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Introduction 
 
At the beginning of the 2018 - 2019 school year, the Robotics Club at UCF founded its first prototype team - a 
group of students brought together by the desire to complete a wide variety of small projects quickly, with each 
unit being limited to three weeks. However, between school, sporadically gaining members, and life causing 
some students to miss meetings at inconvenient times, it became apparent that the prototype team was not 
convenient to a college setting. With only one semester left in the school year, and no one with a mechanical 
background, the team decided to attempt a larger challenge by refurbishing and reprogramming a legacy IGVC 
platform, Metaknight.  
 
For the past six months, we have rebuilt, replaced, recoded, and recruited in order to try to complete our 
platform in half the permitted time. With a fresh influx of programmers and mechanical engineers, we worked to 
select new parts and build a code base that was simple and elegant. In the end, we had replaced enough of 
the robot that we decided to name it something new. For this year’s 2019 IGVC competition, we are competing 
with Bowser.  

Team Organization 
 
The IGVC team at the Robotics Club at the University of Central Florida reformed in January of this year, 
starting with a bare metal frame.  Our design process started with sensors, figuring what we would need to 
code, wire, and mount, so we could design and build all of them simultaneously.  The team was then split into 
mechanical, electrical, and software teams, and designed our components as detailed below. 

Mechanical Design 
 
Bowser is, essentially, a large box driven by two large tiles and stabilized by two rear shopping cart wheels. 
Inside its weatherproof box is storage for the batteries and computing machinery, accessible by a large 
polycarbonate door. The frame of the robot is constructed of aluminum, and the panels are all made from 
polycarbonate. Where sensors are mounted, they are supported by 3D printed mounts of current student CAD 
design. The back of the robot, which once was a crevasse accessible for interface with the robot computer, has 
been turned into a shelf for the payload. Thick, 9” tires are used to ensure we are able to traverse not only 
rough terrain, but mild inclines. On the front side of the robot, a reinforced aluminum structure covered in thick 
rubber protrudes far enough to protect our sensors in case of a bump. A single stalk rises from inside the 
robot’s “box”, making accessible our E-Stop.  
 
The box design was original to the previous iteration of Bowser, MetaKnight, but when replacing all of the 
internals, we redesigned the placement of the devices inside. We also reconsidered the placement of the 
sensors on the exterior of the robot, and prioritized simplicity of mount manufacture and safety of location. We 
decided we could alter the software to accommodate the sensors, but repairing the robot would be difficult 
outside of our own laboratory.  
 
We 3D printed a multitude of sensor mounts and brackets to facilitate the changes to the robot.  
 



 
The mount for the LiDAR 

 
The LiDAR mount, which houses the front-facing camera.  

 



 
The GPS/IMU mount, with E-stop on top 

 
A top view of our three camera mounts 

Software 
From a software perspective, our general strategy began with completely throwing out all previous code 

that had been on Metaknight. None of our members had been on that team, and all of our electrical and 
computing hardware was new. We decided to come up with a strategy for dealing with the code from scratch. 
Customarily, our club uses ROS (Robot Operationg System) for most of our projects, so we decided to use that 
as a starting point. From there, we came up with two potential angles to approach the challenge: one based on 
utilizing SLAM (Simultaneous Localization And Mapping), and one based on vector field navigation. After 
discussing what implementing each would mean, we settled on using SLAM. We chose this option because 
there are existing tools in ROS to give us a leg up on starting the code, and because we felt it would be easiest 
to integrate our various individual code projects into the larger whole with SLAM.  
 

While there are a multitude of ways to allow the robot to move with various combinations of sensors 
and software strategies, we settled on what we felt was simplest: LiDAR to detect physical obstacles, and three 
cameras to detect the lines on the ground. We have a camera to each side of the robot to detect our distance 



from each line, and a camera to the front of the robot to detect pot holes. We combine the information from 
each of the four into a map. We also utilize a GPS for navigation.  
 

As we began coding, each member of our team chose an aspect of the code to work on.  
 

 Gaussian Blur 
A 9x9 Gaussian Filter, or Gaussian Blur is added to the raw video image. This filter reduces noise seen 
by the cameras. For example, individual blades of grass will be seen as multiple parallel lines. A 
Gaussian Filter blurs the image by traversing the pixels of the image and calculating the Gaussian 
distribution to build a convolution matrix. The matrix is then applied to the original image where each 
new pixel is the weighted average of neighboring pixels in its matrix, with the pixel at the center. The 
result is a blurred image that minimizes hard transitions and accentuates colors. We used this 
technique in our code for detecting various visual obstacles. 

 

Line Detection 

1. Gaussian Blur 
To reduce random noise as well as turn the distinct grass blades into a more uniform surface we apply 
a 9x9 gaussian filter over the image, reducing our number of false data points for later processes. 
Additionally, the process accentuates colors and can remove green spots from grass blades that have 
moved since the grass was painted. 

      2. White Thresholding 
As all painted obstacles are a consistent white, we run the blurred images through a threshold.  This 
ensures that more  

 

Pothole Detection 

1. Gaussian Blur 
We blur images for pothole detection for the same reasons detailed above: to accentuate colors and 
remove small noise such as unpainted grass blades. 

2. White threshold 
Unnecessary noise is masked by thresholding for high values in HSV color space.  This reduces the 
chance for other noise in the grass to register with the hough circle filter. 

3. Perspective modification 
Hough circle has trouble when the object you are trying to detect is flattened in any direction, as circles 
flat on the ground appear to our low-lying camera.  To correct for this, we change the perspective by 
keystoning the top of the image inward, correcting circles on the floor back to circles in the image. 



4. Hough Circle 
The final major step is the circle hough transform.  

 
 

Obstacle Detection (cones) 

1. SLAM gmapping 
A local map is created in realtime to detect cones and other high obstacles. SLAM gmapping requires 
two topics from ROS to function properly, laser scan data and odometry data. 

2. LiDAR 
The Velodyne VLP-16 Puck is our LiDAR which provides the laser scan data. The Puck builds this map 
with its 360° field of view and the robot is tracked within the map using odometry data built using 
Bowser’s wheel encoders. The range of the Puck, according to its data sheet, is roughly 100 meters. 
We are currently using a 15 meter range to build the map.  

3. Encoders 
The wheel encoders offers data on the revolutions per minute of the wheels. Combining this information 
with the arclength of the wheel offers velocity data which can be used to determine how far the robot 
moves within the map. 
 
Using the difference in velocity of both wheel encoders allows us to determine information on the yaw 
rotation of Bowser. The calculated yaw can then be used for the twisting component of odometry, 
showing how the robot turns left and right. Additionally, the encoders allow us to software-limit the 
speed of the robot.  

Electrical Design 
 
Our electrical system runs on a consistent 12V.  We have two 42 amp hour batteries, a hold over that has 
remained consistent for three consecutive robots. We use a Roboteq MDC2460 as our primary motor controller 
because of its inbuilt ability to run microbasic. This allows us to remotely control the platform without running 
through the main Jetson, as well as a low level software estop that can cut off all other control. We take 
advantage of this feature for our robot’s main e-stop system.  

Sensors 
 
Onboard we have five main sensor groups: 

1. Vision: we use three logitech C920 webcams.  One forward facing; used primarily for pothole detection, 
and two side facing cameras, fed to our line detection software.  

2. Lidar: Our LiDAR is a Velodyne VLP-16, which gives us a 100m horizontal range with 30º vertical 
range; and a ~0.3º horizontal resolution and 2.0º vertical resolution. 

3. Encoders: Our encoders are separate and handled by the motor controllers with their own closed loop 
speed control.  The motor controller also reports encoder data back to the odometry suite. 



4. Inertial Measurement Unit: We use an Advanced Navigation Spatial which gives us GPS and dead 
reckoning as part of the same odometry package. 

Failure Modes 
 

In the case of radio silence from a sensor, our robot will stop moving until it reestablishes connection or 
is powered down. The robot is software-limited in speed. For other issues, we have a remote E-Stop.  

Performance to Date 
 

At the time of writing, our robot is still very much under construction. It is capable of mapping and 
driving. 

Hardships and Issues 
 

Many IGVC teams compete repeatedly, taking a “ship of Theseus” approach to the competition and 
utilizing past platforms and software to improve year after year. With only half the allotted time to start our code 
base from scratch, we found ourselves thoroughly investigating our various possible strategies at the beginning 
of the semester with the knowledge that we would have only one shot to build something worthwhile. 
Additionally, many of our members were new to the club, new to the school, or had never programmed 
seriously before. It was a learning experience for all of us.  
 

We encountered a variety of challenges that seemed to pose a serious threat to our ability to compete. 
In the beginning, we had no one who had ever used anything like an IMU, and it took us weeks to be able to 
get it to communicate with ROS in any capacity. Additionally, we had no computer that could be used for the 
robot, and our school was generous enough to purchase for us an Nvidia Jetson. However, due to various 
factors that slowed down the process, we were finally able to begin work on the actual machine in early March. 
Progress was slow, and eventually, the school year came to a close. At this time, we lost the majority of our 
core membership to well-earned but inconvenient out-of-state internships and jobs.  
 

In the end, we sat down and discussed seriously whether we should compete in IGVC this year. We 
decided that while this year we may not be a “ship of Theseus” team that can build on our prior knowledge and 
existing robots to achieve the highest ranks, we can only hope to begin down that road by doing our best, and 
our best starts with attending this year’s IGVC with open minds and an eagerness to gather what information 
we can to improve in the future. We are bringing some of our youngest students, even those not directly 
involved in the Bowser project, so that they can learn from this experience and carry it forward. We strive to 
become that team.  
 

 
 
 
 

 


