

University of Michigan Dearborn
AluminOHM

Team Members:
Siddharth Mahimkar, Matthew Abraham, Kenneth Topolovec,

Jared Hagerty, Timothy Tapper, Nutan Gangapure, Caroline Ham,
Dhimant Khuttan, Joseph Kennedy, Antonio Alioto, Kyle Sanez

Faculty Advisors: Michael Putty Ph.D

DATE: 5/15/2018
Team captain: Siddharth Mahimkar

I, Michael Putty Ph.D of the Department of Electrical and Computer Engineering at the
University of Michigan Dearborn, certify that the design and development of AluminOHM is
significant and unique, and is equivalent to what might be awarded credit in a senior design
course.

X___

ABSTRACT
This paper presents AluminOHM, a robot designed and used by the University of

Michigan - Dearborn for the 27th Annual Intelligent Ground Vehicle Competition (IGVC).
AluminOHM, is a newly designed robot based off the original Ohm robot used in previous
competitions. Changes to the electrical system has allowed the team to experiment with new
technologies to be used on other robots within the club. The software platform is a continuation
from the previous year’s competition to allow for a solid foundation for future iterations.

INTRODUCTION

The Intelligent Systems Club of the University of Michigan - Dearborn enters the 2019
Intelligent Ground Vehicle Competition with 8 new and 3 returning members. The main goal of
this year’s team is to learn and establish a solid foundation and functionality an understanding in
Robot Operating System (ROS) to improve the overall robustness of the robot and to mature the
team’s knowledge of various robotics concepts. This year's strategy is to utilize key successes
from the existing platform and learning how to improve upon weaknesses in the current and
previous designs.

The team consists of 10 undergraduate and 1 graduate students, many of whom plan to

participate in future competitions. The team member composition is displayed in Table 1.

Table 1: Team AluminOHM Composition
Name Email Class Role

Siddharth Mahimkar smahmka@umich.edu Computer Engineering, Senior Captain

Matthew Abraham mjabraha@umich.edu Computer Science, Senior Software Lead

Kenneth Topolovec ktopolov@umich.edu Electrical Engineering, Senior Electrical Lead

Jared Hagerty jwhagert@umich.edu Mechanical Engineering, Senior Mechanical Lead

Timothy Tapper ttapper@umich.edu Computer Engineering, Junior Software

Nutan Gangapure nutan@umich.edu Electrical Engineering, Graduate Software

Caroline Ham cyham@umich.edu Computer Science, Sophomore Software

Dhimant Khuttan dkhuttan@umich.edu Electrical Engineering, Freshman Electrical

Joseph Kennedy josephpk@umich.edu Robotics Engineering, Freshman Electrical

Antonio Alioto afalioto@umich.edu Electrical Engineering, Junior Electrical

Kyle Sanez ksanez@umich.edu Robotics Engineering, Senior Mechanical

1

This paper will begin with a description of design innovations, then cover mechanical
electrical and software systems in finer detail. After those sections there will be a detailed
description of the software strategy, an overview of failure modes, and the performance analysis
to conclude the report.

DESIGN PROCESS

This year the team utilized an iterative design approach prioritizing core functionality
across all subsystems first, through a 3-step design, test, improvement process. Each iteration
adds new features, and moves from functioning design to functioning design. For example, in
the first iteration, the features being implemented only encompassed basic lane detection and
obstacle avoidance, while leaving more advanced features like mapping or high-level path
planning, for later iterations.

DESIGN INNOVATIONS

This year’s team intended to improve on the previous year’s accomplishments by
redesigning the vehicle's main software platform, and replacing/adding sensors in areas of
need. Table 2 describes the areas which needed improvement and why, as well as what was
completed to improve the vehicle. Tables 3a-c describes the cost of the robot, with “+”
indicating actual cost to the team this year. The remainder of this report will discuss these
improvements and how they were implemented.

Table 2: Design Innovations and Reasoning
Areas to be Improved

or Added Reason for Improvement or Addition Improvement Design

Redesigned frame Previous frame was made of wood and was
deteriorating. Frame is made with aluminum

Exposing obstacle
detection data

Makes it easier to add functionality in future
iterations

Raw obstacle data is now
published in ROS instead of just
what the control algorithm needs

Steering Behavior
Previous control software was given limited

options for turns to make, making it difficult to
find a more optimal path

Decision for best path to take is
placed in control software, not
sensor interpreting software

Weight reduction Robot is difficult to move manually, reduce
stress on aging frame

Replace 2x Lead acid with
single 6s LiPo

Table 3a: Mechanical Cost

Mechanical Qty Unit cost Price
Frame (+) 1 $300 $300

Motors 2 $450 $900
Plastic (+) 5 $30 $150

Total Mechanical Cost $1,350

2

Table 3b: Electrical Cost
Electrical Qty Unit cost Price

LiDAR 1 $5,000 $5,000
GPS 1 $5,000 $5,000

Computer 1 $650 $650
Camera (+) 1 $650 $650

6s LiPo battery 6 $80 $480
Battery Management 1 $50 $50

Motor controller 1 $390 $390
Misc (+) 1 $100 $100

Total Electrical Cost $12,320

Table 3c: Vehicle Cost
Overall Category Price

Electrical $12,320
Mechanical $1,350

Estimated Retail Price $13,670
Actual Cost $1,200

MECHANICAL DESIGN

The vehicle used for this year’s competition was built on the lessons learned from past
robots. The mechanical design is original to this robot and has not been used in prior
competitions. The vehicle is made primarily of aluminum and uses a differential drive steering
control scheme which is aided by two trailing casters. The CAD model of the robot is shown in
Figure 1. Table 4 and Table 5 provide the dimensions and weight distribution of the robot
respectively.

Figure 1: Robot design

3

Structure design
The robot is made almost entirely of aluminum with plastic enclosing the frame and

electronics for environmental protection. The robot has been manufactured from 1 ¼” x 1 ¼”
aluminum square tubing, bolted together. The center of the frame houses the main electronics
shown in Figure 2

Figure 2: Electronics location

The robot utilizes two rear casters and is propelled by twin 24 volt NPC B81 brushed DC

motors with integrated 18:1 gearboxes, providing a maximum of .81 horsepower each and a
maximum of 180 rpm. The tires are 0.33m and work well on a grassy field. There is an
aluminum mast serves as a mount point for the GPS, IMU, camera, and LiDAR as shown in
Figure 3. The battery is housed in the front of the robot, along with the computer for
accessibility

Table 4: Vehicle dimensions
 Vehicle Requirements

Width 0.78m 0.61m - 1.21m
Length 0.94m 1.21m - 2.13m
Height 1.79m 1.82m maximum

Mast height 1.37m -
Mast length 1.02m -

Table 5: Vehicle weight distribution

Major Component Qty Weight Total
NPC motors 2 9 Kg 18 Kg
Drive wheels 2 4.5 Kg 9 Kg

Caster 2 2 Kg 4 Kg
Mast 1 4 Kg 4 Kg

Frame 1 10 Kg 10 Kg
Total weight 45 Kg

4

Figure 3: Sensor mast

ELECTRICAL COMPONENTS AND DESIGN

Overview
We implemented a system to monitor the battery levels in the robot and to provide an

interface with the user to display information such as its drive mode (manual/autonomous), its
drive status (paused/e-stopped/drivable), and battery low voltage warnings. In addition, the
majority of the electrical components are now encased in an electrical box to isolate them from
the environment and to make the system much more compact.

Power Distribution System

There are three main supply voltages that power the components of the robot. 22.2v,
19v and 12v DC. It is important to note that, although the typical operating voltage of the LiPo
battery used is 22.2v, at a full charge, each of the six cells charges to 4.2v, resulting in a 25.2v
supply. Figure 4 shows the component voltage breakdown.

5

Figure 4: Component Voltage Breakdown

Batteries

A single LiPo battery (specification provided in Table 6) will power the robot. There are
also 3 additional identical batteries on hand, to swap out with, in the event that one battery is
running low. The battery is located inside of the components box which allows for easy access
to swap batteries. Furthermore, we also have a 12AH battery on hand this gives us
approximately 50% more run time should we decide that we want a longer runtime.

Table 6: Battery specifications

Capacity Nominal voltage Overcharge Charge time

8AH/12AH 22.2v 25.2v ~3 hrs

Battery Management System

Since the cells of a LiPo battery do not drain evenly, precautions have been taken to
ensure the safety of the battery. A battery charger with cell balancing capabilities was
purchased to ensure even cell voltages after each charge. An Arduino Uno is used to monitor
the voltage levels of the battery, and this is interfaced with a buzzer which will be used to
indicate to the user when batteries are low.

Power Budget

Table 7 shows the power draw of major components in the electrical system, an
additional 2.5% is added to each component to account for efficiency loss and minor
components. Altogether, the system uses roughly 350W on average, when driving uphill the

6

robot will draw about 750W. The 8000mAh battery operating at 22.2v equates to roughly 175
Watt-Hours, which will provide the robot with about 40 minutes of runtime at average power and
approximately 15 mins at maximum power before needing another charge. The 25C rating of
the battery allows for 200A of current to be drawn at any instant, which is more than enough to
meet our maximum power needs.

Table 7: Power Budget

Component Avg Power
(Amps)

Max Power
(Amps)

Voltage Source

Motors 300W (13A) 720W (32A) 24 to 36 volt 22v Battery

LiDAR1 20W (0.9A) 45W (2.0A) 10v to 30v 22v Battery

Safety Circuit +
Diagnostics

5W (0.4A) 5W (0.4A) 12V 22v Battery

Computer2 20W (1.0A) 76W (4.0A) 19V 19v Battery

Powered USB Hub2 5W (1A) 10W (2A) 5v 19v Battery (usb
port)

 1

Safety System

To ensure the safety of our robot, a wireless relay control system installed to work in
tandem with a physical emergency stop button to control a solenoid. The wireless estop has
been tested reliably out to 70m. The relay directly controls the solenoid which controls power to
the motors.

The wireless relay remotes have two buttons that are configured into two modes: pause
and kill shown in Figure 5. “Pause Mode” toggles the robot from disabled to active. It is
intended for testing or when setting up the robot. “Kill Mode” will immediately cut power to the
motors by activating the solenoid. In order to re-enable the robot after it has been “killed”, the
physical emergency stop button must be cycled. This is intended to force the operator to walk
up to the robot and make sure the robot is safe to operate again.

FIgure 5: Pause Kill state machine

1 Lidar will only draw 45W in cold weather
2 Not factored into drive time, as it is only used to power the computer and computer peripherals.

7

Indicator System

Ohm has indicators for many different aspects of the robot. The robot makes use of a
three-colored tower light, each color designated to indicate one of three drive statuses. Figure 6
shows the operation of the tower light

Figure 6: Tower light operation

Sensor Suite
Ohm use four main input sensors (descriptions provided below) to help it navigate the

course. These sensors are all processed on a laptop computer which then sends the
appropriate commands to the motor controller as shown in Figure 7.

Figure 7: Hardware Interfaces

8

LiDAR

A SICK LMS-111 Lidar is used due to its high reliability and accuracy and has been
implemented in various weather conditions. The scan range is 20m at a frequency of 25 Hz with
an angular resolution of 0.25°, and has 270° field of view.

Camera

A Point Grey (Flir) Chameleon3 3.2 MP camera was selected to assist the robot in
detecting the lanes, and potholes due to its significantly higher image quality, higher frame rate
and IR noise reduction compared to a traditional webcam. The camera is fitted with 110° field of
view lens and a linear polarizing filter. The camera resolution is configured to output at a
resolution of 2048 x 1536 pixels, it is connected to the laptop via USB 3.0, and interfaced with
OpenCV.

GPS

AluminOHM uses the VectorNav VN-300 dual antenna GPS. This system is used due to
the increased positional and heading accuracy compared to a Garmin Marine GPS 19x HVS
system the the team has used in the past. It also has a built-in 10-axis IMU which it uses in
conjunction with a built-in Kalman filter to prevent large jumps in heading and position. The IMU
is also used for navigation.

Encoders

To get accurate odometry, AluminOHM uses two Kubler Turck 200 PPR (pulses per
revolution) quadrature encoders, one mounted on each motor. These encoders are connected
to the Roboteq motor controller, which handles pulse counting. These values are polled by the
software system to calculate the robot's position.

Processor

AluminOHM uses an Intel NUC small form factor PC to perform all computations and is

the main interface for all sensors. It uses an I7-6770HQ quad core CPU with 8GB of RAM,
running on Ubuntu 16.04 with ROS Kinetic.

SOFTWARE

Overview

AluminOHM's software in 2019 is a continuation of our goals from from 2018, namely
system modularity, and establishing a baseline for future work. AluminOHM's software
incorporates two new features: the utilization of the ROS Navigation Stack and slam_gmapping
packages, and the introduction of a state machine. There were also several smaller changes to
hardware interfaces to support the two major changes.

Navigation and Obstacle Avoidance

Navigation is handled by the ROS Navigation Stack (NavStack). The task of goal finding
is broken into two parts, a global planner and a local planner. The global planner generates a

9

path as a series of different positions and orientations to reach a waypoint. The local planner
then attempts to follow this path while avoiding nearby obstacles.

In order to avoid obstacles, the NavStack creates an occupancy map and populates it
with data from the camera and LiDAR. This map can also be initialize with a previously
generated map, allowing us to use previous runs to to improve generated paths for the current
run. We set the cell size of the map to 256 cm2, as this allows the robot enough precision to
mark non-traversable space without losing free space, while also keeping the size of the map in
memory fairly low around 100,000 grid cells.

Figure 8: Navigation and SLAM subsystem

SLAM
In order to localize, AluminOHM uses slam_gmapping to produce a transform between the map
and odometry positions. GMapping is fed the raw LiDAR scans and odometry to produce this
transform. However, in certain parts of the course where obstacles are further away than the
range of our LiDAR, we cannot use it alone to localize. To address this problem we convert the
point clouds produced by the camera into LiDAR scans and provide this to GMapping as a
secondary sensor, allowing the robot to localize anywhere in the field.

Lane and Pothole detection

To detect/avoid lanes and potholes the robot treats them both as obstacles. Since both
types of obstacles are white, the robot looks for white in the image, and calculates how far those
white pixels are relative to the robot. The camera detects objects by first doing a perspective
transform to effectively give a top down view of the area it sees and flattens any 3D object into a
2D space. Since the field can be considered flat for the entire field of view, it is safe to assume
that an object at a given pixel coordinate has an associated distance. Once the calibration is
done, white pixel coordinates are passed into a line equation (shown below) which outputs the
distances as a point cloud in meters. The point cloud data is then passed to the map.

 a pU = * X + b
c pV = * Y + d

Where U and V are the X and Y distance respectively in meters relative to the robot. a,b,c,d
are constants. Xp and Yp are the pixel coordinates. Figure 9 shows the the process, Figure 10
shows the perspective transform and Figure 11 shows the thresholding.

10

Figure 8: Vision algorithm

Figure 9: Before and after performing a perspective transform

Figure 10: Finding the white lines

Goal Selection

At the beginning of the run, the robot loads a list of waypoints from a previously prepared
text file. Waypoints may either be in DMS format, decimal lat/lon pairs, or as XY coordinates.
Each waypoint is composed of a position and a target heading. The list of waypoints can also be
related to a specific frame of reference, such as robot oriented, or map oriented. Once the goals
have been loaded from the text file, the goal selection module feeds the waypoints to the
NavStack, as each waypoint is reached.

11

Figure 11: Robot state machine and associated modules

State Machine

AluminOHM uses two small state machine to handle switching driving modes and to
handle kill and pause signals from the emergency stop system. This helps with separating out
functionality that was previously copied across multiple components, decreasing coupling and
making it easier to switch out components. Signals come into the state machines from the
joystick and from the Arduino controller, which listens to the emergency stop system. The state
is then published to all other software components.

The system is comprised of five states: Manual (M), Autonomous (A), Pause (P), Kill (K)
and Low Voltage (L), R is a reset condition. The software subscribes to internal signals from
other nodes as well as signals from the arduino. The machine state is then published out for the
tower light and the controls system. Manual is the default state for safety concerns and as such
is the only state that the Kill state can go to unless it receives a low voltage signal. On startup
the machine is in the manual state. Figure 12 shows a high level diagram for our robot
controller state machine.

Figure 12: Robot Controller state machine.

12

https://www.draw.io/?page-id=yudPgESmxO8ihSKTI6g0&scale=auto#G1_SjPqtMZ9eYHD84RaHVvcyDZvhuejR0w

FAILURE MODES
Table 8a-c describes the main points of failure for mechanical, electrical and software

subsystems, along with severity and mitigation actions.

Table 8a: Failure Modes Mechanical
Possible Failures Likelihood Severity Action
Water infiltration

damaging
components

Low
High, Damaged

components may end
competition

Panels deflect water and
electronics are enclosed.

Payload Low Moderate, End of run Payload sits in an enclosure
and is tied down

Casters dig into the
ground during backup Low Moderate, performance

degradation
Reduce weight on back of

robot

Table 8b: Failure Modes Electrical
Possible Failures Likelihood Severity Action
Components come

loose Low Moderate, End of run Tie lines together and secure
to electrical box

Battery dies early Low Moderate, End of run Charge batteries not in use,
don’t over use battery

Physical or wireless
e-stop fails Low High, End of run,

possible DQ

Have spare relay, thorough
testing to ensure risk

mitigation

Table 8c: Failure Modes Software
Possible Failures Likelihood Severity Action

Poor GPS Fix Moderate Moderate, performance
degradation

Convert waypoints to
robot-local frame, wait for

better conditions
Inconsistencies in

map Low Moderate, performance
degradation

Correct inconsistencies in
the map using image editors

Localization
inaccuracy Moderate Moderate, performance

degradation

Have spare relay, thorough
testing to ensure risk

mitigation

13

PERFORMANCE TESTING

Table 9: Performance Summary
Category Requirements Analysis

Speed 2.2m/s Tune software to limit speed as
little as necessary

Ramp Capable of climbing up to 30°
incline.

Tested on varying inclines.
Confident to 30°

Reaction Times Maintain a system update rate of
10Hz

Take advantage of configurable
output rates, and limit rates in

software where necessary

Battery Life 30 minutes on grass with gently
rolling slopes

Performed endurance test on
grass. Actual runtime ~1 hour

Distance of Obstacle
Detection

Maximum obstacle detection with
LiDAR is 20m. Robot reacts

within 2m.

Tune robot to react within larger
radius if necessary

Distance of Lane
Detection Detect white lines

 Camera can effectively see only
~4m ahead and 1.5m on either

side
Behavior in Dead end

situations
Capable of navigating out of a

dead end
Have robot turn in place/backup

until a path can be found

CONCLUSION

This year the main goal was to have a solid foundation in software design and
implementation for future iterations of the robot. Utilizing the iterative design process, we have
constructed a durable and lightweight aluminum platform, implemented core software
functionalities, robust safety system and laid the groundwork for future iterations.

14

