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Team Information 

Introduction 
The Ground Obstacle Avoidance Transport, affectionately referred to as GOAT, is the first 
submission on behalf of the University of Michigan Ann Arbor to the Intelligent Ground Vehicle 
Competition. GOAT was designed, manufactured, and tested by the University of Michigan 
Intelligent Ground Vehicle Team (UMIGV). Founded in fall 2016, UMIGV is an engineering design 
team comprised of a mix of undergraduate engineering, business, and liberal arts students. Our 
team believes that hands-on education complements classroom learning; any student can learn 
through robotics, regardless of their background. Our work has a meaningful societal impact that 
everyone can learn from. The future is promising for autonomous robotics and we aim to 
incubate our members to meet the challenges of tomorrow in this field.  
 
In our first year, through a lot of trial and error we established and scaled a team, assembled 
various prototype subsystems and hosted several demos to raise awareness and funding for our 
project. In our second year, we scaled up our team started development on GOAT for entry in the 
2018 competition. This third year we’ve continued building up our autonomous platform in 
preparation for the 2019 competition. UMIGV is supported by campus partners including the 
Michigan Library System; Michigan Robotics Institute, the College of Engineering Multidisciplinary 
Design Program; optiMize Social Innovation and the Barger Leadership Institute in the College of 
Literature, Science & Arts. Corporate sponsors include Aptiv, Raytheon, and Ford. 

Team Organization 
UMIGV as a team enables students to gain valuable work experience that complements and 
expands upon classroom instruction. This environment teaches them how to work together 
collaboratively and apply the classroom knowledge in a very hands-on way; students gain soft 
skills and critical thinking insights which strengthens their advantage in a competitive job market. 
UMIGV offers value to the University by furthering its educational mission as well as an 
experience the University can use to recruit future students. To corporate sponsors, the team 
offers a tried and tested talent pool of students who have real-world project experience.   
 



UMIGV is organized in a way to maximize the learning experience. Our leadership is comprised 
of five technical systems leaders, a business development coordinator, engineering director, 
operations director, and team leader. Each technical systems leader and coordinator of the 
leadership served to guide and teach members in their stewardship. The team leader, 
engineering director and operations director enabled the team with resources and strategy. In 
addition, members of the team were not bound to a particular group, allowing for flexibility in 
meeting team backlogs and giving members the chance to find a discipline they truly enjoyed. 

Design Process & Assumptions 
The design process for GOAT was initially started in the summer of 2017 with conceptual 
drawings and since then it has since gone through several design iterations. Our team followed 
the V model of systems engineering and integration as outlined by INCOSE. Each component of 
the robot was broken down into the smallest discrete pieces possible, leading to our five 
technical subsystems: Platform, Power, Sensors, Controls, and Computer Vision. 

 
Figure 1: The V model of systems engineering 
 
UMIGV conducted work using the Agile methodology (Figure 2). Every month, we held sprints - a 
period of time with fixed number of tasks - to leverage all our members participation and 
accommodate incongruent schedules. At the end of each month, subteams would run an 
in-house demo of the work they completed and create technical goals and tasks to complete by 
the next month. 



 
Figure 2: Agile development method 
The team employed industry-standard programming practices. We used GitHub for version 
control and strict style guidelines to ensure our code was clean and maintainable, combined with 
code reviews conducted by technical leads and design reviews with our faculty and corporate 
sponsors. We documented our work on an internal wiki for future generations of the team. We 
also used the wiki as a platform to compile resources and onboard new members. We felt it was 
critical to lay a good foundation in terms of practice and hope to implement continuous 
integration, automated regression testing, and automated builds in the coming years. 
 
Some assumptions made during the design process included: 

● Only splash proofing was required for waterproofing our system 
● In a modular system, a good overall big picture is important and the details can come later 
● Some of our odometry was perfect (neglecting wheel slippage) 

Vehicle Design Innovations 
The exterior panels for the GOAT use a quick attach system to increase serviceability. In 
response to pains with battery swapping and charging, we designed 3d-printed brackets to allow 
faster replacement of batteries through the GOAT’s side panels instead of having to remove the 
top cover and disconnect all of our compute hardware. To facilitate easier stationary testing, we 
designed and implemented a system that would automatically switch between wall power from 
an ATX power supply and the robot’s internal batteries. 

Platform Systems 
The platform system’s objective is to provide a chassis, payload support, and locomotion 
methods for the GOAT. The team utilized various machining methods to produce the platform. 
We utilized 3D printing for rapid prototyping and visualizing concepts, SolidWorks for design 
visualization and spatial layouts, CNC milling and water jetting for precise metalworking, and laser 
cutting to form our plastic sheets. 



Chassis 
Designed with portability, serviceability, and longevity in mind, the chassis is constructed from 1 
inch square aluminum tubing in order to minimize overall system weight and maintain rigidity. The 
dimensions are within the competition requirements at 28 inches wide by 36 inches long and 
well below the height limit. The chassis is secured by custom-made mending plates and 
attachment brackets and secured with common 1/4 inch thread hex nuts and bolts to improve 
serviceability. The brackets and mending plates can be easily manufactured and the hex bolt 
ensures that no stripping will occur. 

Figure 4: The structure and chassis  

Structure  
GOAT features a two-wheel drivetrain with a third free caster wheel to provide a balance 
between power, stability, and maneuverability. Since the front wheels offer a majority of the 
support, the design is forward-heavy (Figure 4). There is no built in suspension, but the caster 
wheels has proven to be useful in balancing the robot on rough terrain. Inside the main chassis of 
the robot, there are two gearboxes with motors, encoders, batteries, and a shelf for all power and 
safety components. The batteries are placed behind the drivetrain to act as a counterweight 
against the fairly heavy gearbox assemblies. We use 3D printed brackets to hold the batteries 
firm against the chassis. Above the main structure, there is a splashproof box containing the 
computers that also serves as a mounting point for our lidar and stereo camera. At the rear of the 
robot, there is a safety pole with an LED safety light and emergency stop button. 



Weatherproofing 
Once the frame was designed, we designed exterior panels to screw into the chassis. These 
panels are made out of 1/4 inch high density polyethylene (HDPE) with weather stripping between 
the panels and chassis, affording us a splashproof platform. 

Power Systems  
The power systems of GOAT incorporates all electronic components and handles power 
distribution and signal routing while serving as an interface between the controls and platform 
systems. 

 
Figure 5: Block Diagram Overview of the Electrical System 

Power Supply  
The robot is powered by two 12V car batteries wired in parallel for a combined total of 32Ah of 
capacity. A 70A circuit breaker is used to connect and disconnect the batteries from the rest of 
the system. The motor controllers, wireless E-Stop module​ ​are wired directly off of the batteries, 



while more sensitive electronics use off-the-shelf DC-DC converters.  Each RoboClaw motor 
controller is configured to operate one side of the robot, each having two motors. 
 

Average Power Consumption Numbers 

Motors (x4)  360W 

USB Hub  5W 

Jetson  15W 

NUC  20W 

E-Stop System  5W 

Total  405W 

These consumption numbers are a conservative estimate based off of manufacturer-supplied 
figures. 

Motors 
The GOAT’s gearboxes are configured with two motors per output shaft, so our motor controllers 
are configured to bridge together the output channels as if it were operating one large motor. 
Using the RoboClaw motor controllers also allowed us to control the currents going through the 
motors. 

 
Figure 6: Performance Curve for the 

motors 
 

A gear ratio of 30:1 was implemented in 
our gearboxes, which gives us a 
necessary rotation speed of 3,100 rpm 
from our motors to go a speed shy of 5 
mph when accounting for the size of 
the wheels. The amount of current that 
could potentially be drawn at this 
speed can go up to around 70A per 
motor, necessitating a current limiting 
mechanism for contingencies such as 

sudden accelerations. We leveraged the built-in current limiting functionality of our motor 
controllers to limit power draw to 40A per side. 



Safety Mechanisms 
Being able to operate our robot safely is a key part of the competition. When enabling the robot, 
main power from the batteries is enabled by flipping a circuit breaker mounted on the outside of 
the bot, easily seen and accessible by anyone. When the robot is turned on, power is supplied to 
a status light, showing its current state. In an effort to make the robot more modular, we used 
bullet connectors to make connections between the various components.  
 
To ensure that no safety issues arise during a run, a wired E-Stop, wireless E-Stop, and speed 
limiter are integrated on the robot using a dedicated Arduino microcontroller. The wireless E-Stop 
we selected has a range of 250 feet, allowing the robot to be safely stopped from anywhere. The 
large red E-Stop button and wireless E-Stop are connected to a digital I/O pin on this Arduino. 
Triggering either E-Stop will cause the microcontroller to send a signal to the shutdown pin on 
the RoboClaw motor controllers. A 5 mph speed limit is imposed on the vehicle by counting the 
encoder ticks with the microcontroller; if the wheels have turned at an average speed of 5mph or 
more for the last second, the same shutdown signal that the E-Stop systems use is sent to the 
motor controllers. 

Sensor Subsystems 
The sensors subsystem interfaces with sensors to collect observations about the world for 
localization and map building. Pose observations are fused to produce an estimate of the robot’s 
current pose and twist in a plane. Odometry and lidar observations are then used for 
simultaneous localization and mapping (SLAM), outputting an 2D occupancy grid of the robot’s 
environment. The controls subsystem then takes the occupancy grid, odometry, and raw lidar 
range data for use in path planning and obstacle avoidance. 

Hardware and Components 
● NVIDIA Jetson TX2 Computer 
● Intel NUC7 NUCI5BNKP Computer 
● NETGEAR GS105Ev2 Switch 
● Velodyne VLP-16 
● Stereolabs ZED Camera 
● Phidgets PhidgetSpatial 3/3/3 High Precision IMU (1044_0B) 
● Phidgets PhidgetEncoder High Speed 4-input Encoder Board (1047_1B) 

○ HEDSS Optical Rotary Encoders (Phidgets 3530_1) 
● Garmin GPS 18x USB 
● Arduino Mega 2560 Rev3 
● Ion Motion Control RoboClaw 2x60A Motor Controller 



Hardware Design Decisions 

NVIDIA Jetson TX2 

The NVIDIA Jetson provides a high-speed discrete GPU suitable for real-time image processing 
and pairs particularly well with the ZED camera, as Stereolabs maintains an SDK specifically for 
the Jetson TX2. The Jetson provides exceptional performance considering its power 
consumption, form factor, and price. In addition, the included development board has integrated 
HDMI, Ethernet, USB, and WiFi to speed up development. 

Intel NUC 

The Intel NUC provides a laptop CPU in a compact package without requiring the expertise of a 
dedicated embedded system. The i5 processor was selected after analyzing the expected 
computational power required to run navigational subroutines, such as path planning. The NUC 
provides all of the amenities to be expected from a high-end ultrabook without the peripherals 
not required for autonomous operation. 

NETGEAR Switch 

Strong long network connectivity was required to capitalize on the ROS’ distributed system 
capabilities. The ZED camera can output 3D video at up to 2K 15FPS, so high bandwidth 
communication was a must. Having an Ethernet switch allows us to quickly link in new devices 
like laptops. Combining this modular system with the nature of ROS allows for quick visualization 
by connecting to the robot’s local network with an Ethernet cable. 

Velodyne VLP-16 

Unexpectedly low obstacles in last year’s competition necessitated that we act quickly to install 
and integrate the Velodyne VLP-16 3D lidar; our previous lidar only scanned in a plane. The 
Velodyne boasts significantly increased range, accuracy, and weatherproofing over the RPLIDAR 
we used last year and has become an integral part of our sensor systems. 

Stereolabs ZED Camera 

The primary draw of the ZED camera is its low cost and high depth sensing range. Compared to 
other RGBD solutions, the ZED camera offers much higher depth cloud resolution through 
software processing of the stereo images. Unlike systems that rely on infrared light, like the 
Kinect, the ZED retains nominal functionality in direct sunlight. The Stereolabs development team 
has provided a rich SDK with ROS integration included, speeding up deployment cycles by 
reducing hardware and embedded development time. 



Phidgets IMU 

The Phidgets ecosystem has a strong draw due to its well-documented and maintained C library 
and ROS integration. Another draw is the relatively low cost of the Phidgets system, but this 
results in less accurate sensor readings with higher noise. 

Phidgets Encoder Board 

As with the IMU, the Phidgets ecosystem is easy to work with and has strong open-source 
support. Unlike the IMU, no off-the-shelf system for differential drive odometry was available, so 
software was developed to interface with the C library and generate twist estimates from wheel 
encoder sensor data. 

Garmin GPS 18x USB 

Last year’s GPS was connected via an RS-232 serial port and required significant jury-rigging to 
get powered as well -- it was designed to be powered from a 12V cigarette lighter socket. The 18x 
USB offers similar functionality, but with a more developer-friendly USB interface. The 18x is 
designed for automotive applications and as such comes weatherproofed, a significant factor in 
our decision to keep using the same model. 

Arduino Mega 

A simple hardware/software layer was required to interface between our ROS layer and the serial 
interface of the RoboClaw motor controllers. Using an Arduino Mega allows for us to process 
ROS messages on a lower-level device, allowing maximum abstraction of the drivetrain to the 
ROS stack. In addition, the RoboClaw’s manufacturer provides and maintains an Arduino library to 
interface with the velocity controls of many motor controllers connected over serial, speeding up 
development and reducing testing time. 

RoboClaw Motor Controllers 

The RoboClaw offers tight integration with velocity commands, having built-in PID position and 
velocity control. In addition, a wide variety of customization and diagnostic options are a 
significant quality-of-life boost while interfacing with hardware. For example, the motor controllers 
monitor battery voltage and motor current and will limit performance characteristics as necessary 
to stay within user-specified operating parameters. 

Software Stack & Control Subsystems 
All of the robot’s software is powered by Robot Operating System (ROS) running on a base 
Ubuntu 16.04 installation. In line with our modular design philosophy, ROS was selected as the 
robot’s operating system due to its extensive modularity, community support, and power 
features. ROS is a distributed networking and communications library allowing multiple devices to 



work together. A ROS computation graph is divided into discrete nodes that can publish and 
subscribe messages to build a network of information. Nodes communicate with each other over 
TCP, allowing them to connect to nodes on other computers through our Ethernet switch. This 
system facilitates the communication between different processes and enables the team to work 
on independent tasks; each software subteam can develop nodes entirely separately from the 
others. 
 
The goal of the controls subsystem is to navigate the robot through a series of waypoints while 
avoiding obstacles with data from the sensors subsystem. The controls subsystem receives an 
occupancy grid, lidar data, odometry data (pose and twist estimates), and coordinate transform 
data, then uses this data to build navigational costmaps and path plan through them. A* was 
chosen as our path planning algorithm because it is optimal and lets the robot reach its goal 
more effectively. Goals are generated by transforming GPS coordinates into the robot’s world 
frame and updating the broadcast goal as each set of coordinates is reached. 

Sensor Fusion 
Sensor fusion between IMU and encoders is accomplished through an Unscented Kalman Filter, 
which is more forgiving than an Extended Kalman Filter when it comes to calibrating the sensor 
odometry. The ZED camera is used for white line detection and generates its own occupancy grid 
which is merged into a 2d costmap with the occupancy grid from the LIDAR. The GPS was 
chosen to be left out of odometric sensor fusion due to its non continuous nature, which testing 
revealed significantly reduced the accuracy of pose estimates. 

SLAM (Simultaneous Localization and Mapping) 
This year, we switched to an off-the-shelf pose-graph SLAM solution, Google Cartographer. 
Cartographer offers a robust and highly configurable solution that permits us high confidence in 
the quality of generated maps, especially in noisy environments. Cartographer also has greater 
potential for scaling up than our previous particle filter SLAM approach, as its sparse 
representation of the environment allows for significantly more space to be mapped before 
running into memory usage constraints. 



Figure 7: Software stack 

   



Failure Prevention & Risk Mitigation  

Hardware Failure 
In the case of hardware failure, such as non-functioning sensors, the general troubleshooting 
process is as follows. 1) Check that status lights are lit and indicate nominal operation. 2) Check 
that connector cables are securely attached. 3) Verify that software nodes are running and 
messages are being transmitted. 4) Run ROS troubleshooting like roswtf, rqt_graph, and 
view_frames to verify that the node and message graphs are properly set up. 

SLAM Failure 
In case of SLAM scan matching algorithm failure, the newest odometry information is used to 
estimate the current pose of the robot. SLAM nodes are updated using forward projection 
according to the optimal solution for the pose-graph. 

Testing 

Simulations 
The robot was simulated in Gazebo. This software was chosen given its integration with ROS is 
well documented, it is highly configurable, and it is open source. The sensor’s hardware was 
simulated as accurately as possible using Gazebo plugins, which provided all the information 
necessary for the controls stack to run. The information was published on different ROS topics to 
which our control subscribed to and used to transmit velocity commands back into Gazebo. 
 
On top of this, RViz was used to visualize the information that was going into the navigation stack 
which made debugging easier. The map generated by the SLAM algorithm was also visible on 

RViz, which made it possible to test how the map 
would be built in competition. 
Different environments were chosen to resemble 
the competition, emphasizing on the presence of 
construction cones.  
 
Figure 8: Snapshot of the robot avoiding 
obstacles in Gazebo. 
 



Performance Testing to Date 
The robot’s sensor systems have been extensively tested with teleoperation, allowing for 
verification of sensor fusion and SLAM approaches without using path planning or navigation 
software. Individual sensors have also been extensively tested before integration for functionality 
verification. 

Initial Performance Assessments 
In initial autonomous operation mode testing, the robot shows exceptional path-planning and 
SLAM capabilities. Maps generated show high accuracy, track corners well, and account for 
inaccuracies in odometric pose estimates. 

 
Figure 9: Test map of room shown with RViz 


