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2 Conduct of design process, team identification and team organization  

2.1 Introduction  
 
The Nightmare team consists of twenty students with various backgrounds, along with several advisors as 
well as sponsors.   They were grouped into functionality teams including:  
Drive-By-Wire, LiDAR & RADAR, Computer Vision, Path Planning & Control. 
The grouping facilitates ease of assigning specific tasks and responsibilities.   

2.2 Organization  
 
To keep everyone on the same page, an organization chart was created using iMindMap software as shown 
below.  The chart was very useful in providing ownership, and hence urgency, of the responsibility for each 
team or group, at a glance.   
 

2.3 Design assumptions and design process  
 
The iMindMap chart/project reports was updated on a weekly basis after each weekly meeting, to include 
the timing for delivery of the tasks by each group, as well as highlighting of deadlines, as shown below. 
This has also proven to be very effective in getting done on time or close to on time.   

3 Effective innovations in your vehicle design  

3.1 Innovative concept(s) from other vehicles designed into your vehicle  
 
There are many concepts from other vehicles that the teams looked at in developing the functions of their 
subsystems.  They include 
 

ROS IDE.  Robot Operating System (ROS) is an integrated development environment (IDE) 
that allows collaborative programming with libraries of tools to create complex robotics 
systems. 

AI Programs. The field of Artificial intelligence (AI) has advanced by leaps and bounds the past 
several years. Computers can now speak like a real person, be trained to recognize the face 
of a person and identify objects.  

 Robotics Technologies.  Embedded controllers, electronic devices, sensors and actuators have  
has also advanced at exponential rate with MEMS and nanotech the past several years. 

Automotive & Robotics Standards.  The auto and robotics standards are results of extensive 
rigorous tests, and hence have high reliability and quality. 

3.2 Innovative technology applied to your vehicle  
 
We applied the following specific technologies from the above to the Self-Drive SequoiaSD. 
Navigation Stack, Gazebo, RViz from ROS IDE.   
Computer vision algorithm including Convolution Neural Networks. Stereo camera, Kinect, Lidar, IMU, 
Microcontrollers, etc. from the Robotics Technologies. 
GPS, automotive connectors, motors, etc., from Automotive & Robotics Standard Components. 
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4 Description of mechanical design  

4.1 Overview  
 
Drive-By-Wire Team 
Ahmad Kafrouny, Ahmad Abdelhafiz, Ghassan Abed, Nashwan Sebi, Narendra Kintali, Kaiqiao	Tian 
 
Goal.   The goal for the team is to develop and implement a joystick by-wire system for controlling the steering, 
throttle, brake and forward-reverse shift of the vehicle.  The goal is to have a high-level autonomous driving decision 
software control the drive-by-wire system. 
 
Solutions.   The team successfully adapted, design and implemented the following subsystems into the GEM2.     
 
Mechanical design and components: 
 
Steer by wire System: 
   The steering system in this electric car is mechanical system; the steering system has been modified by adding 
a stepper motor to drive the steering shaft. 
The stepper motor drives the steering shaft by timing pulleys and timing belt where one of the pulleys fixed to the 
stepper motor shaft and the other pulley was fixed to the steering shaft. 
The system is equipped with potentiometer attached to the timing belt, the potentiometer is essential to indicate the 
steering shaft rotation angle during driving by wire mode. 
 

    
 
Brake by Wire System: 

brake-by-wire technology is the ability to control brakes actuator through a Microprocessor. Anti-lock Brake 
System (ABS) , Electric Park Brake (EPB) , Electronic Stability Control (ESC) are also forms of brake-by-wire. 

Brake-by-Wire system replaces traditional components like vacuum servo and master cylinder with 
electronic sensors and actuators. Drive-by-wire technology in automotive industry replaces the traditional mechanical 
and hydraulic control systems with electronic control systems using electromechanical actuators. In Our vehicle, we 
installed an Electric Over Hydraulic (EOH) actuator DX1600 from Dexter(which is commonly used for trailers) as 
the main actuator for the front brakes.The front brake lines are connected directly to Dexter actuator by using double 
banjo bolts. The traditional master cylinder has 2 10mm inlets for front and rear brakes. The EOH actuator has ¼” 
inlet. Therefore we had to cut new thredes for the original double banjo bolt to make it compatible with EOH actuator 
inlet threads. 

 
Dexter DX1600 is capable to generate 1600psi hydraulic-pressure in the brake lines within 700ms using 12v. 

Since our pressure gauge shows a maximum 800psi when  the brake pedal is fully pressed using the traditional master 
cylinder, therefore we only drive the actuator by providing 6v driven by PWM from the Arduino microcontroller that 
is connected to H-Bridge. 
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The rear brakes are still connected to the traditional mechanical master cylinder and the front brakes outlet 

on the master cylinder has been securely locked. 

 
Normal Driving Mode: 

The driver is still able to press the brake pedal to stop the car by creating pressure in the rear brake lines and 
actuate the rear brakes only. 
Autonomous Driving Mode: 

The Arduino is sending a PWM signal to H-Bridge which is directly connected to the control pin on the EOH 
actuator to control the pressure created by sending 0 to 6 volts to the actuator. 

Since the EOH actuator builds-up a lot of heat in the system if it is operated for a long time when the car is 
in standstill mode which can damage the internal components, we installed a linear actuator to take over the EOH 
place. 

 
This linear actuator is connected directly to emergency brake wire. It works as an Emergency Park Brake 

(EPB). After the car comes to a full stop and the speed becomes zero, the Arduino starts a 1 sec countdown. After 1 
second the linear actuator pulls the hand brake lines and EOH releases the hydraulic pressure. When the system 
receives a drive command from ROS or the driver presses the gas pedal in normal driving mode, the linear actuator 
releases the brakes to let the car move forward. 
 
Dexter DX1600 specs: 

·        Vented design releases pressure, moisture, and heat to protect the internal components 
o   Allows actuator to be mounted in places where most actuators would overheat 

·        Electronic, proportional pressure valve ensures smooth, even braking 
·        Self-priming pump reduces time needed for brake bleeding 
·        Enhanced wiring detects dangerous current levels and shuts down actuator electronics in the event of a 
surge 
·        Durable aluminum housing and stainless steel fasteners resist corrosion 
·        Goretite seals protect the circuit board from the elements 
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·        DOT compliant 
·        Maximum output pressure: 1,600 psi 
·        Dimensions: 11" long x 6" wide x 7" tall 
·        Mounting hole diameter: 1/4" 
·        Hydraulic port size: 3/16" 
·        Power: 12V DC 

 

 
 
 

4.2 Description of drive-by-wire kit  
 
A laptop computer with ROS was integrated to a CAN Hub (Dataspeed ADAS Kit) so it can control the steering, 
throttle and brake systems as shown in the diagram below.   C-programs were written to actuate and test the 
components.   
 
    
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Key problems 

overcome.    
 
1) The EPAS in its factory setting was meant only for low torque assisted steering. It was not initially capable of 

turning the steering column on its own. We had to solve this issue by writing custom firmware to allow the motor 
to turn the column without having additional force applied to the steering wheel by the driver. 

 
2) Calibration and tuning was required to rotate the motor smoothly.  We achieve this by updating the firmware for 

EPAS controller, via changing the PID parameter values for EPAS controller and adding a low pass filter while 
sending the command to avoid override error.  

 

CAN 
controlled 
EPAS 

Custom 
designed 
brake 
actuation 

Direct  
analog 
controlled 
throttle 

Drive-By-Wire Subsystems 

ROS-CAN based  
Control Actuation   
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3) Two designs were considered for mounting the linear brake actuator.  In the end, a simpler design with 
set screw cylinder was implemented. It consists of steel plates being welded together and the cylinder 
being contained in two metal sleeves at an angle of 10°, to match up with the brake pedal.   

 
Accomplished. 
 
The team successfully implemented and tested the subsystems for steering, throttle and brakes at the end of 
April 2019.  The photos below show the team enjoying a ride with the remote-controlled drive-by-wire 
GEM2. 
 

   
Drive-by-wire test runs with joystick game controller 

 

4.3 Suspension 
 
Several mounting systems were implemented in this vehicle, as briefly described here. 
 

● The mounts for the braking system was designed and fabricated in house using 
CATIA V5 and Solidworks.  See photo on the right. 

  
● The camera mounts were made using aluminum brackets to maintain a balance 

between stability of the mount and flexibility of orientation of the cameras. Aluminium AD20 
extrusions were also used for increased mounting options. 

 
●  The lidar mount was fabricated out of aluminium brackets and plexiglass. This 

ensures rigidity, angular and height adjustment.  See photo. 
 

● The laptop mounts were bought and customized for our use. To reduce vibration 
and eventual failure of the laptops, using rubber sheets and foam sheets were 
considered.  

 
● There is an additional mount customized for holding the display screen in the vehicle's cabin. This 

was purchased and modified to hold the screen at the required height. The mounts were designed 
to minimize bending and to hold the sensors without any wobbling. The materials used were mostly 
aluminium brackets to reduce complexity of fabrication. 
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4.4 Power distribution 
 

Vehicle drive-by-wire power from a separate 12V battery, and using two voltage boosters generate 
three level power: 5V, 12V and 24V. 5V is use for 4 Arduinos, 12V for safety light, Lidar, Radar, and 24V 
for steering motor.  
 
 

    
 
 

4.5 Drive-by-wire control design 
 

We are using 4 Arduino control all the drive-by-wire system. One is for Steering motor, one is for 
vehicle motor speed measuring, one is for front brake control and one is for Forward/Backward control. All 
Arduinos running ROS topic, and control by the ROS Computer. 
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5   Description of electronic and power design  

5.1  Overview  
 
Electrical Grid. One of the 

essential tasks carried out by the By-
Wire Team was to design the power 
grid for the new components to be 
installed on the GEM.  The wiring for 
the drive by wire system of the vehicle 
is split into two main parts as shown in 
the diagram on the right.  The 
components inside the dotted line are 
parts native to the GEM vehicle. The 
components outside this line are the 
additions made in the design process to 
bring the vehicle up to functional 
standards. The vehicle is powered from 
four 12 volt batteries in series (48 
VDC). 
 
 

 
 
 

5.2   Power distribution system (capacity, max. run time, recharge rate, additional innovative 
concepts)  

 
Auxiliary Power.  To distribute power to at least four laptops and monitor, we have a 12-volt 100Ah 

battery that connects to an 800 watt DC to AC inverter.  See photo.  This auxiliary power system is meant 
to extend the power consumption from the vehicle computer components, and thus increase overall 
autonomous operation time for the GEM. 
 
 

Electrical 
Grid 
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5.3    Electronics suite description including CPU and sensors system integration/feedback 
concepts  

 
Nightmare’s software is implemented on a Linux platforms runs Robot Operating System (ROS). 

The ROS community has created many learning and distributing packages for its common functions, like 
mapping and planning packages, drivers for sensors, such as LIDAR, Cameras, and GPS Units.  The system 
configuration below depicts the integration of sensors, feedback and control.   
 
 

5.4  Safety devices and their integration into your system  
 

Hardware E-Stops.  There is a manual red E-stop button in the driver & passenger cabin of the 
GEM2 vehicle at this time.  The teams are currently working to install i) an external manual E-stop 
accessible at the rear of the vehicle, and ii) a wireless remote control E-stop.  The hardware E-Stop function  
disconnects power from the motors and applies the brake. 

Software E-Stop.  To protect against a variety of failure conditions, the drive control system is 
programmed to automatically turn off the motors if it fails to receive commands from the computer or 
joystick after 200 ms.  The software E-stop sets the speed of the motor to zero and applies the brake. 

Flashing Signals.   The teams are also currently working to incorporate visible lights to signal the 
state of computer control of the vehicle.  E.g., flashing red lights to let everyone know that the vehicle is 
operating in autonomous mode.  Green light means all systems are in ready mode, while red means no go, 
etc. 

Audio Signal.  Additionally, the teams will add audible sounds to alert everyone nearby when the 
vehicle is about to go into autonomous mode of operation.  E.g., play a jingle or short burst of sound.   

Smooth Acceleration.  For safer driving action, both the throttle and steering commands are 
programmed to have a smooth limiting control factors to ensure smooth driving and prevent aggressive 
maneuver.  

6    Description of software strategy and mapping techniques  

6.1   Overview  
 

The Navigation Stack serves to drive a mobile base from one location to another while safely 
avoiding obstacles. Often, the robot is tasked to move to a goal location using a pre-existing tool 
such as rviz in conjunction with a map. A 2D navigation stack takes in information from odometry, 
sensor streams, and a goal pose and outputs safe velocity commands that are sent to a mobile base. 
The navigation stack assumes that the robot is configured in a particular manner in order to run 
 

6.2   LiDAR and RADAR Obstacle Detection / Ranging  
 
LiDAR/RADAR Team consists of John Brooks, Arjun Musham and Saif Salih 
 

The vehicle is outfitted with 6 Continental ARS-430 RADAR units. These RADARs communicate 
over Automotive Ethernet to an Intrepid Control Systems RAD-Jupiter media converter + switch which 
outputs standard Ethernet to the laptop computer. The RADAR detections are broadcast onto to ROS system. 
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The RADAR outputs detections that are close to raw data. This makes for very noisy data points which are 
hard to process. Because of this the RADAR is not used for object detection, but only for object ranging. 
When an object is detected by the vision system the distance to that object is found by determining the 
angular window of the object and finding the closest RADAR data point.  

The LiDAR system is still being developed. The team has been supplied LiDARs from Cepton 
Technologies Inc. These are solid state LiDARs with a 60° field of view that will be mounted on the roof 
of the vehicle. What is currently being worked on is to map driveable space around the vehicle and 
perform object detection with these LiDAR units.  

6.3   Object Detection and Classification 
Object Detection Team consists of John Brooks and Bing Liu. 
 

For object detection we chose a convolutional neural network (CNN) design. CNNs represent the 
current state of the art in object detection and classification. The model used is called YOLOv3 [1], which 
is an acronym for You Only Look Once. This is a feed forward network which performs object detection 
and classification simultaneously in real time. 

 
Figure 1. YOLO Accuracy vs. Inference Time 

 
In order to use YOLO the CNN must be trained by means of labeled data. The challenge with using a deep 
learning approach is that a large amount of training data is required for training the feature extraction layers 
of the network. Ideally, this means tens of thousands of hand labelled images which is out of the scope of 
what our team can reasonably accomplish.  

 
Figure 2: YOLO CNN Architecture 
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To work around this problem, transfer learning is used. The model consists of feature extraction 
convolutional layers in the beginning and fully connected layers at the end.  To train the network on the 
IGVC signs, weights which are trained on much larger datasets (VOC and COCO) are used for the 
convolutional layers and the fully connected layers are randomized. When our own dataset is fed into the 
network we are primarily training the fully connected layers on the features of our specific objects. The 
result is viability on a relatively small dataset and a small amount of training. 
 

 
Figure 4: Labeled Images 

The image dataset our team created consists of over 3000 labeled objects. These images were 
sourced from Google Images, the LISA traffic sign dataset, and our own collected data. As our testing 
continues we expect to continue growing our collected images based on any performance issues we 
encounter during testing. 

    
Figure 5: YOLO Training in Progress and dataset 
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Once the dataset was created, the network was trained on an NVIDIA GTX 1080 GPU for several 
hours. In order to evaluate the model’s performance and ensure that it’s not overfitting the data, a hold out 
set of 10% of our images was set aside for validation. In figure 5, the error of the training set is shown in 
blue and the accuracy (mAP) on the validation set in red. Once the performance on the validation set levels 
off or begins to fall, the network training is considered complete. 
 

 
Figure 6: Results 

 
The end result is that the trained model can detect and classify the objects of the competition quickly 

and with few errors. The object detections from the forward facing camera of the vehicle are converted into 
angular windows these windows and classifications are published to the ROS system so that they can be 
combined with more accurate distance measuring sensors of the vehicle such as RADAR and LiDAR 
sensors. 
 

6.4   Lane Detection Algorithm 
 

Lane Detection Team consists of 
Narendra Kintali and Ana Farhat. 
 

The team uses Matlab Image 
Processing Toolbox & Computer Vision 
Toolbox for detecting lanes from the 
camera images.  Different techniques 
including convolution neural network, 
Hough transforms, were explored.  At this 
time, we find that the classic Hough 
transform method provides the most 
viable approach in that we can manipulate 
and use its parameters to yield the results 
we look for.  The figure below depicts 
successful detection of the lanes from a 
RGB video of a campus road.  The team 
is working to keep improving reliability 
and robustness of the detection scheme. 
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6.5    Software strategy and path planning  
  
 The software strategy and path planning will require 
involvement of different teams including Lane Detection Team, 
Computer Vision Team Lidar Detection Team, GPS Team. Path 
Planning & Control Team, Simulation Team. 

Concepts, such as depicted on the right, have been initially 
evaluated by simulation, which provides a basis for establishing 
requirements from each functionality team.  This was a key to 
coordinating specifications and communications of the function 
modules. 
 
 

6.6   Smooth Trajectory Planner and Control Software Strategy. 
  

The control and path planning part of the software strategy includes using different aspects of 
Computer Vision, Path Planning, Simulation, and Control among others. This makes use of a Smooth 
Trajectory Planner scheme is defined below in a clearer format, starting with definition of key variables, 
kinematics model, Lyapunov function, desired steering angle and desired angular speed. Further controls 
and dynamics are additionally introduced in order to make this a feasible system to apply real- time on a 
vehicle. Note that a sensor suite of camera, GPS, IMU, lidar and/or radar, can measure the key variables. 
  
6.6.1    System Variables 
The figure below illustrates the basic variables needed for the formulation of the smooth path planner (SPP): 

 
 
δ  represents the steering angle for the prime vehicle, and r is the separation 
distance between the vehicle and the target. It is assumed that the target 
is fixed or not moving as is generally the case for the Self-Drive 
competition.  These variables can be determined from a combination 
of measurements from camera, GPS, IMU, lidar and/or radar.   

Figure is top view diagram of leader-follower robotic vehicles. 
 

6.6.2    Kinematic Model 

 
As in the illustration, equations 1,2 and Figure 1 represent a robotic vehicle as being driven to a parking 
space represented by the target if we are able to drive r → 0, θ→0 , ẟ→ 0. 
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6.6.3    Lyapunov Stability Criterion (LSC) 
 
For the purpose of stability analysis, consider driving  r → 0, θ→0 , ẟ→ 0. To apply the LSC, the positive 
definite function is introduced (3) as a Lyapunov candidate 

 
where r is a positive separation distance.  The LSC states that if it is ensured that the time derivative of V is negative 

 
then, r → 0 & θ → 0.  That is,  a speed v and ⍵   should be obtained  that produce a steering angle    that 
yields a distance  and an orientation, such that  so is satisfied. 
 
6.6.4   Desire Vehicle Orientation 
 
A  method to satisfy the LSC is to set the desired orientation as shown in (5), where k1 is greater than or 
equal to 0 is a positive value to be assigned 

 
According to the LSC, the Lyapunov function qualified by equations (3) & (8) implies that (1) will be stable if  → 

des  is driven. 
 
6.6.5    Steering Command via Back-Stepping Control Scheme 
 
The steering error is defined as the  
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which is exponentially stable since v, r, and k2 are positive values.  Equations 5 & 11 form the desired 
steering command for the Lyapunov-based smooth trajectory-planning (SPP) scheme.  
 
6.6.6    Steering Actuation and Control 
 
A steering mechanism is needed to produce the angular speed , which would be controlled by an actuator 
input  The dynamics of the steering can be described by 

  
  
6.6.7   Overall Scheme at a Glance 
 
      Figure 2. shows the  overall smooth path planning (SPP) scheme consisting of all the factors 
described above. 
 

 
 

Figure 2.  Overall smooth path planning (SPP) scheme 
 

k1, k2, kp, & ki are design parameters whose values are usually determined with the help of 
simulation.   k1 determines how much reaction should be given to θ, and can range from 0 to 10.  k2 
determines how fast δ should approach δdes and can ranges from 1 to 5.  The choice of kp, & ki depends on 
the actuators and are chosen to control the transient behavior the steering speed ω converging to. 
 

The next aspect includes the dynamics and control behaviors of the vehicle motion in the SPP 
analysis.  This will take actuation drives, control schemes and processing delays into consideration so  a 
more realistic expectation is obtained.  This is being applied to the Nightmare Gem2 vehicle. (SPP) was 
derived using detail analysis involving kinematics model, Lyapunov stability criterion and back-stepping. 
Also, this is a relatively simple interpretation and readily adapted or switched to work with many car 
maneuvers. Additionally, this method shows potential for practical applications and sets the foundation 
and validates ideas and scenarios for eventual actual realization of the schemes. 
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6.7  Map generation   
 

The information from the vehicle sensor suite (lidar, stereo camera, Kinect, webcams, IMU, 
odometry) can be integrated using sensor fusion mapping algorithm such as Kalman filter-based SLAM 
(simultaneous landmark and mapping) in the ROS environment.  The figure below is a map of the hallway 
of the third floor of the OU SECS EC building, produced by the Lidar & Kinect team.  We are working 
and testing on mapping of outdoor scenes. 
6.8   Goal selection and path generation  
 

The Team uses ROS-based Navigation Stack for guiding the vehicle to accomplish its mission.  The 
path-planning & control scheme to be employed is first simulated in the ROS-based Gazebo & RViz, as 
described in Section 7 on Simulation.   The strategy can be explained with the help of the mapping 
boundaries shown in the figure below.    

   
6.9   Additional creative concepts  
 

We have also established a Parking Team to work on parallel parking, forward and reverse parking 
using ultrasonic only sensors, camera only sensors, and a combination of sensors. They are to use new 
smooth driving trajectory to achieve the objective.  The Parking Team consists of Ana Farhat,  Bharvana 
Narke & others. 

7   Description of failure modes, failure points and resolutions  

7.1   Vehicle failure modes (software, mapping, etc) and resolutions  
 
 At this time, we have looked into 
techniques for handling certain vehicle 
failure in software and mapping.  However 
we have not implement and tested them.   

An example of the technique is the 
so-called Move-base Default Recover 
Behavior, depicted below.  

Running the move_base node on a 
robot that is properly results in a robot that will attempt to achieve a goal pose with its base to within a user-
specified tolerance.  In the absence of dynamic obstacles, the move_base node will eventually get within 
this tolerance of its goal or signal failure to the user. The move_base node may optionally perform 
recovery behaviors when the robot perceives itself as stuck. By default, the move_base node will take the 
following actions to attempt to clear out space.  First, obstacles outside of a user-specified region will be 
cleared from the robot's map. Next, if possible, the robot will perform an in-place rotation to clear out space. 
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If this too fails, the robot will more aggressively clear its map, removing all obstacles outside of the 
rectangular region in which it can rotate in place. This will be followed by another in-place rotation. If all 
this fails, the robot will consider its goal infeasible and notify the user that it has aborted.  
7.2   Vehicle failure points (electronic, electrical, mechanical, structural, etc) & resolutions  

Similarly, we investigated how automotive industry handle vehicle failure points, but have not 
implemented to test the methods. In Automotive each electronic control unit (ECU) is required to perform 
a list of tasks; some of these tasks are performed in a regulated matter and follows a set of standards, such 
as; On-board diagnostics (OBD).  OBD is a self-diagnostic and reporting capability for these ECUs, it was 
intended to indicate any issues or problems that an ECU faces. The OBD procedure mainly divided into 
three sections; hardware, software, and electrical problems. Each section has their set of digital codes that 
are called digital diagnostic code (DTC), they provide a remedy and more information about the problem 
and its steps of troubleshoots.  For the ECU to report any DTC, it needs to undergo a set of OBD self-tests, 
such as; making sure its sensors (IOs) are connected properly, also making sure it provided voltage is within 
accepted limits,  
7.3  All failure prevention strategy  

We broach the topics but did not dwell further its implementation due to lack of time. 
7.4  Testing (mechanical, electronic, simulations, in lab, real world, etc.)  

We conducted testing of components and subsystems as thorough and best as we can before using 
and integrating them onto the vehicle.  These includes by-wire subsystems, computer vision systems, lidar 
and Kinect systems, mapping system, path planning & control simulation,  so on.   
7.5   Vehicle safety design concepts  

The topic of vehicle safety is always broached during meetings, especially the weekly Saturday team 
assembly meetings.  This include safety awareness while operating the vehicle, safety while performing 
tests of subsystems, and others.   
8   Simulations employed  
8.1   Simulations in virtual environment  

The team uses Gazebo and RViz in ROS environment to simulate and visualize path planning and 
control of a GEM vehicle in various driving scenarios, involving avoiding obstacles, lane following and 
going toward destination.  Gazebo is a well-designed simulator that offers the ability to accurately and 
efficiently simulate robots in complex environments. It represents the actual world for the robot to localize 
itself and be able to navigate between the start and the goal points. Rviz (a 3d visualization environment) 
was also used to let us view what the robot is seeing, thinking and doing. It is capable to understand sensor 
messages like Laser scans and Point clouds and images from the camera. The ROS navigation stack uses 
these messages to show its current path and obstacle data. 
8.2   Theoretical concepts in simulations  

The concepts are still being investigated by the teams at this time. 

9   Performance Testing to Date  

9.1   Component testing, system and subsystem testing, etc.  
At this time, the teams have completed the following tests: 

 
• By-Wire Team:  Tested steering & throttle and most parts of brakes. Working on the F-N-R shift mode. 
• Lane Detection Team:  Tested the Hough lane detection algorithm, working on live demo. 
• Sign Detection Teams:  Tested with all signs. It sometimes mixes up one way left and one way right. 
• Path Planning & Control Team:  Tested on simulation. Working to test with live sensors & drives. 
• Mechanical & Electrical Team:  Did mounting mechanicals & electrical. 


