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ABSTRACT 
This paper presents AluminOHM, a robot designed and used by the University of 

Michigan - Dearborn for the 27th Annual Intelligent Ground Vehicle Competition (IGVC). 
AluminOHM, is a newly designed robot based off the original Ohm robot used in previous 
competitions. Changes to the electrical system has allowed the team to experiment with new 
technologies to be used on other robots within the club. The software platform is a continuation 
from the previous year’s competition to allow for a solid foundation for future iterations.  
 
 
INTRODUCTION 

The Intelligent Systems Club of the University of Michigan - Dearborn enters the 2019 
Intelligent Ground Vehicle Competition with 8 new and 3 returning members. The main goal of 
this year’s team is to learn and establish a solid foundation and functionality an understanding in 
Robot Operating System (ROS) to improve the overall robustness of the robot and to mature the 
team’s knowledge of various robotics concepts. This year's strategy is to utilize key successes 
from the existing platform and learning how to improve upon weaknesses in the current and 
previous designs.  

 
The team consists of 10 undergraduate and 1 graduate students, many of whom plan to 

participate in future competitions. The team member composition is displayed in Table 1.  
 

Table 1: Team AluminOHM Composition 
Name Email Class Role 

Siddharth Mahimkar  smahmka@umich.edu Computer Engineering, Senior Captain 

Matthew Abraham mjabraha@umich.edu Computer Science, Senior Software Lead 

Kenneth Topolovec ktopolov@umich.edu Electrical Engineering, Senior Electrical Lead 

Jared Hagerty jwhagert@umich.edu Mechanical Engineering, Senior Mechanical Lead 

Timothy Tapper ttapper@umich.edu Computer Engineering, Junior Software 

Nutan Gangapure nutan@umich.edu Electrical Engineering, Graduate Software 

Caroline Ham cyham@umich.edu Computer Science, Sophomore Software 

Dhimant Khuttan dkhuttan@umich.edu Electrical Engineering, Freshman Electrical 

Joseph Kennedy josephpk@umich.edu Robotics Engineering, Freshman Electrical 

Antonio Alioto afalioto@umich.edu Electrical Engineering, Junior Electrical 

Kyle Sanez ksanez@umich.edu Robotics Engineering, Senior Mechanical 

 
  

1 



This paper will begin with a description of design innovations, then cover mechanical 
electrical and software systems in finer detail. After those sections there will be a detailed 
description of the software strategy, an overview of failure modes, and the performance analysis 
to conclude the report.  
 
DESIGN PROCESS 

This year the team utilized an iterative design approach prioritizing core functionality 
across all subsystems first, through a 3-step design, test, improvement process. Each iteration 
adds new features, and moves from functioning design to functioning design. For example, in 
the first iteration, the features being implemented only encompassed basic lane detection and 
obstacle avoidance, while leaving more advanced features like mapping or high-level path 
planning, for later iterations. 
 
 
DESIGN INNOVATIONS 

This year’s team intended to improve on the previous year’s accomplishments by 
redesigning the vehicle's main software platform, and replacing/adding sensors in areas of 
need. Table 2 describes the areas which needed improvement and why, as well as what was 
completed to improve the vehicle. Tables 3a-c describes the cost of the robot, with “+” 
indicating actual cost to the team this year. The remainder of this report will discuss these 
improvements and how they were implemented. 

 
 

Table 2: Design Innovations and Reasoning 
Areas to be Improved 

or Added Reason for Improvement or Addition Improvement Design 

Redesigned frame Previous frame was made of wood and was 
deteriorating.  Frame is made with aluminum 

Exposing obstacle 
detection data 

Makes it easier to add functionality in future 
iterations 

Raw obstacle data is now 
published in ROS instead of just 
what the control algorithm needs  

Steering Behavior 
Previous control software was given limited 

options for turns to make, making it difficult to 
find a more optimal path 

Decision for best path to take is 
placed in control software, not 
sensor interpreting software 

Weight reduction Robot is difficult to move manually,  reduce 
stress on aging frame 

Replace 2x Lead acid  with 
single 6s LiPo 

 
Table 3a: Mechanical Cost 

Mechanical  Qty Unit cost Price 
Frame (+) 1 $300 $300 

Motors 2 $450 $900 
Plastic (+) 5 $30 $150 

Total Mechanical Cost   $1,350 
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Table 3b: Electrical Cost 
Electrical  Qty Unit cost Price 

LiDAR 1 $5,000 $5,000 
GPS 1 $5,000 $5,000 

Computer 1 $650 $650 
Camera (+) 1 $650 $650 

6s LiPo battery 6 $80 $480 
Battery Management  1 $50 $50 

Motor controller 1 $390 $390 
Misc (+) 1 $100 $100 

Total Electrical Cost   $12,320 
 

Table 3c: Vehicle Cost 
Overall Category  Price 

Electrical $12,320 
Mechanical $1,350 

Estimated Retail Price $13,670 
Actual Cost $1,200 

 
 
MECHANICAL DESIGN 

The vehicle used for this year’s competition was built on the lessons learned from past 
robots. The mechanical design is original to this robot and has not been used in prior 
competitions. The vehicle is made primarily of aluminum and uses a differential drive steering 
control scheme which is aided by two trailing casters. The CAD model of the robot is shown in 
Figure 1. Table 4 and Table 5 provide the dimensions and weight distribution of the robot 
respectively. 

 

  
Figure 1: Robot design  
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Structure design 
The robot is made almost entirely of aluminum with plastic enclosing the frame and 

electronics for environmental protection. The robot has been manufactured from 1 ¼” x 1 ¼” 
aluminum square tubing, bolted together. The center of the frame houses the main electronics 
shown in Figure 2 
 

 
Figure 2: Electronics location 

 
The robot utilizes two rear casters and is propelled by twin 24 volt NPC B81 brushed DC 

motors with integrated 18:1 gearboxes, providing a maximum of .81 horsepower each and a 
maximum of 180 rpm. The tires are 0.33m and work well on a grassy field. There is an 
aluminum mast serves as a mount point for the GPS, IMU, camera, and LiDAR as shown in 
Figure 3. The battery is housed in the front of the robot, along with the computer for 
accessibility 

Table 4: Vehicle dimensions  
 Vehicle Requirements 

Width  0.78m 0.61m - 1.21m 
Length  0.94m 1.21m - 2.13m 
Height  1.79m 1.82m maximum 

Mast height 1.37m - 
Mast length 1.02m - 

 
Table 5: Vehicle weight distribution  

Major Component Qty Weight Total 
NPC motors 2 9 Kg 18 Kg 
Drive wheels 2 4.5 Kg 9 Kg 

Caster  2 2 Kg 4 Kg 
Mast 1 4 Kg 4 Kg 

Frame 1 10 Kg 10 Kg 
Total weight   45 Kg 
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Figure 3: Sensor mast 

 
 
 

ELECTRICAL COMPONENTS AND DESIGN 
 

Overview 
We implemented a system to monitor the battery levels in the robot and to provide an 

interface with the user to display information such as its drive mode (manual/autonomous), its 
drive status (paused/e-stopped/drivable), and battery low voltage warnings. In addition, the 
majority of the electrical components are now encased in an electrical box to isolate them from 
the environment and to make the system much more compact. 

 
Power Distribution System 

There are three main supply voltages that power the components of the robot. 22.2v, 
19v and 12v DC. It is important to note that, although the typical operating voltage of the LiPo 
battery used is 22.2v, at a full charge, each of the six cells charges to 4.2v, resulting in a 25.2v 
supply. Figure 4 shows the component voltage breakdown. 
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Figure 4: Component Voltage Breakdown 

 
Batteries 

A single LiPo battery (specification provided in Table 6) will power the robot. There are 
also 3 additional identical batteries on hand, to swap out with, in the event that one battery is 
running low. The battery is located inside of the components box which allows for easy access 
to swap batteries. Furthermore, we also have a 12AH battery on hand this gives us 
approximately 50% more run time should we decide that we want a longer runtime. 

 
Table 6: Battery specifications 

Capacity Nominal voltage Overcharge  Charge time 

8AH/12AH 22.2v 25.2v  ~3 hrs 

 
 
Battery Management System 

Since the cells of a LiPo battery do not drain evenly, precautions have been taken to 
ensure the safety of the battery. A battery charger with cell balancing capabilities was 
purchased to ensure even cell voltages after each charge. An Arduino Uno is used to monitor 
the voltage levels of the battery, and this is interfaced with a buzzer which will be used to 
indicate to the user when batteries are low. 
 
Power Budget 

Table 7 shows the power draw of major components in the electrical system, an 
additional 2.5% is added to each component to account for efficiency loss and minor 
components. Altogether, the system uses roughly 350W on average, when driving uphill the 
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robot will draw about 750W. The 8000mAh battery operating at 22.2v equates to roughly 175 
Watt-Hours, which will provide the robot with about 40 minutes of runtime at average power and 
approximately 15 mins at maximum power before needing another charge. The 25C rating of 
the battery allows for 200A of current to be drawn at any instant, which is more than enough to 
meet our maximum power needs. 

Table 7: Power Budget 
 

Component Avg Power 
(Amps) 

Max Power 
(Amps)  

Voltage  Source 

Motors 300W (13A) 720W (32A) 24 to 36 volt 22v Battery 

LiDAR1 20W (0.9A) 45W (2.0A) 10v to 30v 22v Battery 

Safety Circuit + 
Diagnostics 

5W (0.4A) 5W (0.4A) 12V 22v Battery 

Computer2 20W (1.0A) 76W (4.0A) 19V 19v Battery  

Powered USB Hub2 5W (1A) 10W (2A)  5v 19v Battery (usb 
port)  

 1

 
 
Safety System 

To ensure the safety of our robot, a wireless relay control system installed to work in 
tandem with a physical emergency stop button to control a solenoid. The wireless estop has 
been tested reliably out to 70m. The relay directly controls the solenoid which controls power to 
the motors.  

The wireless relay remotes have two buttons that are configured into two modes: pause 
and kill shown in Figure 5. “Pause Mode” toggles the robot from disabled to active. It is 
intended for testing or when setting up the robot. “Kill Mode” will immediately cut power to the 
motors by activating the solenoid. In order to re-enable the robot after it has been “killed”, the 
physical emergency stop button must be cycled. This is intended to force the operator to walk 
up to the robot and make sure the robot is safe to operate again.  
 

 
FIgure 5: Pause Kill state machine 

 

1 Lidar will only draw 45W in cold weather 
2 Not factored into drive time, as it is only used to power the computer and computer peripherals. 
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Indicator System 

Ohm has indicators for many different aspects of the robot. The robot makes use of a 
three-colored tower light, each color designated to indicate one of three drive statuses. Figure 6 
shows the operation of the tower light 

 
Figure 6: Tower light operation 

 
 

Sensor Suite  
Ohm use four main input sensors (descriptions provided below) to help it navigate the 

course. These sensors are all processed on a laptop computer which then sends the 
appropriate commands to the motor controller as shown in Figure 7. 

 

 
 

Figure 7: Hardware Interfaces 
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LiDAR 

A SICK LMS-111 Lidar is used due to its high reliability and accuracy and has been 
implemented in various weather conditions. The scan range is 20m at a frequency of 25 Hz with 
an angular resolution of 0.25°, and has 270° field of view.  
 
Camera 

A Point Grey (Flir) Chameleon3 3.2 MP camera was selected to assist the robot in 
detecting the lanes, and potholes due to its significantly higher image quality, higher frame rate 
and IR noise reduction compared to a traditional webcam. The camera is fitted with 110° field of 
view lens and a linear polarizing filter. The camera resolution is configured to output at a 
resolution of 2048 x 1536 pixels, it is connected to the laptop via USB 3.0, and interfaced with 
OpenCV. 

 
GPS 

AluminOHM uses the VectorNav VN-300 dual antenna GPS. This system is used due to 
the increased positional and heading accuracy compared to a Garmin Marine GPS 19x HVS 
system the the team has used in the past. It also has a built-in 10-axis IMU which it uses in 
conjunction with a built-in Kalman filter to prevent large jumps in heading and position. The IMU 
is also used for navigation. 

  
 
Encoders 

To get accurate odometry, AluminOHM uses two Kubler Turck 200 PPR (pulses per 
revolution) quadrature encoders, one mounted on each motor. These encoders are connected 
to the Roboteq motor controller, which handles pulse counting. These values are polled by the 
software system to calculate the robot's position. 
 
Processor 

 
AluminOHM uses an Intel NUC small form factor PC to perform all computations and is 

the main interface for all sensors. It uses an I7-6770HQ quad core CPU with 8GB of RAM, 
running on Ubuntu 16.04 with ROS Kinetic. 
 
 
SOFTWARE 

 
Overview 

AluminOHM's software in 2019 is a continuation of our goals from from 2018, namely 
system modularity, and establishing a baseline for future work. AluminOHM's software 
incorporates two new features: the utilization of the ROS Navigation Stack and slam_gmapping 
packages, and the introduction of a state machine. There were also several smaller changes to 
hardware interfaces to support the two major changes. 

 
Navigation and Obstacle Avoidance 

Navigation is handled by the ROS Navigation Stack (NavStack). The task of goal finding 
is broken into two parts, a global planner and a local planner. The global planner generates a 
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path as a series of different positions and orientations to reach a waypoint. The local planner 
then attempts to follow this path while avoiding nearby obstacles.  

In order to avoid obstacles, the NavStack creates an occupancy map and populates it 
with data from the camera and LiDAR. This map can also be initialize with a previously 
generated map, allowing us to use previous runs to to improve generated paths for the current 
run. We set the cell size of the map to 256 cm2, as this allows the robot enough precision to 
mark non-traversable space without losing free space, while also keeping the size of the map in 
memory fairly low around 100,000 grid cells. 

 
Figure 8: Navigation and SLAM subsystem 

 
SLAM 
In order to localize, AluminOHM uses slam_gmapping to produce a transform between the map 
and odometry positions. GMapping is fed the raw LiDAR scans and odometry to produce this 
transform. However, in certain parts of the course where obstacles are further away than the 
range of our LiDAR, we cannot use it alone to localize. To address this problem we convert the 
point clouds produced by the camera into LiDAR scans and provide this to GMapping as a 
secondary sensor, allowing the robot to localize anywhere in the field. 
 
Lane and Pothole detection 

To detect/avoid lanes and potholes the robot treats them both as obstacles. Since both 
types of obstacles are white, the robot looks for white in the image, and calculates how far those 
white pixels are relative to the robot. The camera detects objects by first doing a perspective 
transform to effectively give a top down view of the area it sees and flattens any 3D object into a 
2D space. Since the field can be considered flat for the entire field of view, it is safe to assume 
that an object at a given pixel coordinate has an associated distance. Once the calibration is 
done, white pixel coordinates are passed into a line equation (shown below) which outputs the 
distances as a point cloud in meters. The point cloud data is then passed to the map.  

 a pU =  * X + b  
c pV =  * Y + d  

 
Where U and V are the X and Y distance respectively in meters relative to the robot. a,b,c,d 
are constants. Xp and Yp are the pixel coordinates. Figure 9 shows the the process, Figure 10 
shows the perspective transform and Figure 11 shows the thresholding. 
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Figure 8: Vision algorithm  
 

 
Figure 9: Before and after performing a perspective transform 

 

  
Figure 10: Finding the white lines 

 
Goal Selection 

At the beginning of the run, the robot loads a list of waypoints from a previously prepared 
text file. Waypoints may either be in DMS format, decimal lat/lon pairs, or as XY coordinates. 
Each waypoint is composed of a position and a target heading. The list of waypoints can also be 
related to a specific frame of reference, such as robot oriented, or map oriented. Once the goals 
have been loaded from the text file, the goal selection module feeds the waypoints to the 
NavStack, as each waypoint is reached. 
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Figure 11: Robot state machine and associated modules 

 
State Machine 

AluminOHM uses two small state machine to handle switching driving modes and to 
handle kill and pause signals from the emergency stop system. This helps with separating out 
functionality that was previously copied across multiple components, decreasing coupling and 
making it easier to switch out components. Signals come into the state machines from the 
joystick and from the Arduino controller, which listens to the emergency stop system. The state 
is then published to all other software components. 
 

The system is comprised of five states: Manual (M), Autonomous (A), Pause (P), Kill (K) 
and Low Voltage (L), R is a reset condition. The software subscribes to internal signals from 
other nodes as well as signals from the arduino. The machine state is then published out for the 
tower light and the controls system. Manual is the default state for safety concerns and as such 
is the only state that the Kill state can go to unless it receives a low voltage signal. On startup 
the machine is in the manual state. Figure 12 shows a high level diagram for our robot 
controller state machine. 
 

 
Figure 12: Robot Controller state machine. 
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FAILURE MODES 
Table 8a-c describes the main points of failure for mechanical, electrical and software 

subsystems, along with severity and mitigation actions.  
 

Table 8a: Failure Modes Mechanical 
Possible Failures Likelihood Severity  Action 
Water infiltration 

damaging 
components 

Low  
High, Damaged 

components may end 
competition 

Panels deflect water and 
electronics are enclosed. 

Payload Low Moderate, End of run Payload sits in an enclosure 
and is tied down 

Casters dig into the 
ground during backup Low  Moderate, performance 

degradation 
Reduce weight on back of 

robot  
 

Table 8b: Failure Modes Electrical 
Possible Failures Likelihood Severity  Action 
Components come 

loose Low  Moderate, End of run Tie lines together and secure 
to electrical box 

Battery dies early Low Moderate, End of run Charge batteries not in use, 
don’t over use battery 

Physical or wireless 
e-stop fails Low  High, End of run, 

possible DQ  

Have spare relay, thorough 
testing to ensure risk 

mitigation  
 

Table 8c: Failure Modes Software 
Possible Failures Likelihood Severity  Action 

Poor GPS Fix Moderate  Moderate, performance 
degradation 

Convert waypoints to 
robot-local frame, wait for 

better conditions 
Inconsistencies in 

map Low Moderate, performance 
degradation 

Correct inconsistencies in 
the map using image editors 

Localization 
inaccuracy Moderate Moderate, performance 

degradation  

Have spare relay, thorough 
testing to ensure risk 

mitigation  
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PERFORMANCE TESTING 
 

Table 9: Performance Summary 
Category Requirements Analysis 

Speed 2.2m/s Tune software to limit speed as 
little as necessary 

Ramp Capable of climbing up to 30° 
incline.  

Tested on varying inclines. 
Confident to 30° 

Reaction Times Maintain a system update rate of 
10Hz 

Take advantage of configurable 
output rates, and limit rates in 

software where necessary 

Battery Life 30 minutes on grass with gently 
rolling slopes 

Performed endurance test on 
grass. Actual runtime ~1 hour 

Distance of Obstacle 
Detection 

Maximum obstacle detection with 
LiDAR is 20m. Robot reacts 

within 2m. 

Tune robot to react within larger 
radius if necessary 

Distance of Lane 
Detection Detect white lines 

 Camera can effectively see only 
~4m ahead and 1.5m on either 

side 
Behavior in Dead end 

situations 
Capable of navigating out of a 

dead end 
Have robot turn in place/backup 

until a path can be found 
 

  
CONCLUSION 

This year the main goal was to have a solid foundation in software design and 
implementation for future iterations of the robot. Utilizing the iterative design process, we have 
constructed a durable and lightweight aluminum platform, implemented core software 
functionalities, robust safety system and laid the groundwork for future iterations. 
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