
GOAT Design Report
University of Michigan - Ann Arbor

Submitted 2019-05-15
Team Captain: Gregory Meyer | ​gregjm@umich.edu
Faculty Advisor: Matthew Johnson-Roberson | ​mattjr@umich.edu

 Damen Provost | ​provostd@umich.edu

mailto:gregjm@umich.edu
mailto:mattjr@umich.edu
mailto:provostd@umich.edu

Team Roster

First Name Last Name Email Leadership Position

Aditya Bhatt bhattadi@umich.edu

Akshay Subramaniam akshaysg@umich.edu

Allison Heinen heinenal@umich.edu

Atishay Singh atishays@umich.edu

Caesar Olivas caesaro@umich.edu

Cameron Kabacinski camkab@umich.edu Platform Coordinator

Cedric Bernard cedrib@umich.edu Engineering Director

Christopher Marsh marshchr@umich.edu Controls Coordinator

Claire Russel russecla@umich.edu

Daniel Jung ydanielj@umich.edu Operations Director

Daniel Castro castroda@umich.edu

Elton Lin eltonlin@umich.edu

Eric Liu ericxliu@umich.edu

Esti Gajda egajda@umich.edu

Gabriel Rababeh grababeh@umich.edu

Gregory Meyer gregjm@umich.edu Team Lead/President

Griffith Heller gtheller@umich.edu Power Coordinator

Hersh Vakharia hershv@umich.edu

Himan Yerrakalva yerrak@umich.edu

Ian D'souza idsouza@umich.edu

Ian Cook ijcook@umich.edu

Isaak Hedding ihedding@umich.edu

Isha Hameed ishameed@umich.edu

Justin Lee lejustin@umich.edu

Karolina Rak rakka@umich.edu

Kyle Scott kyscott@umich.edu

Matthew Saraceno mattsara@umich.edu Computer Vision Coordinator

Saad Alkalby salkalby@umich.edu

Sam Halaseh halaseh@umich.edu

Samuel Hall samjhall@umich.edu Sensors Coordinator

Sean Oliver snoliver@umich.edu

Tara Sabbineni trsabb@umich.edu

Zachary Pozsar pozsarza@umich.edu
Business Development & Outreach
Coordinator

Table of Contents

Team Information 4

Introduction 4

Team Organization 4

Design Process & Assumptions 5

Vehicle Design Innovations 6

Platform Systems 6

Chassis 7

Structure 7

Weatherproofing 8

Power Systems 8

Power Supply 9

Motors 9

Safety Mechanisms 10

Sensor Subsystems 10

Hardware and Components 10

Hardware Design Decisions 11

NVIDIA Jetson TX2 11

Intel NUC 11

NETGEAR Switch 11

Velodyne VLP-16 11

Stereolabs ZED Camera 12

Phidgets IMU 12

Phidgets Encoder Board 12

SparkFun GPS 12

Arduino Mega 12

RoboClaw Motor Controllers 12

Software Stack & Control Subsystems 13

Sensor Fusion 13

SLAM (Simultaneous Localization and Mapping) 13

Failure Prevention & Risk Mitigation 14

Hardware Failure 15

SLAM Failure 15

Testing 15

Simulations 15

Performance Testing to Date 16

Initial Performance Assessments 16

Team Information

Introduction
The Ground Obstacle Avoidance Transport, affectionately referred to as GOAT, is the first
submission on behalf of the University of Michigan Ann Arbor to the Intelligent Ground Vehicle
Competition. GOAT was designed, manufactured, and tested by the University of Michigan
Intelligent Ground Vehicle Team (UMIGV). Founded in fall 2016, UMIGV is an engineering design
team comprised of a mix of undergraduate engineering, business, and liberal arts students. Our
team believes that hands-on education complements classroom learning; any student can learn
through robotics, regardless of their background. Our work has a meaningful societal impact that
everyone can learn from. The future is promising for autonomous robotics and we aim to
incubate our members to meet the challenges of tomorrow in this field.

In our first year, through a lot of trial and error we established and scaled a team, assembled
various prototype subsystems and hosted several demos to raise awareness and funding for our
project. In our second year, we scaled up our team started development on GOAT for entry in the
2018 competition. This third year we’ve continued building up our autonomous platform in
preparation for the 2019 competition. UMIGV is supported by campus partners including the
Michigan Library System; Michigan Robotics Institute, the College of Engineering Multidisciplinary
Design Program; optiMize Social Innovation and the Barger Leadership Institute in the College of
Literature, Science & Arts. Corporate sponsors include Aptiv, Raytheon, and Ford.

Team Organization
UMIGV as a team enables students to gain valuable work experience that complements and
expands upon classroom instruction. This environment teaches them how to work together
collaboratively and apply the classroom knowledge in a very hands-on way; students gain soft
skills and critical thinking insights which strengthens their advantage in a competitive job market.
UMIGV offers value to the University by furthering its educational mission as well as an
experience the University can use to recruit future students. To corporate sponsors, the team
offers a tried and tested talent pool of students who have real-world project experience.

UMIGV is organized in a way to maximize the learning experience. Our leadership is comprised
of five technical systems leaders, a business development coordinator, engineering director,
operations director, and team leader. Each technical systems leader and coordinator of the
leadership served to guide and teach members in their stewardship. The team leader,
engineering director and operations director enabled the team with resources and strategy. In
addition, members of the team were not bound to a particular group, allowing for flexibility in
meeting team backlogs and giving members the chance to find a discipline they truly enjoyed.

Design Process & Assumptions
The design process for GOAT was initially started in the summer of 2017 with conceptual
drawings and since then it has since gone through several design iterations. Our team followed
the V model of systems engineering and integration as outlined by INCOSE. Each component of
the robot was broken down into the smallest discrete pieces possible, leading to our five
technical subsystems: Platform, Power, Sensors, Controls, and Computer Vision.

Figure 1: The V model of systems engineering

UMIGV conducted work using the Agile methodology (Figure 2). Every month, we held sprints - a
period of time with fixed number of tasks - to leverage all our members participation and
accommodate incongruent schedules. At the end of each month, subteams would run an
in-house demo of the work they completed and create technical goals and tasks to complete by
the next month.

Figure 2: Agile development method
The team employed industry-standard programming practices. We used GitHub for version
control and strict style guidelines to ensure our code was clean and maintainable, combined with
code reviews conducted by technical leads and design reviews with our faculty and corporate
sponsors. We documented our work on an internal wiki for future generations of the team. We
also used the wiki as a platform to compile resources and onboard new members. We felt it was
critical to lay a good foundation in terms of practice and hope to implement continuous
integration, automated regression testing, and automated builds in the coming years.

Some assumptions made during the design process included:

● Only splash proofing was required for waterproofing our system
● In a modular system, a good overall big picture is important and the details can come later
● Some of our odometry was perfect (neglecting wheel slippage)

Vehicle Design Innovations
The exterior panels for the GOAT use a quick attach system to increase serviceability. In
response to pains with battery swapping and charging, we designed 3d-printed brackets to allow
faster replacement of batteries through the GOAT’s side panels instead of having to remove the
top cover and disconnect all of our compute hardware. To facilitate easier stationary testing, we
designed and implemented a system that would automatically switch between wall power from
an ATX power supply and the robot’s internal batteries.

Platform Systems
The platform system’s objective is to provide a chassis, payload support, and locomotion
methods for the GOAT. The team utilized various machining methods to produce the platform.
We utilized 3D printing for rapid prototyping and visualizing concepts, SolidWorks for design
visualization and spatial layouts, CNC milling and water jetting for precise metalworking, and laser
cutting to form our plastic sheets.

Chassis
Designed with portability, serviceability, and longevity in mind, the chassis is constructed from 1
inch square aluminum tubing in order to minimize overall system weight and maintain rigidity. The
dimensions are within the competition requirements at 28 inches wide by 36 inches long and
well below the height limit. The chassis is secured by custom-made mending plates and
attachment brackets and secured with common 1/4 inch thread hex nuts and bolts to improve
serviceability. The brackets and mending plates can be easily manufactured and the hex bolt
ensures that no stripping will occur.

Figure 4: The structure and chassis

Structure
GOAT features a two-wheel drivetrain with a third free caster wheel to provide a balance
between power, stability, and maneuverability. Since the front wheels offer a majority of the
support, the design is forward-heavy (Figure 4). There is no built in suspension, but the caster
wheels has proven to be useful in balancing the robot on rough terrain. Inside the main chassis of
the robot, there are two gearboxes with motors, encoders, batteries, and a shelf for all power and
safety components. The batteries are placed behind the drivetrain to act as a counterweight
against the fairly heavy gearbox assemblies. We use 3D printed brackets to hold the batteries
firm against the chassis. Above the main structure, there is a splashproof box containing the
computers that also serves as a mounting point for our lidar and stereo camera. At the rear of the
robot, there is a safety pole with an LED safety light and emergency stop button.

Weatherproofing
Once the frame was designed, we designed exterior panels to screw into the chassis. These
panels are made out of 1/4 inch high density polyethylene (HDPE) with weather stripping between
the panels and chassis, affording us a splashproof platform.

Power Systems
The power systems of GOAT incorporates all electronic components and handles power
distribution and signal routing while serving as an interface between the controls and platform
systems.

Figure 5: Block Diagram Overview of the Electrical System

Power Supply
The robot is powered by two 12V car batteries wired in parallel for a combined total of 32Ah of
capacity. A 70A circuit breaker is used to connect and disconnect the batteries from the rest of
the system. The motor controllers, wireless E-Stop module​ ​are wired directly off of the batteries,

while more sensitive electronics use off-the-shelf DC-DC converters. Each RoboClaw motor
controller is configured to operate one side of the robot, each having two motors.

Average Power Consumption Numbers

Motors (x4) 360W

USB Hub 5W

Jetson 15W

NUC 20W

E-Stop System 5W

Total 405W

These consumption numbers are a conservative estimate based off of manufacturer-supplied
figures.

Motors
The GOAT’s gearboxes are configured with two motors per output shaft, so our motor controllers
are configured to bridge together the output channels as if it were operating one large motor.
Using the RoboClaw motor controllers also allowed us to control the currents going through the
motors.

Figure 6: Performance Curve for the

motors

A gear ratio of 30:1 was implemented in
our gearboxes, which gives us a
necessary rotation speed of 3,100 rpm
from our motors to go a speed shy of 5
mph when accounting for the size of
the wheels. The amount of current that
could potentially be drawn at this
speed can go up to around 70A per
motor, necessitating a current limiting
mechanism for contingencies such as

sudden accelerations. We leveraged the built-in current limiting functionality of our motor
controllers to limit power draw to 40A per side.

Safety Mechanisms
Being able to operate our robot safely is a key part of the competition. When enabling the robot,
main power from the batteries is enabled by flipping a circuit breaker mounted on the outside of
the bot, easily seen and accessible by anyone. When the robot is turned on, power is supplied to
a status light, showing its current state. In an effort to make the robot more modular, we used
bullet connectors to make connections between the various components.

To ensure that no safety issues arise during a run, a wired E-Stop, wireless E-Stop, and speed
limiter are integrated on the robot using a dedicated Arduino microcontroller. The wireless E-Stop
we selected has a range of 250 feet, allowing the robot to be safely stopped from anywhere. The
large red E-Stop button and wireless E-Stop are connected to a digital I/O pin on this Arduino.
Triggering either E-Stop will cause the microcontroller to send a signal to the shutdown pin on
the RoboClaw motor controllers. A 5 mph speed limit is imposed on the vehicle by counting the
encoder ticks with the microcontroller; if the wheels have turned at an average speed of 5mph or
more for the last second, the same shutdown signal that the E-Stop systems use is sent to the
motor controllers.

Sensor Subsystems
The sensors subsystem interfaces with sensors to collect observations about the world for
localization and map building. Pose observations are fused to produce an estimate of the robot’s
current pose and twist in a plane. Odometry and lidar observations are then used for
simultaneous localization and mapping (SLAM), outputting an 2D occupancy grid of the robot’s
environment. The controls subsystem then takes the occupancy grid, odometry, and raw lidar
range data for use in path planning and obstacle avoidance.

Hardware and Components
● NVIDIA Jetson TX2 Computer
● Intel NUC7 NUCI5BNKP Computer
● NETGEAR GS105Ev2 Switch
● Velodyne VLP-16
● Stereolabs ZED Camera
● Phidgets PhidgetSpatial 3/3/3 High Precision IMU (1044_0B)
● Phidgets PhidgetEncoder High Speed 4-input Encoder Board (1047_1B)

○ HEDSS Optical Rotary Encoders (Phidgets 3530_1)
● Garmin GPS 18x USB
● Arduino Mega 2560 Rev3
● Ion Motion Control RoboClaw 2x60A Motor Controller

Hardware Design Decisions

NVIDIA Jetson TX2

The NVIDIA Jetson provides a high-speed discrete GPU suitable for real-time image processing
and pairs particularly well with the ZED camera, as Stereolabs maintains an SDK specifically for
the Jetson TX2. The Jetson provides exceptional performance considering its power
consumption, form factor, and price. In addition, the included development board has integrated
HDMI, Ethernet, USB, and WiFi to speed up development.

Intel NUC

The Intel NUC provides a laptop CPU in a compact package without requiring the expertise of a
dedicated embedded system. The i5 processor was selected after analyzing the expected
computational power required to run navigational subroutines, such as path planning. The NUC
provides all of the amenities to be expected from a high-end ultrabook without the peripherals
not required for autonomous operation.

NETGEAR Switch

Strong long network connectivity was required to capitalize on the ROS’ distributed system
capabilities. The ZED camera can output 3D video at up to 2K 15FPS, so high bandwidth
communication was a must. Having an Ethernet switch allows us to quickly link in new devices
like laptops. Combining this modular system with the nature of ROS allows for quick visualization
by connecting to the robot’s local network with an Ethernet cable.

Velodyne VLP-16

Unexpectedly low obstacles in last year’s competition necessitated that we act quickly to install
and integrate the Velodyne VLP-16 3D lidar; our previous lidar only scanned in a plane. The
Velodyne boasts significantly increased range, accuracy, and weatherproofing over the RPLIDAR
we used last year and has become an integral part of our sensor systems.

Stereolabs ZED Camera

The primary draw of the ZED camera is its low cost and high depth sensing range. Compared to
other RGBD solutions, the ZED camera offers much higher depth cloud resolution through
software processing of the stereo images. Unlike systems that rely on infrared light, like the
Kinect, the ZED retains nominal functionality in direct sunlight. The Stereolabs development team
has provided a rich SDK with ROS integration included, speeding up deployment cycles by
reducing hardware and embedded development time.

Phidgets IMU

The Phidgets ecosystem has a strong draw due to its well-documented and maintained C library
and ROS integration. Another draw is the relatively low cost of the Phidgets system, but this
results in less accurate sensor readings with higher noise.

Phidgets Encoder Board

As with the IMU, the Phidgets ecosystem is easy to work with and has strong open-source
support. Unlike the IMU, no off-the-shelf system for differential drive odometry was available, so
software was developed to interface with the C library and generate twist estimates from wheel
encoder sensor data.

Garmin GPS 18x USB

Last year’s GPS was connected via an RS-232 serial port and required significant jury-rigging to
get powered as well -- it was designed to be powered from a 12V cigarette lighter socket. The 18x
USB offers similar functionality, but with a more developer-friendly USB interface. The 18x is
designed for automotive applications and as such comes weatherproofed, a significant factor in
our decision to keep using the same model.

Arduino Mega

A simple hardware/software layer was required to interface between our ROS layer and the serial
interface of the RoboClaw motor controllers. Using an Arduino Mega allows for us to process
ROS messages on a lower-level device, allowing maximum abstraction of the drivetrain to the
ROS stack. In addition, the RoboClaw’s manufacturer provides and maintains an Arduino library to
interface with the velocity controls of many motor controllers connected over serial, speeding up
development and reducing testing time.

RoboClaw Motor Controllers

The RoboClaw offers tight integration with velocity commands, having built-in PID position and
velocity control. In addition, a wide variety of customization and diagnostic options are a
significant quality-of-life boost while interfacing with hardware. For example, the motor controllers
monitor battery voltage and motor current and will limit performance characteristics as necessary
to stay within user-specified operating parameters.

Software Stack & Control Subsystems
All of the robot’s software is powered by Robot Operating System (ROS) running on a base
Ubuntu 16.04 installation. In line with our modular design philosophy, ROS was selected as the
robot’s operating system due to its extensive modularity, community support, and power
features. ROS is a distributed networking and communications library allowing multiple devices to

work together. A ROS computation graph is divided into discrete nodes that can publish and
subscribe messages to build a network of information. Nodes communicate with each other over
TCP, allowing them to connect to nodes on other computers through our Ethernet switch. This
system facilitates the communication between different processes and enables the team to work
on independent tasks; each software subteam can develop nodes entirely separately from the
others.

The goal of the controls subsystem is to navigate the robot through a series of waypoints while
avoiding obstacles with data from the sensors subsystem. The controls subsystem receives an
occupancy grid, lidar data, odometry data (pose and twist estimates), and coordinate transform
data, then uses this data to build navigational costmaps and path plan through them. A* was
chosen as our path planning algorithm because it is optimal and lets the robot reach its goal
more effectively. Goals are generated by transforming GPS coordinates into the robot’s world
frame and updating the broadcast goal as each set of coordinates is reached.

Sensor Fusion
Sensor fusion between IMU and encoders is accomplished through an Unscented Kalman Filter,
which is more forgiving than an Extended Kalman Filter when it comes to calibrating the sensor
odometry. The ZED camera is used for white line detection and generates its own occupancy grid
which is merged into a 2d costmap with the occupancy grid from the LIDAR. The GPS was
chosen to be left out of odometric sensor fusion due to its non continuous nature, which testing
revealed significantly reduced the accuracy of pose estimates.

SLAM (Simultaneous Localization and Mapping)
This year, we switched to an off-the-shelf pose-graph SLAM solution, Google Cartographer.
Cartographer offers a robust and highly configurable solution that permits us high confidence in
the quality of generated maps, especially in noisy environments. Cartographer also has greater
potential for scaling up than our previous particle filter SLAM approach, as its sparse
representation of the environment allows for significantly more space to be mapped before
running into memory usage constraints.

Figure 7: Software stack

Failure Prevention & Risk Mitigation

Hardware Failure
In the case of hardware failure, such as non-functioning sensors, the general troubleshooting
process is as follows. 1) Check that status lights are lit and indicate nominal operation. 2) Check
that connector cables are securely attached. 3) Verify that software nodes are running and
messages are being transmitted. 4) Run ROS troubleshooting like roswtf, rqt_graph, and
view_frames to verify that the node and message graphs are properly set up.

SLAM Failure
In case of SLAM scan matching algorithm failure, the newest odometry information is used to
estimate the current pose of the robot. SLAM nodes are updated using forward projection
according to the optimal solution for the pose-graph.

Testing

Simulations
The robot was simulated in Gazebo. This software was chosen given its integration with ROS is
well documented, it is highly configurable, and it is open source. The sensor’s hardware was
simulated as accurately as possible using Gazebo plugins, which provided all the information
necessary for the controls stack to run. The information was published on different ROS topics to
which our control subscribed to and used to transmit velocity commands back into Gazebo.

On top of this, RViz was used to visualize the information that was going into the navigation stack
which made debugging easier. The map generated by the SLAM algorithm was also visible on

RViz, which made it possible to test how the map
would be built in competition.
Different environments were chosen to resemble
the competition, emphasizing on the presence of
construction cones.

Figure 8: Snapshot of the robot avoiding
obstacles in Gazebo.

Performance Testing to Date
The robot’s sensor systems have been extensively tested with teleoperation, allowing for
verification of sensor fusion and SLAM approaches without using path planning or navigation
software. Individual sensors have also been extensively tested before integration for functionality
verification.

Initial Performance Assessments
In initial autonomous operation mode testing, the robot shows exceptional path-planning and
SLAM capabilities. Maps generated show high accuracy, track corners well, and account for
inaccuracies in odometric pose estimates.

Figure 9: Test map of room shown with RViz

