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Introduction 

The University of Detroit Mercy Senior Design 2019 team is entering the competition with 

TAKE 3, a successor to Detroit Mercy’s 2018 design group’s robot VERTIGO. TAKE 3 sets itself 

apart from its successor through improved software suite and redesigned hardware components.  

Modifications have been made to the prior mapping, IP, and goal selection algorithms. In addition, 

a new redistribution of hardware was made to support easy conversion between Tractor and 

Balanced modes of TAKE 3’s base chassis, Segway RMP 220-v3. The result is more precise 

localization, maps, and navigation goals. This report highlights the significance of our hardware 

and software systems that go into the creation of TAKE 3.  

Team Organization 

The 2019 IGVC team is composed of five undergraudate Electrical Engineering and Robotics 

and Mechatronics Students, and 6 graduate Electrical Engineering Students. In addition, four of 

the seven Electrical Engineering students have a concentration of computer engineering. These 

diverse areas of study allow for a very versatile and dynamic group with all the skills necessary to 

make TAKE 3 a success. 

The work distribution focused on channeling students towards their strengths. Having 11 

members in the group gave the team flexibility with the number of people per module. A list of 

tasks was developed and broken down into modules, then team members were assigned to the tasks 

and Gantt charts were developed to organize team activities and track progress. The team met 

twice a week and reported progress though oral reports as well as documented logs on a web-based 

shared repository. The team facilitator managed the organization of the repository and insured 

proper submissions in timely manner. A team leader developed agendas for every meeting and 

reported with the facilitator to the team advisor. The team devoted approximately 12 hours a week 

for 20 weeks totaling 240 hours during the academic year in addition to 100 hours projected 

towards the end of the competition. Table 1 lists TAKE 3’s team members and their corresponding 

tasks.  

Team Members and Responsibilities 

Name Responsibilities 

Ratheesh Ravindran Image Processing 

Mohamad Ali Mokhadder Navigation & Path Planning 

Ali Baholhavaeji Localization 

Karthika Balan Navigation & Path Planning 

Samar Bayan Image Processing 

Yuyi Li Image Processing 

Nathaniel Maley Hardware 

Christopher Harness Image Processing 

Yusuf Dilawar Image Processing 
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Carlos Carpenter Inter-operability Profiles (IOP) 

Melvin P Manuel Inter-operability Profiles (IOP) 

 

Table 1: Team Members and Responsibilities 

Cost Analysis 

The cost of TAKE 3 is broken down in Table 2 with an approximate total of $44 K. 

  

Table 2: TAKE 3 Cost Estimates (blank cells indicate donated items) 

 

Power Budget & Distribution 

TAKE 3 has two independent power systems: the first is built into the Segway and operates the 

RMP 220 base platform (motors) and its corresponding built-in computer, and the second is added 

to the chassis to power all the custom added sensors and computers. 

The built-in Segway power system consists of three 72V, 380Wh batteries, two of which power 

the two Segway motors, and the third powers the onboard computer and motor controllers. The 

Segway reports a max range of 30 miles on a full charge, and a charging time of about 3 hours. 

Vertigo Team Costs Column1 Column2

Component Retail Unit Cost Team Cost 

Segway RMP 220 v3 Chassis 24,000.00$          24,000.00$ 

Caster Wheel for Tractor mode Capability 247.00$                247.00$       

Auxillary Batteries 729.00$                1,458.00$    

Battery Charger 55.00$                  55.00$          

Multisence S7 3D Camera 6,800.00$            6,800.00$    

Velodyne VLP-16 LiDAR Puck 8,000.00$            8,000.00$    

KVH CG-5100 IMU 15,000.00$          -$              

ProPak6 Triple-Frequency GNSS Receiver 22,070.00$          -$              

Sparton AHRS-8P IMU 1,425.00$            -$              

NUC Computer 1,100.00$            2,200.00$    

Mini Box intel Computers (3) 1,000.00$            -$              

Router 100.00$                -$              

Aluminum framing 400.00$                400.00$       

aluminum sheeting 384.00$                384.00$       

Shelving Unit 400.00$                -$              

E-Stop Controller 353.00$                353.00$       

Totals 82,063.00$          43,897.00$ 
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These specs were sufficient to drive the vehicle for a full day under IGVC conditions and rendered 

no serious challenges to the team. 

The second added power system was designed around a quickly swappable 52V, 24A Panasonic 

GA 18560 battery. This battery provides 1300Wh when fully charged, which can operate TAKE 

3’s 169W load for about 7.5 hours. With two batteries in-house and a charging time of 4.5 hours, 

TAKE 3 can run for a full day with no power concerns, and a battery can be swapped and fully 

recharged before the replacement is exhausted.  

Panasonic recommends the batteries to be charged to 80% of full capacity to extend their 

lifetime. This will result in a charging time of three hours and an operation time of six hours per 

TAKE 3’s load. Again, this configuration is sufficient for IGVC conditions and provides plenty of 

recovery time in case there are gaps in charging. 

TAKE 3’s power budget was derived by summing the power consumption of all its accessory 

sensors and computing resources; it is presented in the Table 3. 

 

Table 3: TAKE 3 Power Budget - Normal and Worst Case Operating Conditions 

Software Strategy 
The team is split up into four groups. The groups are as follows: JAUS, perception, localization, 

and navigation. The JAUS group worked separately from the group for most of the project. The 

JAUS module functions on its own without much reliance on the other functionality of TAKE 3. 

The perception group holds the responsibility of detecting obstacles and lane lines. As time went 

on, the perception group started working more closely with the navigation group to ensure that the 

robot does not cross lane lines and avoids obstacles. The localization group holds the responsibility 

of integrating the GPS, IMUs, and wheel odometry. Each data set is transformed into one 

coordinate system for uniformity, with Kalman filtering used for sensor fusion. The navigation 

group holds responsibility for the navigation stack. This consists of mapping, local and global path 

POWER BUDGET

Normal Operating Conditions Worst Case Operating Conditions

Device Quantity Voltage (V) Current (A) Power (W) Voltage (V) Current (A) Power (W)

Velodyne LiDAR 1 12 1 12 18 1.75 31.5

Carnegie Multisense 

S7 1 24 0.3 7.2 24 0.8 19.2

DVDO G3-Pro Air 3C 

Pro 1 3 1 3 5 1 5

Netgear NightHawk 

X6 Wireless Router 1 12 0.55 6.6 12 1 12

Microstrain 3DM-

GX2 IMU 1 9 0.09 0.81 1 0.09 0.09

Spartan AHRS-8 

Digital Compass 1 5 0.064 0.32 5 0.064 0.32

Mini-Box Computer 2 12 2.5 30 12 3.75 45

Novatel Propak LB 

Plus GPS 1 12 0.31 3.72 12 0.4 4.8

Indicator LEDs 160 10 0.02 0.2 10 0.06 0.6

Wireless E-Stop 1 12 0.045 0.54 12 0.465 5.58

Total 5.879 64.39 9.379 124.09
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planning, as well as goal selection, which is an algorithm used to determine where the end point 

should be for the global path. Having been given some code from last year's team, the team's 

primary focus was on integration of perception, localization, and navigation. To achieve this goal, 

the three aforementioned groups were required to work closely together. 

Robot Design 

TAKE 3 is a Segway RMP 220 Chassis capable of a 200lb payload 

before modifications. The chassis is equipped with reinforced 

aluminum framing to support our various sensory equipment. The system 

is run with two Intel Mini-Box Computers using the Ubuntu based ROS 

platform to run the robot. TAKE 3 uses a VLP-16 Velodyne LiDAR, and 

Multisense 3D Camera for lane line detection and obstacle avoidance. Two 

GNSS-502 Antennas are mounted on top of the vehicle and feed into the 

ProPak6 GNSS Receiver. The receiver works with the KVH IMU to give 

precise heading and global positioning.  

 

Mechanical Improvements 

The 2019 team changed some key components to the mechanical design 

from the 2018 team to make the robot more functional and efficient. The 

aluminum frame gives TAKE 3 a static camera configuration, simplifying 

data reception and analysis by comparison with the dynamic 

configuration of the gimbal which we used in 2018 design.  

The team designed and welded a new shelving unit to house the IMU, 

batteries, and Intel Mini Box Computers. The new design makes the 

components easily accessible while providing more protection than the 

previous design. The shelving also creates a static location for the IMU, giving TAKE 3 more 

accuracy in heading and positioning.  

Navigation 

TAKE 3’s software is built on Robot Operating System (ROS), which provides a variety of 

advantages. Most importantly, ROS is a peer-to-peer networking framework that allows efficient 

communication between software modules; these modules can be located on different computer 

platforms, which allows us to distribute computation tasks and increase system speed. ROS also 

comes equipped with software modules that can be configured to work with different systems; 

specifically, ROS’s navigation stack was used, and some sensors come with ROS-compatible 

modules. Overall, systems provided with the navigation stack did not work out of the box and 

needed to be configured in a manner specific to our system.  

ROS allows efficient debugging and adjustment of modules, as the topics that modules use to 

communicate can be monitored, manually fed data, and easily adjusted. Systems such as IOP, 

image processing, goal selection, and navigation (Movebase) were all developed and debugged 

modularly, which simplified programming efforts.  

Figure 1-TAKE 3 Final Design 
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ROS provides other advantages suited to our application. We used the ROS Gazebo simulator 

to test navigation systems before deploying them to the actual robot. We also use the ROS 

transform library, which allows rapid and efficient transformation of data. This refines the mapping 

process by combining all sensor data into a common frame of reference, eliminating the possibility 

of data skew. 

 

Odometry & Kalman Filter 

TAKE 3’s odometry consists of a built-in ROS Kalman filter, which is fed data from a variety 

of position sensors. Since the GPS and IMU already have a built-in Kalman filter, but we think 

this localization method in not enough to getting the accurate state of robot based on that. The 

Kalman filter is a mathematical method to estimating the state of robot based on series of 

measurements which are observed by sensors, also handles the fusion of these disparate data types 

(e.g. IMU, GPS, etc). We use the standard robot localization package to get more accurate state 

estimation which it has two stages:  

At first, we estimate the local state of the robot based on two Sparton IMU sensors and odometry 

and feed these data to first Kalman filter to get the local estate estimating. Then the output of the 

first Kalman filter goes to the second Kalman filter with GPS data and one IMU data to do global 

estate estimation.   

 

We also analyzed the use of other tools provided in the ROS navigation stack, including 

Adjustable Monte Carlo Localization (AMCL) and SLAM Gmapping. AMCL accepts a static map 

and a LiDAR scan and will attempt to approximate the robot’s position within that map. Gmapping 

is similar but produces a ROS transform between the given static map and the robot’s odometry 

frame within that map. The benefit of using such localization systems is that they reduce the 

uncertainty in the Kalman filter’s final approximation by providing world-referenced position data. 

Figure 2: Block Diagram of System Architecture 
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We simulated both modules, but ultimately decided to use the Kalman filter to fuse our globally-

referenced and dead reckoning sensor data. 

 

Figure 3- Localization scheme 

 

 

Local & Global Planner 

The global planner aims to implement A* algorithm with some modifications according to the 

desired application. Since there is no map available for the environment, and the robot has to 

navigate between plenty of obstacles placed on its left and right sides, the written algorithm aims 

to generate relatively close way-points. Moreover, the robot is navigating within a zig-zag path, 

so it is mainly unable to detect obstacles that are few meters away. Therefore, the algorithm will 

check for few closed nodes around the robot’s current location then chooses the closest one to the 

goal but within 1 to 3 meters range from the robot. Note that closed nodes are the free cells that 

the robot may navigate through to reach its goal. In other words, the generated way-points are 

more considered as bread crumbs. The traditional A* algorithm plays the role of a global navigator 

where it generates a complete path from the original position till the destination based on a given 

map. The generated path is usually represented by a vector of waypoints (named closed nodes in 

A* algorithm) where the first element of the vector is the starting point, the last one is the desired 

destination and all points in between forms the optimal path generated. As long as the robot has 

no idea about the entire environment, it is inefficient to use a global planner because the generated 

path will be continuously updated. Thus, it will be time consuming to plan the whole entire path 

after each step. For this reason, the applied algorithm was not the traditional A* yet it is a modified 

version. In other words, the code generates only one breadcrumb at a time, then the robot will 

move toward that intermediate goal before another breadcrumb is produced. Modified A* stops 

iterating once the number of detected closed nodes is 10, then the closest one will be chosen as a 

breadcrumb. Using local navigator (to be discussed in the next paragraph) the robot approaches 

the breadcrumb, then modified A* will run again to find the next intermediate goal. The flow chart 

shown below summarizes the steps explained above. 
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Figure 4- Modified A* Global Planner 

 

 

The aim of the local navigator is to adjust the linear and angular velocities of the robot so that it 

can approach its intermediate goal (generated bread-crumb) smoothly with minimum latency. It is 

simply based on measuring the distance to the obstacles detected by the lidar and getting the 

direction of the empty path between those obstacles. Since the robot is moving with forward and 

angular velocity, its axis is rotating thus the inclination angle between the robot and its goal is 

variable with time. Inclination angle or error must decrease as the robot approaches its target. The 

angular velocity must be proportional to error so that the robot will not oscillate too much before 

reaching its goal, however; the linear velocity must be inversely proportional to the distance 

separating the robot from its goal. The flowchart below describes the algorithm for smooth drive 

towards breadcrumbs. 

 



10 
 

 
 

Figure 5- Local Navigator 

 

 

 

Goal Selection 

The local and global planner generates the path to the goal given by the goal selection algorithm. 

The purpose of the goal selection algorithm is to keep the robot from losing its heading and turning 

around unexpectedly. The robot uses a system given by image processing to map right and left 

lane lines separately in a costmap. With this information, TAKE 3 knows how to keep its heading 

in the forward direction by comparing the history of the right/left lane line map to the instantaneous 

image processing data. The goal selection algorithm toggles between image processing goals (local 

goals that are generated in the presence of lane lines) and GPS goals (provided in the Auto-Nav 

and IOP challenges). 

LiDAR 

TAKE 3 uses a VLP-16 Velodyne LiDAR Puck equipped with a 360-degree horizontal field of 

view (FOV). The LiDAR on TAKE 3 is configured for a 270-degree FOV horizontally with a 30-

degree vertical FOV. Raw data from the LiDAR comes as a 3D point-cloud. The 3D point-cloud 

is reduced to a 2D laser scan primarily to reduce computation. The data runs through two filters 
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during this reduction; a voxel grid filter and a radius outlier filter. The radius outlier filter only 

passes points with a given number of neighbors in a threshold distance. The voxel grid filter applies 

a 3D grid of cubes measuring 343 cubic centimeters (7cm x 7cm x 7cm) over the input data. The 

data is then downsized by passing the centroid of each voxel cube to the laser scan. 

GPS & IMU  

TAKE 3 uses a Novatel Propak6 GPS receiver coupled with two VEXXIS™ GNSS-502 Dual 

Band Antennas, making TAKE 3 capable of SPAN technology. This technology provides 

continuous 3D positioning, velocity, and altitude. When the GPS receiver and antennas are 

running, TAKE 3 can localize its position to within 4-30cm. The longitude and latitude are 

transformed into UTM – Universal Transverse Mercator – to generate a transform for the data, 

enabling exact positioning.  

TAKE 3 also uses a KVH CG-5100 IMU for extra certainty in navigation. The IMU collects 

data on the positioning and heading of the robot, which integrates the data with that of the GPS for 

use in localization, goal selection, and navigation. 

Mapping 

TAKE 3 tracks its current and past environments using ROS implemented costmaps. These 

maps are marked using our LiDAR and camera sensory equipment. The sensors are also able to 

clear obstacles off the map, dependent on the situation. Obstacles identified by the sensors are 

marked with confidence values, such that TAKE 3 can choose to recognize an obstacle as being 

absent or present. 

TAKE 3’s LiDAR and camera each have their own individual costmaps. This is done to prevent 

one sensor from clearing objects that the other sensor sees. We then integrate the two maps together 

by converting the data types of the individual maps into one recognized universally by the ROS 

control system.  

Image Processing 

Image processing is used to detect lane 

lines. TAKE 3 uses a Multisense S7 3D 

Camera by Carnegie Robotics. The camera 

provides the distances of each pixel in a 3D 

point cloud format. The information below 

explains how the locations of the lane lines are 

extracted from the raw camera data.  

Ground Plane Extraction 

TAKE 3 creates a 2-D image of the ground 

plane from the 3-D point cloud data. Since the 

camera is mounted at an angle of 35-degrees 

below horizontal, the ground plane can be 

extracted by accepting points at a certain 

distance along the camera's z-axis. Every point in the ground plane forms a triangle with the camera 

in which the hypotenuse is the camera's Z-axis, the base is the distance from the robot base, and 

height is the camera height. If the Z-value for a point in front of the robot is less than the expected 

Figure 6: Detail of Camera Mounting Angle 
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ground hypotenuse value, then this point is rejected from the ground plane image. We can adjust 

the threshold for the Z-value cutoff in case there are variations in the height of the ground plane. 

 

Metric Image  

In the extracted image, the distance per pixel is not uniform due to the optical characteristics of 

the camera which causes difficulties during the sensor fusion operation with the LiDAR. Hence, a 

uniform number of meters per pixel in the ground plane image is important to accurately mark the 

locations of the lane lines and fuse then into the navigation maps.  

 

Vision Code 

TAKE 3 uses vision code to extract a 

binary (black and white) image from the 

metric image. This is the final output used 

for navigation. The vision code uses the 

openCV C++ library, which has a list of 

standard image functions and classes. The 

RGB planes are extracted from the metric 

image. Because grass typically has a higher 

red content than blue content, the red plane 

is subtracted from twice the blue plane. In 

doing so, the image is kept on a 0-255 gray-

scale interval, while creating a stark 

contrast between the grass and the white 

lane lines. Intensity thresholding is applied to create the binary image. Canny edge and median 

blur functions are used to reduce computation for the Hough transform and increase accuracy 

Figure 7: Standard Image Figure 8: Ground Plane Extracted Image 

Figure 9: Metric Image Re-shaping 

 

Figure 10: Binary Black/White Image 
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through elimination of salt and pepper noise. The Hough transform is used last to pass only points 

that fall into a certain set of lines. These lines are the lane lines, thus giving the final output image.  

Mapping Integration 

TAKE 3 converts the binary image into a laser scan allowing us to mark and clear cost maps. 

Because the binary image came from the metric image – a geometrically uniform image in meters 

per pixel – we can derive the location of the lane line pixels in TAKE 3’s X-Y coordinate system. 

The X and Y distances are converted to polar distances to match the laser scan data type. TAKE 

3’s system adds this layer to the overall cost map and gives authority to mark and clear only on 

this layer.  

To avoid erasing lane lines, the scan is given a variable size based on the locations of lane lines 

in the binary image. The scan only has authority to mark and clear lines from a region determined 

by the minimum and maximum angles of the white pixels with respect to the robot, i.e. the areas 

that are known to be see clearly.  

 

Figure 11: IP Costmap 

E-Stop and Controller 

The controller has both a joystick for manually controlling TAKE 3, and an E-stop button for 

stopping the robot in case of emergencies. What makes the controller unique is its versatility, the 

controller is custom made with multiple mode selections. There are two distinct ways to stop the 

vehicle when the E-stop button is pressed that are differentiated by a switch: Decelerate-to-zero 

(DTZ) and Emergency stop. DTZ mode stops the robot without turning it off, while E-stop mode 

shuts TAKE 3 down, making it ideal for extreme emergency situations. There is another mode 

select for switching TAKE 3 between autonomous mode and remote-control (RC) mode. Lastly, 

there are push buttons for the Segway’s balance mode; pushing the correct button allows for TAKE 

3 to operate with or without its caster wheel attached.  

The controller’s programming also manages the indicator LEDs, setting them to different colors 

to indicate connectivity between TAKE 3 and the controller, autonomous mode/remote-control 

mode, and when the robot has been E-stopped.  

The controller is designed such that it does not need to be disassembled to access the internal 

Arduino for reprogramming; this allows limitless modes or functionalities to be edited, added, or 

removed.  

The LED functionality can be reprogrammed to indicate current status, which carries the 

potential for real-time feedback from the robot. In this way, the team can potentially detect errors 

while testing or during the competition based on the color and status of the LEDs.  
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Hardware  

TAKE 3 uses a custom RC controller based on two Arduino Unos for data processing and 

control. The Arduino has an operating voltage of 5V with a 16 MHz clock. To cut down on the 

amount of processing and potential delay resulting from the Arduino’s multiple functions, an 

Arduino Pro-Mini powered by ATmega328 was used to control the LED programs for TAKE 3. 

This allowed for less than one millisecond delay in processing for both E-stop and joy-stick 

commands, and less than one millisecond delay for the corresponding LED indicators. Two Xbee 

Pro SB3 wireless transmitter/receivers create the serial point-to-point network connection to send 

data between TAKE 3 and the wireless controller.  

IOP Challenge 

One of the communication systems implemented in Take3 is the Joint Architecture for 

Unmanned Systems (JAUS) protocol. TAKE 3 uses the 2010 version of the Aerospace standards. 

These standards specify the unique structure, transportation, and responses for each message and 

service. The three types of communication that JAUS enables are discovery, navigation 

commands, and reporting. 

For the implementation of JAUS, TAKE 3 uses the JAUS Toolset (JTS), an open source 

software which uses a Graphical User Interface (GUI) input system to auto-generate the code for 

JAUS functionality. This software relies on JR Middleware to create the network connection. 

However, JTS is built using a different build tool than the rest of the module systems on TAKE 3. 

Thus, there is no direct way to interface between the JAUS networking system and ROS.  

The ROS/IOP bridge is an open-source tool that, as the name suggests, creates a bridge between 

an IOP communication node and a ROS robot control system. The bridge allows the JAUS 

components to access data about the robot’s status, position, velocity, and more, to be used in 

communications with an external controller or other entity. Also JAUS commands can be send 

from the OCU/CVT for controlling the robot. The main goal of JAUS is to structure 

communication and inter-operation of unmanned systems within a network. A JAUS system is 

made up of subsystems connected to a common data network. A Subsystem typically represents a 

physical entity in the system network, such as an unmanned vehicle or operator control unit, in our 

case the Segway robot. The JAUS network is further subdivided into hierarchical layers. There are 

two types of communicating nodes, the sender and client (receiver). As such, the bridge contains 

methodology for creating plugins for both types of nodes. The message is parsed by the JAUS plug 

in and sent to the ROS/IOP bridge. The bridge then maps the data and commands contained therein 

out to the correct ROS topics and publishes them, thereby completing the bridge. The ROS/IOP-

Bridge consists of a lot of independent components. All services of the ROS/IOP Bridge are 

implemented as a plugin. We can configure to use all services in one component or in a lot of 

independent components. The system that we have implemented includes only one component, 

which will contain all the services needed for the competition. Each service is defined in the SAE 

standards as a finite state machine, which is implemented by the ROS-IOP bridge as a plugin.  
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Innovations  

Hardware 

E-Stop Controller  
Teams competing in IGVC are required to have a hard E-stop on the base of the robot, as well 

as a remote-control E-stop that the judges will hold during the competition. This is standard for all 

teams. TAKE 3 and Detroit Mercy took wireless e-stop a step further with a controller that is 

efficient, versatile, and easy to use. The controller has modes for E-Stop, remote control, balance 

mode, tractor mode, and DTZ/Emergency Shutdown functionalities. In addition, the controller also 

commands the LEDs on TAKE 3. Likewise, the software in the controller acts as a fail-safe: TAKE 

3 will not run without a successful connection with the controller, and if the controller were to 

disconnect for any reason, the E-stop is immediately activated. Lastly, the controller is easy to 

reprogram for any additional use the robot might need.  

Software 

IOP System 
The Interoperability Profiles (IOP) system designed for the challenge works as a self-contained 

software system. It reuses several functions from the main Segway control system by reading from 

the existing ROS topics, especially those broadcasting sensor and position data. It also incorporates 

several unique functions, which help to integrate with the robot control system.  

The innovation in JAUS is in the way that the system was created. We used several open-

source tools, which we modified to meet the specifications of our system. The most significant 

roadblock was with incorporating the ROS/IOP Bridge software. This software was designed for 

a different version of ROS and Ubuntu than those being used for the rest of the robot’s systems. 

Therefore, we had to adjust the code to meet our specifications. 

Right and Left Lane Differentiator 
The right and left lane line differentiator is an algorithm that differentiates the two lane lines. 

This is important in determining if the robot is driving in the correct direction. The differentiator 

requires an initial condition of seeing at least one lane line and facing within 90-degrees of the 

forward direction. The algorithm uses connected component analysis to determine if the bottom of 

the lane is in the right or left half of the image. This, along with knowing the angle of the line, can 

determine if a lane line is a right or left lane. The differentiator converts the image to a laser scan 

and publishes it to a cost map for each lane. Having a cost map for each lane is important in 

correcting failures in the detection, because the histories of the lanes are known. Ultimately, this 

algorithm will be used to keep the robot driving forward throughout the course. 

Failure Points and Resolutions 

Hardware 

Segway Electrostatic Battery Discharge 

While working on TAKE 3, there were system faults appearing claiming a completely dead 

battery, manifested by a loud beeping and fault logs. The measured battery voltage proved this 

false by showing as fully charged. After contacting tech support for the Segway base, a software 
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reset tool was acquired which reset the faults, and if the problem occurs again we will understand 

it. We have learned to check the battery voltage, as well as the necessary measures to turn off the 

beeping noises to continue full functionality.  

Velodyne LiDAR 

The LiDAR has a minimum range of 40 cm. When an object is within 40 cm of the LiDAR, it 

will be cleared from the map, if clearing privileges are given. This is a problem, because the global 

planner hugs corners (typically from barrels marked in the map) to minimize the distance of the 

planned path. When the barrel is within 40 cm of the robot, the barrel will be erased from the map 

and a new path will be created. Without the object in the map, the path planner will tell the robot 

to drive through the barrel. One possible solution is to increase the inflation radius of objects in 

the map to greater than 40 cm. This, however, could block potential paths. A better solution in this 

situation is to simply remove the clearing privileges from the LiDAR. 

With the clearing privileges removed from the LiDAR, the barrels will not be removed from 

the map, even when the LiDAR is not reporting that it sees them. Removing clearing privileges 

from a sensor is not typically a proper solution to integration problems between perception and 

mapping. This is because if the robot sees an obstacle while its localization has a failure, the robot 

will mark the obstacle in an incorrect location in the map. If clearing is removed, the obstacle will 

be reported in more than one location in the map, and the problem cannot be fixed. While it is a 

risky decision to remove clearing from the lidar, it was determined that the shape and size of the 

objects detected by the lidar would not cause considerable marking to the map with the minimal 

amount of odometry slippage that TAKE 3 has. 

Software 

Right and Left Lane Differentiator 
The lane differentiator has a likelihood of failure when the robot is perpendicular to the lane. A 

failure here can cause the robot to think that it is facing the opposite direction, making the robot 

want to face backwards. This can be fixed by comparing the output of the differentiator with the 

history of the right and left lanes from their individual costmaps. 

Testing and Debugging 

TAKE 3 has gone through rigorous testing and debugging. One of the bonuses of using ROS is 

that it lends itself to debugging. ROS enables the printing of topics to verify the actual vs. expected 

values of our modular systems, allowing us to check values in real time and handle deficiencies in 

code proactively as they appear.  

In relation to JAUS, setting up the multicast network for testing proved an area of difficulty. 

The university public wi-fi network, which we used for initial testing, did not allow multicast 

communication. We checked to ensure that the router on TAKE 3 would allow multicast 

communication, then we obtained a separate wi-fi router to test in a way that would not monopolize 

use of the robot.  

Conclusion 

The innovations and technology that surround TAKE 3 are already being widely used in the 

automotive industry. Our exposure during school gives us an advantage to other students, as it 

gives us a chance to practice lifelong learning. Lifelong learning is an important component of an 
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engineering education; being able to practice it in school makes us more adaptable to new 

technologies and processes. In this project we have encountered a variety of new technologies that 

have forced us to practice this skill. Additionally, to complete the competition tasks we have had 

to read and follow a variety of technical standards, another important transferrable skill that will 

follow us as we move on to industry jobs. The automotive industry, along with other industries 

that employ electrical and robotics engineers, is replete with standards and other sets of technical 

rules to be followed. By ensuring that we are able to understand and follow these rules, we prove 

that we can function successfully in a highly regulated industry. 


