

IGVC2019-ACTor
ACTor: Design Report

Lawrence Technological University

Team Captain: Mitchell Pleune mpleune@ltu.edu

Team Members: Sean Bleicher sbleicher@ltu.edu

 Charles Faulkner cfaulkner@ltu.edu

Faculty Advisors: Dr. ChanJin “CJ” Chung

Nicholas Paul

cchung@ltu.edu

npaul@ltu.edu

May - 15 - 2019

Faculty Advisor Statement

I, CJ Chung & Nicholas Paul, of the Department of Math and Computer Science at Lawrence
Technological University, certify that the design and development on the ACTor research
platform by the individuals on the design team is significant and is either for-credit or equivalent
to what might be awarded credit in a senior design course.

Signatures

Date​: May 15, 2019

1

INTRODUCTION

The ​A​utonomous ​C​ampus ​T​ransp​or​t (ACTor) is a autonomous vehicle research platform
developed by university students​*​. The project started in the spring of 2016 when two computer
science students set out to compete in the new IGVC Spec2 competition. The team has grown in
size now having four members who collaborate in researching and developing new technologies
within autonomous vehicles.

Innovations and Previous Work

The project was designed to be a research platform for all students interested in autonomous
vehicles. For that reason the project was designed to be modular and dynamic meaning that
software nodes are easy to switch out, add, or remove allowing rapid prototyping and
development. The design spawned several research projects involving machine vision, deep
learning, and sensor fusion​13​. For more details on how these goals are achieved through design,
see the ​Software Systems​ section of this document.

Team Organization

The team meets once a week to set goals and discuss new innovations and technologies to
developed for the vehicle. These meetings also provide a way to collaborate in creating new ideas
and divide up tasks for the upcoming week. Each member was delegated to specific task by
comfortability and interest. The team is comprised of all computer science students so hardware
integration was done as a team or using help from a mechanical design lab to accomplish the
hardware installation. Each student puts around 5 to 15 hours a week coding, testing, or in
meeting to accomplish the tasks set out for the semesters.

Name Degree Role
Sean Bleicher B.S. Computer Science Sensor fusion, drive-by-wire system
Charles Faulkner B.S. Computer Science Obstacle detection, implementation
Nicholas Paul​† M.S. Computer Science RTK integration
Mitchell Pleune​† B.S. Computer Science Integration, waypoint navigation, lane

following, hardware
Table 1: Team members and roles

* The Drive-by-wire system was provided by Dataspeed Inc.
† These members participated in IGVC 2017 Spec-2

MECHANICAL SYSTEMS

ACTor is built on top of a modified Polaris Gem 2 provided by joint sponsorship from two
companies, Mobis and Dataspeed. Mobis provided the base vehicle, and Dataspeed installed the
drive-by-wire system. The provided system includes all hardware and a software abstraction layer
to control it.

To ensure robustness of connections and components, computer and power delivery systems

2

are mounted securely under the seats where they are difficult to kick. The camera is mounted with
a 1/8in aluminum bracket kept as short as possible to provide sufficient rigidity. Components on
the top of the vehicle are mounted to an 80/20 frame, and are both rigid and easy to remove for
safe storage. Our VLP-16 lidar is mounted to an adjustable camera tripod to let us easily aim it.
Thr radar are mounted to the front bumper of the vehicle. All components mounted outside the
vehicle are waterproof and resistant to damage by rain.

System Abilities

The Polaris Gem 2 has a top speed of twenty miles per hour, and a range of approximately
twenty miles. All sensors mounted outside the vehicle are weatherproof, and the doors and body
of the Gem2 are sealed. The vehicle has been tested to go up a 30% grade without difficulty, and
the suspension has been kept stock to the Gem 2 design.

Drive-By-Wire

Since the drive-by-wire system was installed by Dataspeed it is covered by a NDA, it cannot
be extensively explained. Their system is capable of setting the vehicle in motion at exactly a
target speed, and turning the vehicle at a specified radius. Their systems use complex mechanical
systems to overcome the stiction of the steering wheel, and can detect abrupt steering inputs made
by the driver.

The drive-by-wire system uses a proportional-integral-derivative (PID) controller to handle
vehicle speed. Last year it was noticeable that the vehicle jerked and had a slight delay in the
response from the system. Upon investigation the PID controller was optimized for the vehicle to
drive at a much higher speed. The PID controller was tuned for the competitions max speed of
five miles per hour. The result of the tuning was a major reduction in vehicle jerk and removal of
the response time delay.

In the past few years of IGVC, the vehicle’s inability to change the gear autonomously has
been a problem, causing functional tests such as parking to be difficult to achieve. To accomplish
automatic gear shifts an arduino was installed within the drive-by-wire system that acts as a
Controller Area Network (CAN) bus. The arduino uses CAN to send and receive messages
allowing the vehicle’s gear position to switch the way by which the vehicle’s gear position is set:
the physical state of the gear switch or virtually through the autonomous system. The vehicle’s
drive-by-wire software driver manages the virtual gear position by looking at the twist messages
that are being sent from the twist controller. Positive speed values result in the vehicle being in
the forward gear position, while negative speed value result in the vehicle being in the reverse
gear position.

3

ELECTRICAL SYSTEMS

Core Components

Most of the computation happens on the primary computer with the exception of the
webserver and vehicle driver nodes on the Intel Nuc.

Primary Computer Component Primary Computer Part

Case SilverStone Technology Ultra Compact Mini-ITX

Motherboard GIGABYTE GA-AB350N

CPU AMD Ryzen 7 2700 Processor

CPU Cooler CORSAIR Hydro Series H60 AIO Liquid CPU Cooler

GPU ZOTAC GeForce GTX 1070 Ti MINI 8GB GDDR5

RAM Corsair LPX 32GB DRAM 3000MHz

Storage Samsung 860 EVO 500GB M.2 SATA Internal SSD

12V PSU 500 Watt 12 volt DC Input PC ATX-24 pin
Table 2: Primary PC build components

The system primarily uses a single Allied Vision Mako G-319C​2​ power-over-Ethernet camera;

it provides high image quality and enough field of view to capture the lanes while retaining
enough resolution to detect signs. The 6mm 1stVision LE-MV3-0618-1 lens​3​ at 1.8 full stops
provides 50 degrees field of view. A ZED Stereo camera was added to provide depth and motion
information. The ZED camera​15​ captures video of 110° wide-angle at 1080p HD video at 30FPS.

The car is equipped with a Velodyne VLP-16 "Puck" LIDAR​4​ donated by Veoneer. The Puck
is a small, compact 16 channel lidar, weighing less than two pounds. Its capture range is 360
degrees horizontally and 15 degrees vertically with a radius of 100 meters. It is able to output
300,000 points per second across its 16 channels. These data points represent points in space
some distance from the lidar source. Four Autoliv radar​5​ have been added to the front bumper of
the vehicle providing more than 180° of 77 GHz high-resolution radar detection.

The vehicle utilizes a Piksi Multi GNSS Module​6​ to gather GPS and compass data for
navigation. The module has centimeter-accurate positioning and fast update times. The fast and
reliable data makes it well suited for a moving vehicle, where great distances will be covered over
a small amount of time. The GPS module is used alongside a second Piksi used as a base station
providing Real Time Kinematic (RTK), resulting in more accurate GPS information.

4

Figure 1: All sensor and control nodes are connected to a local network through Ethernet via
a switch or CAN via a CAN Bus. Solid connections are indicate physical cable connections. Dashed

connections indicate wireless communication.

All systems of the car have been connected through either Ethernet and CAN buses instead of
USB, as seen in Figure 1. Ethernet is preferable because of the superior robustness that it provides
over USB. The main exception to this is the connection to the drive-by-wire (DBW) system,
which is reliant on a single USB connection. This vehicle will automatically come to an
emergency stop if it detects a malfunction of this connection.

The Vehicles E-Stop system is split into two parts. The first part is a closed hardware loop that
runs through all the E-Stop buttons. This loop starts and terminates at a Raspberry Pi. Should any
of the buttons be hit, the circuit will be open and the pin on the Pi will read low. The pi will then
send a signal to the Intel Nuc through ethernet. The Nuc, will then safely stop the vehicle.

5

Item Price

Polaris GEM e2 vehicle with various options such as doors and trunk $15,000.00

Polaris GEM ADAS Test Systems (Drive-By-Wire systems) including
installation fee $45,000.00

Intel NUC Mini PC kit NUC7i5BNH Core i5 $543.00

Velodyne VLP-16 “PUCK” 3D LiDAR, 16 beams $7,999.00

Autoliv (Veoneer) Radar x 5 $723.24

Swift GPS, Piksi Multi GNSS $1,644.56

Mako PoE Camera $1,031.00

ZED stereo camera $449.00

Main Computer with GPU $1,800.00

Miscellaneous items $2,000.00

Total $76,189.80

Table 3: Estimated cost of ACTor vehicle

Power Connections

Figure 2: Vehicle, sensor, and components power distribution

All electrical energy on the vehicle is supplied by four deep cycle absorbent glass mat
batteries connected in series. A single 12V connection is taken from one battery to supply power
to the control systems. All low power 12V devices are run off of a large power delivery panel,
which can individually enable/disable connections through a touch screen. A 1000W inverter is
also mounted and connected directly to the 12V supply connection for easy charging of laptop
batteries. This is primarily for ease of use, and is very useful while developing. The switch has
four power over ethernet connections, currently used to supply power to the E-Stop computer

6

(Raspberry Pi), and vision camera (Mako G-319C). The described connections are shown in
Figure 2.

The majority of energy is spent accelerating the vehicle, and relatively little power is spent
powering control components. A full charge will take six to eight hours, and can travel twenty
miles. The inverter is >90% efficient, and represents a low power loss compared to the main
computer.

SOFTWARE SYSTEMS

Requirements and Design Goals

ACTor's software is designed and implemented with several requirements in mind. First, the
software should follow the design principles set in place by Robot Operating System (ROS). That
is, the software should be as distributed and modular as possible​7​. Second, the software should be
able to be developed and modified quickly. Since ACTor is primarily a research vehicle,
implementing new ideas or research projects should be simple. Finally, the software should be
built in such a way that its inputs and outputs are interchangeable. This allows the software to be
quickly test and allowing for smooth implementation of new hardware and software.

Architecture and Design Strategies

Figure 3: Basic data flow through core packages

7

The system is divided into several independent but connected packages: sensors, input
processing, route input, route system, web API, and RTK. Figure 3 shows a high level overview
of what is contained within each of these packages.

Sensors

The sensors package is a collection of sensor driver publisher nodes and configuration files.
Each sensor such as GPS, lidar, radar, or camera has its own node or nodes that are responsible
for converting data into usable formats and publishing information onto the ROS network. The
system provides abstraction of data through placing the responsibility of reading and converting
the data in the input packages, which provide clean data structures to the nodes that control the
vehicle’s logic. By separating the sensor package into multiple nodes, the system becomes very
maintainable giving the ability to add and remove sensors easily.

Input Processing

The input processing package cleans and prepares the data for the route input package.
Currently the nodes within this package are to take the camera data received from the camera
node. The package is responsible for applying white balance, gaussian blur, and other OpenCV
algorithms to make the camera data usable for the route input package.

Route Input

The route input package takes the sensor data either directly from the sensors or from the
image processing package and transforms it into usable data to be fed into our route system. The
importance of the route input package is that in provide as much information to the route system
as possible, but allows the route system to subscribe and unsubscribe from each node. Each node
within the route input package will only process sensor data if the route system is subscribed to it.
Many of the nodes are computationally heavy so it’s important to make sure they are running
while the route system needs them.

The route input package contains our lane centering algorithm called “blob”, obstacle maps for
avoidance and emergency monitoring, detection of stop sign, one way sign, stop line, and
potholes, gps follow, and parking maneuvers. Each of these node can be combined together to
accomplish the many tasks and functions the ACTor vehicle will be performing.

Route System

The vehicle is entered into IGVC Spec2 each year, and in order to make competition go
smoothly, we decided to try to remove the long compile times when tweaking our code. To do
this, we structured our navigation around a script parser, enabling us to make most tweaks only to
the scripts instead of the C++ code.

The “Router” node outputs a Twist movement command. It will either elect to forward a twist
topic from another specialized navigation node, or will send a chosen constant topic. The router
continuously runs a selected Lua script that contains all the logic of the navigation logic to make
these decisions. This script has Lua functions that read/publish ROS std_msgs, specify what topic

8

to forward, decide what constant twist command to send, activate the estop, get the local
obstacles, check the current waypoint target, and the ability to talk to many RTK components.

Our system is centered around the router, and it’s primary goal is to feed the route script as
much data as possible. In this diagram, the RTK system is shows as a single block, as it is
thoroughly documented already. The “RTK restricted module” is a single Git patch file that adds
functionality to the route node to read information from the RTK system, allowing the route
system to be open sourced with the patch kept secure.

Web API

The ACTor vehicle receives routing data and displays useful diagnostic information through a
custom designed web page hosted on the main computer. The website is written in JavaScript
using the React and Node frameworks along with Bootstrap CSS. By using these frameworks,
new componentes can be added to the server without having to modify the entire page or write
complex css to make everything work together nicely. The website displays a live feed of the
“blob” nodes output allowing viewers to see where the lane centering algorithm is trying to center
the car. The route system takes input from the web server. The input consists of a editable text
field full of the current route the car is going to take. This allows rapid development of new routes
and the ability to easily edit older routes.

Robotics Technology Kernel (RTK)

Figure 4: Packages used from the RTK system

In order to make the best use of the limited preparation time for IGVC and improve the RTK
system as much as possible, we will be focusing on a limited subset of the RTK system as shown
in Figure 4. Each node represents a package within the RTK system. The green packages are the
packages that were viable to be integrated into the ACTor system, while the red packages did not
fit anywhere in our current software design. We combined the existing design and
implementation of the ACTor navigation system with the existing RTK navigation system. The
ACTor navigation system is robust, extensible, and has proven itself useful by playing a primary
role in winning 1st place in IGVC two years in a row.

9

Figure 5: The "blob" algorithm uses simulated springs to push the vehicle's center C​V​ toward the
center of the lane C​L​. Thicker lines represent more compression and therefore more influence on the

direction the point will move.

Lane Following

Lane detection and centering is combined into a single algorithm nicknamed "blob," designed
specifically for early use in this project until it can be integrated into the obstacle avoidance
subsystem. It leverages OpenCV to do the processing on a color image.

The algorithm begins by running one of a few methods of edge detection on the image, which
are interchangeable at run-time. These include Canny edge detection (grayscale or color),
adaptive threshold, and the Sobel operator. Most of the time the Canny (color) method is used.

Next, a Hough transform is run on the edges to detect lines. Only lines within forty-five
degrees of vertical are accepted. This is done to avoid detecting horizontal edges from stop lines
and zebra-stripes. These lines are then extended and drawn on their own image for the final
"blob" processing.

Finally, a point C​V​ (see Figure 5) is chosen to be just above the center of the front bumper.
Twenty to one-hundred probe lines are sent out in a fan at even intervals between left and right
above horizontal. When these probes find a pixel that has been filled by a Hough line, the
distance and angle are recorded. If a probe does not find a line, the edge of the image is used.
Each probe is then modeled as a spring to push or pull on the initial point toward the center of the
lane C​L​. The horizontal component of this force is used as steering input for the vehicle. The
nominal distance and force of the modeled springs is tuned for the vehicle.

Sign Detection

 ​The sign detection algorithm uses color filtering along with HAAR classifiers in order to detect
signs based on shape and coloring. Thousands of images were used to train the HAAR classifiers
used. The algorithm allows for fast recognition of signs in varying environment.

10

Automatic Parameter Adjustment

Autonomous vehicles are immensely complicated machines, and the algorithms that govern
them require countless parameters. Our Adaptable Parameter Server tunes multi-dimensional
parameter sets to optimal values using gradient descent.

Often it is a more robust solution to manually tune parameters to a best-case compromise, the
wide range of weather/lighting/course conditions that are a possibility throughout the
competition, some parameters must change on-the-fly. For this situation, we have developed a
black-box parameter server that can tune a multi-dimensional parameter set based on a specific
grading function. This node uses gradient descent as an extremely robust algorithm that can work
on data in real time. This is also able to optimize a set of parameters even when there is not an
ideal solution.

Figure 6: A synthetic test of the black-box parameter server where an ideal solution is
impossible. Not shown are three parameters that affect each two out of three of the feedback

parameters (outputs of scoring function)

11

Figure 7: The obstacle detection node allows for detection of objects in arbitrarily defined spaces.
This allows different events to occur based on which detection region the object is in.

Obstacle Detection and Resolution

The obstacle avoidance package currently uses input from the VLP-16, Autoliv radar, and a
ZED stereo camera. Using functionality built into the TARDEC RTK system a ground and
obstacle pointcloud are generated from the VLP-16’s input. The obstacle pointcloud is then
combined with the input from the ZED camera and verified using the radar inputs.

The current implementation of obstacle avoidance checks regions defined by parameters (see
Figure 7). These regions are published to the route system, which determines the action to be
taken. If an obstacle is within an emergency region, the vehicle will halt. If it is far ahead in the
road, it may execute an avoidance maneuver or halt depending on the scenario.

SAFETY

12

Figure 8: The ACTor software is unable to communicate with the vehicle driver directly. All
commands are validated via external hardware. If the external hardware’s state becomes invalid the

“Host” issues an emergency stop command.

Safety Considerations

There are several safety measures taken into account with ACTor’s hardware and software revolving
around an external “emergency monitor” (EM). The EM is a Raspberry Pi connected via the ROS network.
The ACTor software is unable to directly control the vehicle and must do so via the emergency monitor
(see Figure 8). The software sends a motion command to the EM which validates max speed, max turn
radius, etc. and then forwards the command to the vehicle via the “host” node. Along with motion
validation, the EM also monitors the lidar node and E-Stop subsystem for emergency signals. If a signal is
received, it issues a stop command immediately.

Additional precautions were taken to prevent EM and E-Stop failures. If the EM loses power, is
disconnected from the network, or sends invalid data, the host node will send a blocking stop command
within 200ms. Since the E-Stop requires an active external hardware signal, any malfunction of the E-Stop
subsystem will also issue a stop command within 200ms.

A safety light is also attached to the vehicle. The safety light will flash whenever the vehicle is in
autonomous mode.

eStop Performance

Figure 9: The wheel speed of the vehicle during an eStop event. Values are in meters per second. The
estop was triggered at 7 seconds after the vehicle had reached maximum speed of 5 m/s (>11 mph).

There is minimal latency between between the beginning of an eStop event to the stopping of the
vehicle. Figure 9 above shows the vehicle speed during an eStop event. In this example, the system was
given a configurable target deceleration of 0.5 m/s^2 deceleration during stop. The effects of the motor
slowing down can be seen instantly as noise as the vehicle pitches forward. After this non-avoidable
compression time of the suspension has stabilized, the vehicle reaches its target deceleration.

13

Failure Points and Modes

Failure Point Type Risk Resolution

Loss of Power Hardware Very Low Autonomous mode is automatically
deactivated and safety driver takes control.
Primary computer (powered by battery)
reports error.

Switch or Network
Malfunction

Hardware Low Primary computer is unable to contact
external safety monitor and issues an
E-Stop command within 200ms.

Inverter Malfunction Hardware Low Primary computer is unable to contact
external safety monitor due to loss of
power and issues an E-Stop command
within 200ms.

Raspberry Pi (Safety
Monitor) malfunction

Hardware Low Primary compute detect irregularity in
external safety monitor and issues E-Stop
command within 200ms.

E-Stop malfunction Hardware Very Low E-stop requires an active signal, if
interrupted, vehicle executes stop
command within 200ms.

Camera Malfunction Hardware Low Computer displays disconnection error. If
needed, driver may E-Stop the vehicle.

Lidar Malfunction Hardware Low Computer displays disconnection error. If
needed, driver may E-Stop the vehicle.

GPS Malfunction Hardware Low Computer displays disconnection error. If
needed, driver may E-Stop the vehicle.

Camera is unable to
determine lane lines

Software Medium Verify camera calibration before runs

A ROS node crashes Software Medium Depending on which node crashes one of
two things will happen:

1. Non-critical: The node is
automatically relaunched by the
system

2. Critical: The primary computer
issues a stop command within
200ms

Invalid actions or routes
are received.

Software Low Navigation immediately enters a paused
state and halts route execution.

14

SIMULATION AND PROTOTYPING

Figure 10: Simulated vehicle and camera demonstration (left) and accurate virtual sensor layout and
transforms (right)

Simulation and prototyping is accomplished using Gazebo robotics simulator. Gazebo offers
two advantages over traditional prototyping methods. First, it models specific sensors, such as a
specific model of a lidar system, and also allows for the specific dimensions of the vehicle itself
to be modeled. Just like physical sensors and motors, these simulated models function as
independent nodes within the ROS architecture, sending and receiving the exact same data
objects within the ROS network. This means that simulated sensor output can be fed to the same
sensor input nodes and navigation/control nodes as the physical systems, and likewise the output
from these nodes can be sent to the simulated vehicle (see Fig. 3). The physical vehicle and
sensor nodes can be swapped with the gazebo nodes transparently to the primary autonomous
vehicle software in order to conduct more realistic testing – quickly and conveniently on our
laptops.

Second, gazebo provides a simulated world in which the robot can operate, complete with
gravity, friction, momentum, light, color, and many other physical properties that allow for a rich
testing environment.

Testing algorithms and other concepts is achieved relatively quickly within the simulation.
Examples include testing a camera vision lane following algorithm using the simulated camera on
the vehicle model driving over a variety of ground images, experimenting with point cloud data
from the 3D LiDAR system, and testing work with object detection and avoidance,

15

PERFORMANCE TESTING

Due to the modular nature of the software architecture (see Software Systems section) all
functions (nodes) can be tested both independently and with any combination of other nodes. All
nodes are thoroughly tested on the field and during development. Integration tests are also
performed by creating specific situations for the vehicle to perform on. At the time of publication,
the most of the nodes have been tested thoroughly and several integration tests have been
completed. The team is expected to develop and test many further integration tests in the weeks
leading up to the competition.

PERFORMANCE ASSESSMENTS

There are no major performance issues with the vehicle’s mechanical, electrical, or
physical hardware to date.

16

REFERENCES
1​ “Nvidia machines/embedded-systems-dev-kits-modules, accessed: 18 Feb 2018.
2​ “Mako g-319,” https://www.alliedvision.com, accessed: 10 Feb 2018.
3​ “1stvision 1” 2 to 3 megapixel oem lens series,”
https://www.1stvision.com/lens/spec/1stVision/LE-MV3-0618-1, accessed: 10 Feb 2018.
4​ “Velodyne puck,” http://velodynelidar.com/vlp-16.html, accessed: 11 Feb 2018.
5​ “Radar systems,” https://www.autoliv.com/products/electronics/radar- systems, accessed: 10
Feb 2018.
6​ “Swift navigation piksi multi gnss,” https://www.swiftnav.com/piksi- multi, accessed: 18 Feb
2018.
7​ M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng, “Ros:
an open-source robot operating system,” inICRAworkshoponopensourcesoftware,vol.3,no.3.2.
Kobe,2009, p. 5.
8​ “Point cloud library,” http://pointclouds.org/, accessed: 10 Feb 2018. [9] M. Quigley, E. Berger,
A. Y. Ng et al., “Stair: Hardware and software architecture,” in AAAI 2007 Robotics Workshop,
Vancouver, BC, 2007, pp. 31–37.
10​ A. Oreba ̈ck and H. I. Christensen, “Evaluation of architectures for mobile robotics,”
Autonomous robots, vol. 14, no. 1, pp. 33–49, 2003.
11​ G. Stein, Y. Li, F. Wei, D. Butani, N. Changani, N. Reddy, C. Chung, and J. Ruszala, “Team
bigfoot 2 igvc 2016 design report,” 2016.
12​ C. Stein Gordon, Chung, “Rapid development of a mobile robot simulation environment for the
intelligent ground vehicle competition,” AUVSI XPONENTIAL 2016.
13 ​N. Paul and C. Chung, “Application of hdr algorithms to solve direct sunlight problems when
autonomous vehicles using machine vision systems are driving into sun,” Computers in Industry,
vol. 98, pp. 192– 196, 2018.
14​ “Zed Stereo Camera,” https://www.stereolabs.com/zed​/​, accessed: 15 May 2019.
15​B. Warrick “Development of LTU ACTor (Autonomous Campus TranspORt) Vehicle Model
(Polaris GEM e2) using ROS GAZEBO,” 2018.

17

