
TAKE 3
IGVC 2019 – Design Report

University of Detroit Mercy

Team Captain:

Samar Bayan

Team Members:

Nathaniel Maley

Yuyi Li

Mohamad Ali Mokhadder

Ali Baholhavaeji

Karthika Balan

Carlos Carpenter

Melvin P Manuel

Ratheesh Ravindran

Christopher Harness

Yusuf Dilawar

Faculty Advisor Statement:

We certify that the engineering design in this vehicle undertaken by the student team, consisting of undergraduate

students, is significant and qualifies for course credits in senior design and in the undergraduate program respectively.

1

Table of Contents
Introduction ... 3

Team Organization .. 3

Cost Analysis ... 4

Power Budget ... 4

Software Strategy ... 5

Robot Design .. 6

Mechanical Improvements .. 6

Navigation ... 6

Odometry & Kalman Filter .. 7

Local & Global Planner .. 8

Goal Selection .. 10

LiDAR ... 10

GPS & IMU ... 11

Mapping .. 11

Image Processing ... 11

Ground Plane Extraction ... 11

Metric Image .. 12

Vision Code ... 12

Mapping Integration ... 13

E-Stop and Controller ... 13

Hardware .. 14

IOP Challenge ... 14

Innovations .. 15

Hardware .. 15

E-Stop Controller ... 15

Software .. 15

IOP System .. 15

Right and Left Lane Differentiator .. 15

Failure Points and Resolutions ... 15

Hardware .. 15

Segway Electrostatic Battery Discharge .. 15

2

Velodyne LiDAR ... 16

Software .. 16

Right and Left Lane Differentiator .. 16

Testing and Debugging ... 16

Conclusion ... 16

3

Introduction

The University of Detroit Mercy Senior Design 2019 team is entering the competition with

TAKE 3, a successor to Detroit Mercy’s 2018 design group’s robot VERTIGO. TAKE 3 sets itself

apart from its successor through improved software suite and redesigned hardware components.

Modifications have been made to the prior mapping, IP, and goal selection algorithms. In addition,

a new redistribution of hardware was made to support easy conversion between Tractor and

Balanced modes of TAKE 3’s base chassis, Segway RMP 220-v3. The result is more precise

localization, maps, and navigation goals. This report highlights the significance of our hardware

and software systems that go into the creation of TAKE 3.

Team Organization

The 2019 IGVC team is composed of five undergraudate Electrical Engineering and Robotics

and Mechatronics Students, and 6 graduate Electrical Engineering Students. In addition, four of

the seven Electrical Engineering students have a concentration of computer engineering. These

diverse areas of study allow for a very versatile and dynamic group with all the skills necessary to

make TAKE 3 a success.

The work distribution focused on channeling students towards their strengths. Having 11

members in the group gave the team flexibility with the number of people per module. A list of

tasks was developed and broken down into modules, then team members were assigned to the tasks

and Gantt charts were developed to organize team activities and track progress. The team met

twice a week and reported progress though oral reports as well as documented logs on a web-based

shared repository. The team facilitator managed the organization of the repository and insured

proper submissions in timely manner. A team leader developed agendas for every meeting and

reported with the facilitator to the team advisor. The team devoted approximately 12 hours a week

for 20 weeks totaling 240 hours during the academic year in addition to 100 hours projected

towards the end of the competition. Table 1 lists TAKE 3’s team members and their corresponding

tasks.

Team Members and Responsibilities

Name Responsibilities

Ratheesh Ravindran Image Processing

Mohamad Ali Mokhadder Navigation & Path Planning

Ali Baholhavaeji Localization

Karthika Balan Navigation & Path Planning

Samar Bayan Image Processing

Yuyi Li Image Processing

Nathaniel Maley Hardware

Christopher Harness Image Processing

Yusuf Dilawar Image Processing

4

Carlos Carpenter Inter-operability Profiles (IOP)

Melvin P Manuel Inter-operability Profiles (IOP)

Table 1: Team Members and Responsibilities

Cost Analysis

The cost of TAKE 3 is broken down in Table 2 with an approximate total of $44 K.

Table 2: TAKE 3 Cost Estimates (blank cells indicate donated items)

Power Budget & Distribution

TAKE 3 has two independent power systems: the first is built into the Segway and operates the

RMP 220 base platform (motors) and its corresponding built-in computer, and the second is added

to the chassis to power all the custom added sensors and computers.

The built-in Segway power system consists of three 72V, 380Wh batteries, two of which power

the two Segway motors, and the third powers the onboard computer and motor controllers. The

Segway reports a max range of 30 miles on a full charge, and a charging time of about 3 hours.

Vertigo Team Costs Column1 Column2

Component Retail Unit Cost Team Cost

Segway RMP 220 v3 Chassis 24,000.00$ 24,000.00$

Caster Wheel for Tractor mode Capability 247.00$ 247.00$

Auxillary Batteries 729.00$ 1,458.00$

Battery Charger 55.00$ 55.00$

Multisence S7 3D Camera 6,800.00$ 6,800.00$

Velodyne VLP-16 LiDAR Puck 8,000.00$ 8,000.00$

KVH CG-5100 IMU 15,000.00$ -$

ProPak6 Triple-Frequency GNSS Receiver 22,070.00$ -$

Sparton AHRS-8P IMU 1,425.00$ -$

NUC Computer 1,100.00$ 2,200.00$

Mini Box intel Computers (3) 1,000.00$ -$

Router 100.00$ -$

Aluminum framing 400.00$ 400.00$

aluminum sheeting 384.00$ 384.00$

Shelving Unit 400.00$ -$

E-Stop Controller 353.00$ 353.00$

Totals 82,063.00$ 43,897.00$

5

These specs were sufficient to drive the vehicle for a full day under IGVC conditions and rendered

no serious challenges to the team.

The second added power system was designed around a quickly swappable 52V, 24A Panasonic

GA 18560 battery. This battery provides 1300Wh when fully charged, which can operate TAKE

3’s 169W load for about 7.5 hours. With two batteries in-house and a charging time of 4.5 hours,

TAKE 3 can run for a full day with no power concerns, and a battery can be swapped and fully

recharged before the replacement is exhausted.

Panasonic recommends the batteries to be charged to 80% of full capacity to extend their

lifetime. This will result in a charging time of three hours and an operation time of six hours per

TAKE 3’s load. Again, this configuration is sufficient for IGVC conditions and provides plenty of

recovery time in case there are gaps in charging.

TAKE 3’s power budget was derived by summing the power consumption of all its accessory

sensors and computing resources; it is presented in the Table 3.

Table 3: TAKE 3 Power Budget - Normal and Worst Case Operating Conditions

Software Strategy
The team is split up into four groups. The groups are as follows: JAUS, perception, localization,

and navigation. The JAUS group worked separately from the group for most of the project. The

JAUS module functions on its own without much reliance on the other functionality of TAKE 3.

The perception group holds the responsibility of detecting obstacles and lane lines. As time went

on, the perception group started working more closely with the navigation group to ensure that the

robot does not cross lane lines and avoids obstacles. The localization group holds the responsibility

of integrating the GPS, IMUs, and wheel odometry. Each data set is transformed into one

coordinate system for uniformity, with Kalman filtering used for sensor fusion. The navigation

group holds responsibility for the navigation stack. This consists of mapping, local and global path

POWER BUDGET

Normal Operating Conditions Worst Case Operating Conditions

Device Quantity Voltage (V) Current (A) Power (W) Voltage (V) Current (A) Power (W)

Velodyne LiDAR 1 12 1 12 18 1.75 31.5

Carnegie Multisense

S7 1 24 0.3 7.2 24 0.8 19.2

DVDO G3-Pro Air 3C

Pro 1 3 1 3 5 1 5

Netgear NightHawk

X6 Wireless Router 1 12 0.55 6.6 12 1 12

Microstrain 3DM-

GX2 IMU 1 9 0.09 0.81 1 0.09 0.09

Spartan AHRS-8

Digital Compass 1 5 0.064 0.32 5 0.064 0.32

Mini-Box Computer 2 12 2.5 30 12 3.75 45

Novatel Propak LB

Plus GPS 1 12 0.31 3.72 12 0.4 4.8

Indicator LEDs 160 10 0.02 0.2 10 0.06 0.6

Wireless E-Stop 1 12 0.045 0.54 12 0.465 5.58

Total 5.879 64.39 9.379 124.09

6

planning, as well as goal selection, which is an algorithm used to determine where the end point

should be for the global path. Having been given some code from last year's team, the team's

primary focus was on integration of perception, localization, and navigation. To achieve this goal,

the three aforementioned groups were required to work closely together.

Robot Design

TAKE 3 is a Segway RMP 220 Chassis capable of a 200lb payload

before modifications. The chassis is equipped with reinforced

aluminum framing to support our various sensory equipment. The system

is run with two Intel Mini-Box Computers using the Ubuntu based ROS

platform to run the robot. TAKE 3 uses a VLP-16 Velodyne LiDAR, and

Multisense 3D Camera for lane line detection and obstacle avoidance. Two

GNSS-502 Antennas are mounted on top of the vehicle and feed into the

ProPak6 GNSS Receiver. The receiver works with the KVH IMU to give

precise heading and global positioning.

Mechanical Improvements

The 2019 team changed some key components to the mechanical design

from the 2018 team to make the robot more functional and efficient. The

aluminum frame gives TAKE 3 a static camera configuration, simplifying

data reception and analysis by comparison with the dynamic

configuration of the gimbal which we used in 2018 design.

The team designed and welded a new shelving unit to house the IMU,

batteries, and Intel Mini Box Computers. The new design makes the

components easily accessible while providing more protection than the

previous design. The shelving also creates a static location for the IMU, giving TAKE 3 more

accuracy in heading and positioning.

Navigation

TAKE 3’s software is built on Robot Operating System (ROS), which provides a variety of

advantages. Most importantly, ROS is a peer-to-peer networking framework that allows efficient

communication between software modules; these modules can be located on different computer

platforms, which allows us to distribute computation tasks and increase system speed. ROS also

comes equipped with software modules that can be configured to work with different systems;

specifically, ROS’s navigation stack was used, and some sensors come with ROS-compatible

modules. Overall, systems provided with the navigation stack did not work out of the box and

needed to be configured in a manner specific to our system.

ROS allows efficient debugging and adjustment of modules, as the topics that modules use to

communicate can be monitored, manually fed data, and easily adjusted. Systems such as IOP,

image processing, goal selection, and navigation (Movebase) were all developed and debugged

modularly, which simplified programming efforts.

Figure 1-TAKE 3 Final Design

7

ROS provides other advantages suited to our application. We used the ROS Gazebo simulator

to test navigation systems before deploying them to the actual robot. We also use the ROS

transform library, which allows rapid and efficient transformation of data. This refines the mapping

process by combining all sensor data into a common frame of reference, eliminating the possibility

of data skew.

Odometry & Kalman Filter

TAKE 3’s odometry consists of a built-in ROS Kalman filter, which is fed data from a variety

of position sensors. Since the GPS and IMU already have a built-in Kalman filter, but we think

this localization method in not enough to getting the accurate state of robot based on that. The

Kalman filter is a mathematical method to estimating the state of robot based on series of

measurements which are observed by sensors, also handles the fusion of these disparate data types

(e.g. IMU, GPS, etc). We use the standard robot localization package to get more accurate state

estimation which it has two stages:

At first, we estimate the local state of the robot based on two Sparton IMU sensors and odometry

and feed these data to first Kalman filter to get the local estate estimating. Then the output of the

first Kalman filter goes to the second Kalman filter with GPS data and one IMU data to do global

estate estimation.

We also analyzed the use of other tools provided in the ROS navigation stack, including

Adjustable Monte Carlo Localization (AMCL) and SLAM Gmapping. AMCL accepts a static map

and a LiDAR scan and will attempt to approximate the robot’s position within that map. Gmapping

is similar but produces a ROS transform between the given static map and the robot’s odometry

frame within that map. The benefit of using such localization systems is that they reduce the

uncertainty in the Kalman filter’s final approximation by providing world-referenced position data.

Figure 2: Block Diagram of System Architecture

8

We simulated both modules, but ultimately decided to use the Kalman filter to fuse our globally-

referenced and dead reckoning sensor data.

Figure 3- Localization scheme

Local & Global Planner

The global planner aims to implement A* algorithm with some modifications according to the

desired application. Since there is no map available for the environment, and the robot has to

navigate between plenty of obstacles placed on its left and right sides, the written algorithm aims

to generate relatively close way-points. Moreover, the robot is navigating within a zig-zag path,

so it is mainly unable to detect obstacles that are few meters away. Therefore, the algorithm will

check for few closed nodes around the robot’s current location then chooses the closest one to the

goal but within 1 to 3 meters range from the robot. Note that closed nodes are the free cells that

the robot may navigate through to reach its goal. In other words, the generated way-points are

more considered as bread crumbs. The traditional A* algorithm plays the role of a global navigator

where it generates a complete path from the original position till the destination based on a given

map. The generated path is usually represented by a vector of waypoints (named closed nodes in

A* algorithm) where the first element of the vector is the starting point, the last one is the desired

destination and all points in between forms the optimal path generated. As long as the robot has

no idea about the entire environment, it is inefficient to use a global planner because the generated

path will be continuously updated. Thus, it will be time consuming to plan the whole entire path

after each step. For this reason, the applied algorithm was not the traditional A* yet it is a modified

version. In other words, the code generates only one breadcrumb at a time, then the robot will

move toward that intermediate goal before another breadcrumb is produced. Modified A* stops

iterating once the number of detected closed nodes is 10, then the closest one will be chosen as a

breadcrumb. Using local navigator (to be discussed in the next paragraph) the robot approaches

the breadcrumb, then modified A* will run again to find the next intermediate goal. The flow chart

shown below summarizes the steps explained above.

9

Figure 4- Modified A* Global Planner

The aim of the local navigator is to adjust the linear and angular velocities of the robot so that it

can approach its intermediate goal (generated bread-crumb) smoothly with minimum latency. It is

simply based on measuring the distance to the obstacles detected by the lidar and getting the

direction of the empty path between those obstacles. Since the robot is moving with forward and

angular velocity, its axis is rotating thus the inclination angle between the robot and its goal is

variable with time. Inclination angle or error must decrease as the robot approaches its target. The

angular velocity must be proportional to error so that the robot will not oscillate too much before

reaching its goal, however; the linear velocity must be inversely proportional to the distance

separating the robot from its goal. The flowchart below describes the algorithm for smooth drive

towards breadcrumbs.

10

Figure 5- Local Navigator

Goal Selection

The local and global planner generates the path to the goal given by the goal selection algorithm.

The purpose of the goal selection algorithm is to keep the robot from losing its heading and turning

around unexpectedly. The robot uses a system given by image processing to map right and left

lane lines separately in a costmap. With this information, TAKE 3 knows how to keep its heading

in the forward direction by comparing the history of the right/left lane line map to the instantaneous

image processing data. The goal selection algorithm toggles between image processing goals (local

goals that are generated in the presence of lane lines) and GPS goals (provided in the Auto-Nav

and IOP challenges).

LiDAR

TAKE 3 uses a VLP-16 Velodyne LiDAR Puck equipped with a 360-degree horizontal field of

view (FOV). The LiDAR on TAKE 3 is configured for a 270-degree FOV horizontally with a 30-

degree vertical FOV. Raw data from the LiDAR comes as a 3D point-cloud. The 3D point-cloud

is reduced to a 2D laser scan primarily to reduce computation. The data runs through two filters

11

during this reduction; a voxel grid filter and a radius outlier filter. The radius outlier filter only

passes points with a given number of neighbors in a threshold distance. The voxel grid filter applies

a 3D grid of cubes measuring 343 cubic centimeters (7cm x 7cm x 7cm) over the input data. The

data is then downsized by passing the centroid of each voxel cube to the laser scan.

GPS & IMU

TAKE 3 uses a Novatel Propak6 GPS receiver coupled with two VEXXIS™ GNSS-502 Dual

Band Antennas, making TAKE 3 capable of SPAN technology. This technology provides

continuous 3D positioning, velocity, and altitude. When the GPS receiver and antennas are

running, TAKE 3 can localize its position to within 4-30cm. The longitude and latitude are

transformed into UTM – Universal Transverse Mercator – to generate a transform for the data,

enabling exact positioning.

TAKE 3 also uses a KVH CG-5100 IMU for extra certainty in navigation. The IMU collects

data on the positioning and heading of the robot, which integrates the data with that of the GPS for

use in localization, goal selection, and navigation.

Mapping

TAKE 3 tracks its current and past environments using ROS implemented costmaps. These

maps are marked using our LiDAR and camera sensory equipment. The sensors are also able to

clear obstacles off the map, dependent on the situation. Obstacles identified by the sensors are

marked with confidence values, such that TAKE 3 can choose to recognize an obstacle as being

absent or present.

TAKE 3’s LiDAR and camera each have their own individual costmaps. This is done to prevent

one sensor from clearing objects that the other sensor sees. We then integrate the two maps together

by converting the data types of the individual maps into one recognized universally by the ROS

control system.

Image Processing

Image processing is used to detect lane

lines. TAKE 3 uses a Multisense S7 3D

Camera by Carnegie Robotics. The camera

provides the distances of each pixel in a 3D

point cloud format. The information below

explains how the locations of the lane lines are

extracted from the raw camera data.

Ground Plane Extraction

TAKE 3 creates a 2-D image of the ground

plane from the 3-D point cloud data. Since the

camera is mounted at an angle of 35-degrees

below horizontal, the ground plane can be

extracted by accepting points at a certain

distance along the camera's z-axis. Every point in the ground plane forms a triangle with the camera

in which the hypotenuse is the camera's Z-axis, the base is the distance from the robot base, and

height is the camera height. If the Z-value for a point in front of the robot is less than the expected

Figure 6: Detail of Camera Mounting Angle

12

ground hypotenuse value, then this point is rejected from the ground plane image. We can adjust

the threshold for the Z-value cutoff in case there are variations in the height of the ground plane.

Metric Image

In the extracted image, the distance per pixel is not uniform due to the optical characteristics of

the camera which causes difficulties during the sensor fusion operation with the LiDAR. Hence, a

uniform number of meters per pixel in the ground plane image is important to accurately mark the

locations of the lane lines and fuse then into the navigation maps.

Vision Code

TAKE 3 uses vision code to extract a

binary (black and white) image from the

metric image. This is the final output used

for navigation. The vision code uses the

openCV C++ library, which has a list of

standard image functions and classes. The

RGB planes are extracted from the metric

image. Because grass typically has a higher

red content than blue content, the red plane

is subtracted from twice the blue plane. In

doing so, the image is kept on a 0-255 gray-

scale interval, while creating a stark

contrast between the grass and the white

lane lines. Intensity thresholding is applied to create the binary image. Canny edge and median

blur functions are used to reduce computation for the Hough transform and increase accuracy

Figure 7: Standard Image Figure 8: Ground Plane Extracted Image

Figure 9: Metric Image Re-shaping

Figure 10: Binary Black/White Image

13

through elimination of salt and pepper noise. The Hough transform is used last to pass only points

that fall into a certain set of lines. These lines are the lane lines, thus giving the final output image.

Mapping Integration

TAKE 3 converts the binary image into a laser scan allowing us to mark and clear cost maps.

Because the binary image came from the metric image – a geometrically uniform image in meters

per pixel – we can derive the location of the lane line pixels in TAKE 3’s X-Y coordinate system.

The X and Y distances are converted to polar distances to match the laser scan data type. TAKE

3’s system adds this layer to the overall cost map and gives authority to mark and clear only on

this layer.

To avoid erasing lane lines, the scan is given a variable size based on the locations of lane lines

in the binary image. The scan only has authority to mark and clear lines from a region determined

by the minimum and maximum angles of the white pixels with respect to the robot, i.e. the areas

that are known to be see clearly.

Figure 11: IP Costmap

E-Stop and Controller

The controller has both a joystick for manually controlling TAKE 3, and an E-stop button for

stopping the robot in case of emergencies. What makes the controller unique is its versatility, the

controller is custom made with multiple mode selections. There are two distinct ways to stop the

vehicle when the E-stop button is pressed that are differentiated by a switch: Decelerate-to-zero

(DTZ) and Emergency stop. DTZ mode stops the robot without turning it off, while E-stop mode

shuts TAKE 3 down, making it ideal for extreme emergency situations. There is another mode

select for switching TAKE 3 between autonomous mode and remote-control (RC) mode. Lastly,

there are push buttons for the Segway’s balance mode; pushing the correct button allows for TAKE

3 to operate with or without its caster wheel attached.

The controller’s programming also manages the indicator LEDs, setting them to different colors

to indicate connectivity between TAKE 3 and the controller, autonomous mode/remote-control

mode, and when the robot has been E-stopped.

The controller is designed such that it does not need to be disassembled to access the internal

Arduino for reprogramming; this allows limitless modes or functionalities to be edited, added, or

removed.

The LED functionality can be reprogrammed to indicate current status, which carries the

potential for real-time feedback from the robot. In this way, the team can potentially detect errors

while testing or during the competition based on the color and status of the LEDs.

14

Hardware

TAKE 3 uses a custom RC controller based on two Arduino Unos for data processing and

control. The Arduino has an operating voltage of 5V with a 16 MHz clock. To cut down on the

amount of processing and potential delay resulting from the Arduino’s multiple functions, an

Arduino Pro-Mini powered by ATmega328 was used to control the LED programs for TAKE 3.

This allowed for less than one millisecond delay in processing for both E-stop and joy-stick

commands, and less than one millisecond delay for the corresponding LED indicators. Two Xbee

Pro SB3 wireless transmitter/receivers create the serial point-to-point network connection to send

data between TAKE 3 and the wireless controller.

IOP Challenge

One of the communication systems implemented in Take3 is the Joint Architecture for

Unmanned Systems (JAUS) protocol. TAKE 3 uses the 2010 version of the Aerospace standards.

These standards specify the unique structure, transportation, and responses for each message and

service. The three types of communication that JAUS enables are discovery, navigation

commands, and reporting.

For the implementation of JAUS, TAKE 3 uses the JAUS Toolset (JTS), an open source

software which uses a Graphical User Interface (GUI) input system to auto-generate the code for

JAUS functionality. This software relies on JR Middleware to create the network connection.

However, JTS is built using a different build tool than the rest of the module systems on TAKE 3.

Thus, there is no direct way to interface between the JAUS networking system and ROS.

The ROS/IOP bridge is an open-source tool that, as the name suggests, creates a bridge between

an IOP communication node and a ROS robot control system. The bridge allows the JAUS

components to access data about the robot’s status, position, velocity, and more, to be used in

communications with an external controller or other entity. Also JAUS commands can be send

from the OCU/CVT for controlling the robot. The main goal of JAUS is to structure

communication and inter-operation of unmanned systems within a network. A JAUS system is

made up of subsystems connected to a common data network. A Subsystem typically represents a

physical entity in the system network, such as an unmanned vehicle or operator control unit, in our

case the Segway robot. The JAUS network is further subdivided into hierarchical layers. There are

two types of communicating nodes, the sender and client (receiver). As such, the bridge contains

methodology for creating plugins for both types of nodes. The message is parsed by the JAUS plug

in and sent to the ROS/IOP bridge. The bridge then maps the data and commands contained therein

out to the correct ROS topics and publishes them, thereby completing the bridge. The ROS/IOP-

Bridge consists of a lot of independent components. All services of the ROS/IOP Bridge are

implemented as a plugin. We can configure to use all services in one component or in a lot of

independent components. The system that we have implemented includes only one component,

which will contain all the services needed for the competition. Each service is defined in the SAE

standards as a finite state machine, which is implemented by the ROS-IOP bridge as a plugin.

15

Innovations

Hardware

E-Stop Controller
Teams competing in IGVC are required to have a hard E-stop on the base of the robot, as well

as a remote-control E-stop that the judges will hold during the competition. This is standard for all

teams. TAKE 3 and Detroit Mercy took wireless e-stop a step further with a controller that is

efficient, versatile, and easy to use. The controller has modes for E-Stop, remote control, balance

mode, tractor mode, and DTZ/Emergency Shutdown functionalities. In addition, the controller also

commands the LEDs on TAKE 3. Likewise, the software in the controller acts as a fail-safe: TAKE

3 will not run without a successful connection with the controller, and if the controller were to

disconnect for any reason, the E-stop is immediately activated. Lastly, the controller is easy to

reprogram for any additional use the robot might need.

Software

IOP System
The Interoperability Profiles (IOP) system designed for the challenge works as a self-contained

software system. It reuses several functions from the main Segway control system by reading from

the existing ROS topics, especially those broadcasting sensor and position data. It also incorporates

several unique functions, which help to integrate with the robot control system.

The innovation in JAUS is in the way that the system was created. We used several open-

source tools, which we modified to meet the specifications of our system. The most significant

roadblock was with incorporating the ROS/IOP Bridge software. This software was designed for

a different version of ROS and Ubuntu than those being used for the rest of the robot’s systems.

Therefore, we had to adjust the code to meet our specifications.

Right and Left Lane Differentiator
The right and left lane line differentiator is an algorithm that differentiates the two lane lines.

This is important in determining if the robot is driving in the correct direction. The differentiator

requires an initial condition of seeing at least one lane line and facing within 90-degrees of the

forward direction. The algorithm uses connected component analysis to determine if the bottom of

the lane is in the right or left half of the image. This, along with knowing the angle of the line, can

determine if a lane line is a right or left lane. The differentiator converts the image to a laser scan

and publishes it to a cost map for each lane. Having a cost map for each lane is important in

correcting failures in the detection, because the histories of the lanes are known. Ultimately, this

algorithm will be used to keep the robot driving forward throughout the course.

Failure Points and Resolutions

Hardware

Segway Electrostatic Battery Discharge

While working on TAKE 3, there were system faults appearing claiming a completely dead

battery, manifested by a loud beeping and fault logs. The measured battery voltage proved this

false by showing as fully charged. After contacting tech support for the Segway base, a software

16

reset tool was acquired which reset the faults, and if the problem occurs again we will understand

it. We have learned to check the battery voltage, as well as the necessary measures to turn off the

beeping noises to continue full functionality.

Velodyne LiDAR

The LiDAR has a minimum range of 40 cm. When an object is within 40 cm of the LiDAR, it

will be cleared from the map, if clearing privileges are given. This is a problem, because the global

planner hugs corners (typically from barrels marked in the map) to minimize the distance of the

planned path. When the barrel is within 40 cm of the robot, the barrel will be erased from the map

and a new path will be created. Without the object in the map, the path planner will tell the robot

to drive through the barrel. One possible solution is to increase the inflation radius of objects in

the map to greater than 40 cm. This, however, could block potential paths. A better solution in this

situation is to simply remove the clearing privileges from the LiDAR.

With the clearing privileges removed from the LiDAR, the barrels will not be removed from

the map, even when the LiDAR is not reporting that it sees them. Removing clearing privileges

from a sensor is not typically a proper solution to integration problems between perception and

mapping. This is because if the robot sees an obstacle while its localization has a failure, the robot

will mark the obstacle in an incorrect location in the map. If clearing is removed, the obstacle will

be reported in more than one location in the map, and the problem cannot be fixed. While it is a

risky decision to remove clearing from the lidar, it was determined that the shape and size of the

objects detected by the lidar would not cause considerable marking to the map with the minimal

amount of odometry slippage that TAKE 3 has.

Software

Right and Left Lane Differentiator
The lane differentiator has a likelihood of failure when the robot is perpendicular to the lane. A

failure here can cause the robot to think that it is facing the opposite direction, making the robot

want to face backwards. This can be fixed by comparing the output of the differentiator with the

history of the right and left lanes from their individual costmaps.

Testing and Debugging

TAKE 3 has gone through rigorous testing and debugging. One of the bonuses of using ROS is

that it lends itself to debugging. ROS enables the printing of topics to verify the actual vs. expected

values of our modular systems, allowing us to check values in real time and handle deficiencies in

code proactively as they appear.

In relation to JAUS, setting up the multicast network for testing proved an area of difficulty.

The university public wi-fi network, which we used for initial testing, did not allow multicast

communication. We checked to ensure that the router on TAKE 3 would allow multicast

communication, then we obtained a separate wi-fi router to test in a way that would not monopolize

use of the robot.

Conclusion

The innovations and technology that surround TAKE 3 are already being widely used in the

automotive industry. Our exposure during school gives us an advantage to other students, as it

gives us a chance to practice lifelong learning. Lifelong learning is an important component of an

17

engineering education; being able to practice it in school makes us more adaptable to new

technologies and processes. In this project we have encountered a variety of new technologies that

have forced us to practice this skill. Additionally, to complete the competition tasks we have had

to read and follow a variety of technical standards, another important transferrable skill that will

follow us as we move on to industry jobs. The automotive industry, along with other industries

that employ electrical and robotics engineers, is replete with standards and other sets of technical

rules to be followed. By ensuring that we are able to understand and follow these rules, we prove

that we can function successfully in a highly regulated industry.

