algorithm detected large
groups of obstacles as a single obstacle and

discarded contours

Group and average close-by
points to maintain contour even

for large groups of obstacles

Exposing obstacle
detection data

Makes it easier to add functionality in future
iterations

Raw obstacle data is now
published in ROS instead of just
what the control algorithm needs

Steering Behavior
Previous control software was given limited

options for turns to make, making it difficult to
find a more optimal path

Decision for best path to take is
placed in control software, not
sensor interpreting software

Weight reduction Robot is difficult to move manually, reduce
stress on aging frame

Replace 2x Lead acid with
single 6s LiPo

Table 3a: Electrical Cost
Electrical Qty Unit cost Price

LiDAR 1 $5,000 $5,000
GPS 1 $5,000 $5,000

Laptop 1 $1,100 $1,100
Camera 1 $20 $20

6s LiPo 8 AH (+) 4 $77 $308
6s LiPo 12 AH (+) 1 $80 $80

Battery Management (+) 1 $50 $50
Motor controller 1 $390 $390

Total Electrical Cost $11,948

Table 3b: Mechanical Cost
Mechanical Qty Unit cost Price

Frame 1 $260 $260
Motors 2 $450 $900

Total Mechanical Cost $1,160

Table 3c: Vehicle Cost
Overall Category Price

Electrical $11,948
Mechanical $1,160

Estimated Retail Price $13,108
Actual Cost $438

MECHANICAL DESIGN

The vehicle used for this year’s competition is one that has been with the University of
Michigan-Dearborn for some time now. It has participated in numerous IGVC and Autonomous
snowplow competitions in the past. The vehicle is made primarily of plywood and uses a
differential drive steering control scheme which is aided by a trailing caster. The CAD model of
the robot is shown in Figure 1. Table 4 and Table 5 provide the dimensions and weight
distribution of the robot respectively.

Figure 1: Robot design

Structure design

The mechanical design base of the robot was originally designed for the Autonomous
Snowplow Competition in 2010, and has been repurposed for the past few years for the
Intelligent Ground Vehicle Competition. The robot is made almost entirely of wood with four long
metal threaded poles. The robot has three pieces of plywood, each which act as a level within
the robot. The metal poles are placed vertically and threaded through each piece of plywood.
Each level is secured to the metal poles using two nuts to hold each level in place.

The robot utilizes a single rear caster and propelled by twin 24 volt NPC DC motors with
integrated 24:1 gearboxes, providing a maximum of .81 horsepower each and a maximum of
120 rpm. The tires are 0.33m and work well on a grassy field. There is an aluminum mast that
houses the GPS and the camera. The battery is housed in the laptop cabinet where it is easily
accessible.

Table 4: Vehicle dimensions
 Vehicle Requirements

Width 0.81m 0.61m - 1.21m
Length 0.92m 1.21m - 2.13m
Height 1.46m 1.82m maximum

Mast height 0.96m -
Mast length 1.01m -

Table 5: Vehicle weight distribution
Major Component Qty Weight Total

NPC motors 2 9 Kg 18 Kg
Drive wheels 2 4.5 Kg 9 Kg

Caster 1 4.5 Kg 4.5 Kg
Mast 1 4.5 Kg 4.5 Kg

Frame 1 10 Kg 10 Kg
Total weight 46 Kg

Figure 2: GPS mast

The payload tray was placed on the top of the robot between the legs of the mast for

easy access to the payload. Silicone caulk was used to waterproof the laptop control box and
other sensitive components. This waterproofing is designed to keep out moderate rainfall for a
short time, until the robot can be moved to a sheltered area.

ELECTRICAL COMPONENTS AND DESIGN

Overview

This year’s electrical design builds upon the design from previous years. However, 2
major changes were implemented to improve the performance and safety of of the robot. First,
the lead-acid batteries were replaced with LiPo batteries. Switching the power source eliminated
85lbs from the total weight, increasing the performance of the new batteries and decreasing
strain on the frame. It also necessitated the design of a reliable battery management system to
maintain battery life and performance. Second, the circuit breaker was moved toward a higher
potential to help eliminate the risk of floating voltages causing a short circuit.

Power Distribution System

There are three main supply voltages that power the components of the robot. 24v, 12v
and 120v AC. Figure 3 shows the component voltage breakdown.

Figure 3: Component Voltage Breakdown

Batteries

A single LiPo battery (specification provided in Table 6) will power the robot. There are
also 3 additional identical batteries on hand, to swap out with, in the event that one battery is
running low. The battery is located inside of the components box which allows for easy access
to swap batteries.

Table 6: Battery specifications
Capacity Nominal voltage Overcharge Charge time

8AH 22.2v 25.2v ~3 hrs

Battery Management System

Since the cells of a LiPo battery do not drain evenly, precautions have been taken to
ensure the safety of the battery. A battery charger with cell balancing capabilities was
purchased to ensure even cell voltages after each charge.

A low cell voltage monitor has been connected to the battery which sounds an alarm
when any individual cell begins to fall below 3.4 volts. When the alarm activates a signal is sent
to the Arduino microcontroller activating an LED indicator.

Power Budget

Table 7 shows the power draw of major components along with a 30W buffer to
compensate for efficiency loss and minor components (i.e motor controller). The Powered USB
hub includes all components connected.

Table 7: Power Budget
Component Average

Consumption
Max

Consumption
Operating
Voltage

Source

Motors (both) 200W 720W 24 to 36 volt Battery

LiDAR 20W 45W 10v to 30v Battery

Powered USB Hub 10W 10W 5v DC to AC

Efficiency loss 30W 30W - -

The total power consumptions adds up to approximately 800W. Batteries have a 177W

capacity. This gives the robot approximately 13 minutes of runtime at maximum power
consumption. On average total power consumption adds up to approximately 260W, the total
runtime is approximately 40 minutes.

Safety System

On the top of the robot, there is a safety light that indicates the drive mode as per
competition requirements. This light operates at 12v and is controlled by an Arduino Uno with a
relay shield.

To improve the safety of our robot, a wireless relay control system installed to work in
tandem with a physical emergency stop button to control a solenoid. The wireless estop has
been tested reliably out to 70m. The relay directly controls the solenoid which controls power to
the motors.

The wireless relay remotes have two buttons that are configured into two modes: pause
and kill shown in Figure 4. “Pause Mode” toggles the robot from disabled to active. It is
intended for testing or when setting up the robot. “Kill Mode” will immediately cut power to the
motors by activating the solenoid. In order to re-enable the robot after it has been “killed”, the
physical emergency stop button must be cycled. This is intended to force the operator to walk
up to the robot and make sure the robot is safe to operate again.

FIgure 4: Pause Kill state machine

Sensor Suite

Ohm use three input sensors (descriptions provided below) to help it navigate the
course. These sensors are all processed on a laptop computer which then sends the
appropriate commands to the motor controller as shown in Figure 5.

Figure 5: Software interface

LiDAR
Ohm uses a SICK LMS-111 Lidar. This LiDAR is used due of its high reliability and

accuracy and has been implemented in multiple weather conditions. The scan range is 20m at a
frequency of 25 Hz with an angular resolution of 0.25°, and has 270° field of view.

Camera

A wide angle camera was selected to assist the vehicle detect the lanes, potholes, and
obstacles. The Logitech C525 HD Webcam was selected because of its overall cost, and 120°
field of view. The camera resolution is configured to output a 820 x 468 pixel videostream, is
connected to the laptop via USB, and interfaced with OpenCV.

GPS Unit

Ohm uses the VectorNav VN-300 differential GPS. This system is used because of
increased accuracy and very high heading accuracy. It also has a built-in IMU which it uses in
conjunction with a built-in Kalman filter to prevent large jumps in heading and position.

Processor (Laptop Computer)
Ohm uses a Lenovo Thinkpad X260. This laptop was used in previous years due to its

robustness, small form factor, and durability. It uses an i5-6300U cpu, 8GB ram, and is dual
booted with Windows 10 Pro and Ubuntu 16.04, the latter of which is used during competition.
The processor is the main interface between sensors, and motors. Specifically, it takes input
from the sensors and wireless controller and controls the motors accordingly.

SOFTWARE

Overview

The software for this year's robot is built in part upon the previous year's code base.
These portions of the code base consist of hardware interfaces and functionality to transform
sensor data into a form useful for decision-making systems to interpret.

Two main goals guided this years software design. First, the robot must have basic
functionality above all else (i.e. lane following and obstacle avoidance). Second, the systems
designed for that task must be well documented and modular, such that new functionality could
be added or portions replaced in the next iteration without disturbing basic functions.

All software running on the robot is written using the ROS framework, which allows for
separate programs to communicate with each other over TCP/IP. This enables programs (called
nodes in ROS terminology) to have a singular focus, e.g. identifying obstacles, motion planning,
or communicating with motors.

The robot operates in two modes, manual and autonomous. While in manual mode, the
indicator on the top of the robot stays solid to indicate it is in manual mode, as per competition
rules. Control in this mode is given by a human operator using a joystick or gamepad, generally
a standard Xbox 360 gamepad.

The main control algorithm for the robot runs in its own node, and sends a linear velocity
and angular velocity for the robot to maintain. The speed of the robot is fixed, though that fixed
speed can be changed in configuration. The main algorithm controls the heading of the robot,
pointing it towards GPS waypoints, and away from obstacles and white lines.

Obstacle Detection

Obstacle detection is done in three steps, each in their own node. First, the data is read
in from the LiDAR over an ethernet connection. The initial data set consists of 1080 distances,
each representing a single ray from the sensor. First, these distances are pruned to remove
max and min range distances. In the second step, the distances are converted into XY
coordinates and transformed w.r.t. the robot. In the third step, points are grouped by distance,
then split into subgroups and averaged. This allows us to maintain the contour and clustering
found in the original data, while having a smaller footprint data set that is easier to process and
pass around from node to node. This process is show in a simpler example in Figure 6.

To handle noise in the data, outliers are ignored up to a configurable amount of times.
Ignored points are left in the data in case they are part of another obstacle.

In order to transform the detected obstacles into a format usable by the main algorithm,
the point data must undergo one additional transformation. The motion planner must know the
ranges of headings that are unoccupied by obstacles. These ranges are defined by a starting
heading and an ending heading, both relative to north. The first range starts at the edge of the

LiDAR’s sensing range (roughly 135° offset from the current heading) and continues until an
obstacle is found that is close to the robot. The end heading of the range is padded to ensure
that a buffer exists between free headings and occupied headings.

Figure 6: Obstacle detection process

Lane following and Pothole detection

To detect/avoid lanes and potholes the robot treats them both as path blocking. The first
step is to resize the original image and perform a perspective transform, then change the
colorspace to HSV, filter for white pixels, and filter out noise. This new image will then be
compared to a set of 21 templates which mimic the vehicle turning radius. There are 10
templates that have various angles to the left and to the right and one through the middle. Each
of these masks has an associated turn angle which is calculated during initialization with the
middle template having a turn angle of 0°. The vision algorithm iterates through each template
and calculates the number of intersections that each template produces when a bitwise AND is
performed on the binary image. Templates that have intersections below a certain threshold are
grouped by their turn angles and these angles are sent to the main algorithm. Figure 7 and
Figure 8 show the process and conceptual examples respectively.

Figure 7: Vision algorithm

Figure 8: Potential paths the robot could take. Red indicates intersections.

Ideal path is on the right.

Goal Selection
At system startup, the ordered list of waypoints is loaded and made available to the main

algorithm. The waypoints can be either in the DMS format (degrees minutes seconds) or as
decimal latitude and longitude pairs. If they are listed in DMS, each waypoint is converted to
decimal latitude and longitude format when the waypoints are loaded at startup. Waypoint
listings in either format also include a target
heading in degrees, relative to north.

After all waypoints are loaded, the
main algorithm must request a single
waypoint and hit the target position and
heading before another request is made.
Upon hitting all the waypoints, the robot then
targets its starting position as its final
waypoint.

Mapping

During testing of the previous year’s
code, we found that the mapping solution
and path planning solution were too tightly
coupled to be useful. As a result, we
decided to forgo a global mapping solution
in favor of ensuring basic functionality.

Motion Planning

The motion planning algorithm is the
main controller for the robot, and works in 3
stages. All sensor data feeds into the
algorithm, and aside from human control, it
is the only source of motor control for the
robot. First, the algorithm checks whether it
has hit the current waypoint (including its
heading), and updates the waypoint if
necessary. Next, it computes the most direct heading needed to hit the waypoint.

Once the desired waypoint heading is calculated, the algorithm then looks for an
unobstructed lane detection heading close to the desired heading, and checks the heading
against the range of unobstructed headings provided by obstacle detection. If a suitable heading
is found that is found in both lane detection and obstacle detection, then it becomes the new
desired heading.

If no agreeable heading is found, the robot will instead turn in place and attempt to find a
new heading that it can travel through.

Because the heading is a range that wraps around at its end points, headings supplied
to the PID controller must be manipulated to produce the desired behavior. The algorithm for
this is shown in Figure 9.

FAILURE MODES

Table 8 describes the main points of failure for the vehicle along with severity and
mitigation actions.

Table 8: Failure Modes
Possible Failures Likelihood Severity Action

Low battery Low End of run
Have multiple charged

batteries on hand, swap
batteries after each run

Loss of GPS heading Low Degradation of
performance

Calibrate onboard compass
to compensate for heading

loss
Oversaturated
camera input Moderate Loss of lane tracking End run, tune color-based

lane detection

Sensor Failure Low End of run likely Software stops robot until
failure is rectified

Wireless Emergency
Stop Failure

Very Low
Possible damage to

robot or injury

Software and hardware
emergency stop options
have been implemented.

SIMULATION

In the process of writing, testing, and debugging the software, it was necessary to
simulate while the robot was in the process of hardware maintenance and electrical redesign.
Components were tested separately. For some components, such as the main control
algorithm, the solution was as simple as supplying fake input data to each of the functions.
Table 9 shows the simulations used for the major components tested.

Table 9: Simulations
Component Simulation

Main Algorithm Spoofed input data from Camera and LiDAR
Lane Detection Use previously obtained videos as input

Obstacle Detection MobileSim 3 and previously obtained LiDAR
data

For the obstacle detection simulations, it was difficult to spoof data, so instead the Adept
MobileRobots MobileSim 3 simulator was used to generate LiDAR data. However, it did not
have the capability to simulate camera or GPS inputs, so different methods described above
were used to test those components.

PERFORMANCE TESTING

Table 10: Performance Summary
Category Requirements Analysis

Speed 2.2m/s Tune software to limit speed as
little as necessary

Ramp Capable of climbing up to 30°
incline.

Tested on varying inclines.
Confident to 30°

Reaction Times Maintain a system update rate of
10Hz

Take advantage of configurable
output rates, and limit rates in

software where necessary

Battery Life 30 minutes on grass with gently
rolling slopes

Performed endurance test on
grass. Actual runtime ~1 hour

Distance of Obstacle
Detection

Maximum obstacle detection with
LiDAR is 20m. Robot reacts

within 2m.

Tune robot to react within larger
radius if necessary

Distance of Lane
Detection Detect white lines Camera can effectively see only

~3m ahead and 1m on either side
Behavior in Dead end

situations
Capable of navigating out of a

dead end
Have robot turn in place until a

path can be found

CONCLUSION

This year the main goal was to have a solid foundation in software design and
implementation for future iterations of the robot. Utilizing the iterative design process, we have
implemented core functionality and laid the groundwork for future iterations. While we would
have liked to add more advanced features such as mapping in time for the 2018 competition,
the robot presented here is a safe, robust, and reliable platform, suitable for even more
improvement.

REFERENCES

Bowyer, M., Mahimkar, S. Aitken, E. and Ferracciolo, B. (2016). OHM (Ω) MK-IV. Dearborn.

Mahimkar, S., Abraham, M., Vanden Berg, D. and Ferracciolo, B. (2017). Ohm 5.0. Dearborn.

Wiki.ros.org. (2018). Documentation - ROS Wiki. [online] Available at: http://wiki.ros.org/
[Accessed 15 May 2018].

		2018-05-15T18:18:14-0400
	Samir Rawashdeh, Ph.D.

