
 1 

BOB JONES UNIVERSITY 
MELCHIZEDEK 

 
Date Submitted: 5/14/2021 

Captain: Joshua Heinrich, jhein429@students.bju.edu 

Team Members:  

Peter Labadorf 
Isaac Pinter 
Daniel Zhuang  
Christopher Zuehlke 

plaba417@students.bju.edu 
ipint279@students.bju.edu 
dzhua133@students.bju.edu 
czueh332@students.bju.edu

 
Statement of Integrity: 

I certify that the design and engineering of the vehicle by the current student team has been significant and 

equivalent to what might be awarded credit in a senior design course. 

Faculty Advisor:    Bill Lovegrove, PhD 

   Professor  

   Department of Engineering 

   Bob Jones University 

 

IGVC2021-MELCHIZEDEK 



 2 

INTRODUCTION 

Melchizedek is an upgraded version of BJU’s previous IGVC contestant, Lazarus, which com-

peted in 2017. Like Lazarus, Melchizedek relies on a digital camera, Light Detection and Ranging 

sensor (LIDAR), Inertial measurement unit (IMU), and Global Positioning System (GPS) to trav-

erse the course. Unlike Lazarus, Melchizedek is operated by three Raspberry Pi computers, remov-

ing the need for a laptop mounted on the vehicle, without sacrificing the necessary computing 

power. Melchizedek has all new software. The frame and payload mechanism were also redesigned 

for Melchizedek in order to give the payload enough clearance when driving across ramps, and to 

remove the need for tipping the vehicle on its nose when securing the payload. Several other 

changes were also made to improve overall performance and safety. 

ORGANIZATION 

The 2021 team was split into three separate subject areas: mechanical, electrical, and software. 

Each team member worked independently on developing a specific part of the design or software.  

Table 1. Student Contributions. 

Team Members Academic Department and Class 
Subject 

Area 
Hours 

Peter Labadorf Computer Science, Math, Junior Software 120 

Christopher Zuehlke  Engineering, Junior Software 80 

Daniel Zhuang Electrical Engineering, Senior Electrical 120 

Isaac Pinter Engineering, Junior Mechanical 100 

Joshua Heinrich Engineering, Junior Mechanical 120 

DESIGN ASSUMPTIONS AND PROCESS 

This year’s team modified the robot Lazarus from a previous Bob Jones University IGVC team. 

The robot was built for the IGVC Auto-Nav competition. The software would use the Robot Oper-

ating System (ROS). The objective of the team was to complete the course in the shortest time 

possible. Following this objective, problems were analyzed and dealt with using the design process 

shown in Figure 1 below. 

 

Figure 1. Design Process. 

INNOVATIONS 

Payload Access 

One major problem with Lazarus was the payload mechanism, shown in Figure 2a. To attach 

the payload, the robot had to be tipped forward to access the payload holder. This previous design 
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allowed for a very low center of gravity; however, attaching and securing the payload was difficult. 

Melchizedek’s frame is specifically designed to allow for the robot to be loaded by only one person, 

without the tipping the robot over, and to maintain a low center of gravity, as shown in Figure 2b. 

See also Figure 8b. The payload structure allows a large tolerance in payload dimensions, while 

still holding the payload securely. The payload holder is attached to the lower frame of the robot, 

which lessens the force on the shock absorbers.  

  

Figure 2a. Lazarus Payload Placement. Figure 2b. Melchizedek Payload Placement. 

3D Printed Carbon Fiber LIDAR Mount 

Several design requirements were considered when designing the LIDAR mount for Melchiz-

edek. The mount was to be strong enough to easily withstand accidental impacts, as the LIDAR is 

expensive and positioned on the front of the vehicle. The mount was also to be lightweight, to 

reduce vibration on the mast, and visually appealing. Finally, the mount was to contain an alumi-

num heat sink to help prevent the unit from overheating. To accomplish these goals, Melchizedek 

features a reinforced carbon fiber 3D printed LIDAR mount, shown in Figure 3. 

 

Figure 3. LIDAR Mount Design. 
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Computational Load Balancing with Raspberry Pi’s 

Melchizedek uses three networked Raspberry Pi’s (the Tri-Pi) for its control system, instead of 

a single computer. Raspberry Pi’s are cheaper, and lighter, and need less power while using a com-

bination of them provides equivalent processing power than a traditional computer. 

 

Figure 4. Side view of Tri-Pi. 

Spin Detection Software 

Using the IMU in combination with the drive encoders allows Melchizedek to calculate the 

difference between the acceleration that the encoders are reporting and the acceleration that the 

robot experiences. This allows Melchizedek to automatically detect if it is spun out and take appro-

priate measures. 

Initial Start Position Estimation 

Melchizedek employs a novel method to calculate its initial global position more accurately 

than with a single GPS measurement, without staying in one place to average out several GPS 

measurements. This is done by a moving weighted average based on odometry information as well 

as GPS. 

Software E-stop and Watchdog 

Failure analysis of Melchizedek revealed that safety could be increased by allowing its software 

to trigger an E-stop. This would allow the robot to E-stop immediately if it tips over or critical 

sensors fail. Melchizedek also runs software watchdogs so it will be E-stopped if critical nodes, 

such as the motor controller driver, fail or hang. 

Power System 

A second power switch was added to the system. To avoid wasting time and battery life by 

turning the entire vehicle on whenever code was to be deployed, the components were divided into 

two separate power systems, each with an independent power switch. The software circuit powers 

the switch, Tri-Pi, and attached USB-powered sensors, while the mechanical circuit powers the 

motor controller and larger sensors. 

 

Figure 5. Dual Power Switches. 
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Hot Swappable Batteries 

When working in the field, not having to turn off the robot to change batteries allows the control 

system to always be on, reducing downtime. Melchizedek’s innovative parallel rechargeable Ko-

balt battery design, shown in Figure 6, allows for the control system to be run from one battery. 

This allows for the batteries to be changed without turning off the robot.  

 

Figure 6. Dual Batteries allow Hot Swapping. 

MECHANICAL DESIGN 

Overview 

Melchizedek’s chassis was modified from the Bob Jones University’s 2017 IGVC robot, Laza-

rus. Several flaws were identified in Lazarus’ design that are corrected with Melchizedek. Melchiz-

edek features the improved payload mechanism, new LIDAR mount, more space for electronics, 

and better weather proofing. 

 Drivetrain 

Melchizedek features a differential drive, employing 15-inch wheels, driven by two National 

Power Chair R81-series motors through a worm gearbox. Each motor features a US Digital E6S 

encoder to allow the motor to provide feedback to the RobotEQ AX2850 motor controller. The 

robot uses a single caster wheel, as seen in Figure 7, to provide support with minimal resistance 

when maneuvering through the course. 

 

Figure 7. Drivetrain. 

Structure and Housing 

The frame of Melchizedek is built using 1” T-slot aluminum and 1” box 1/8” wall tubing. T-slot 

makes up most of the robot, as it allows for modifications in the future and is very strong. Welded 

box tubing is used to construct the lower frame with some T-slot to allow the lower frame to be 
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connected to the upper frame. Melchizedek’s sensor mast, positioned in the middle of the two 

wheels as seen in Figure 8a, allows for the lane-detection camera, IMU, GPS receiver, e-stop 

antenna, and light to be mounted away from the main body of the robot. This feature reduces visual 

and electromagnetic interference on the camera, IMU and GPS. 

 

 

Figure 8a. Frame and Sensor Mast. Figure 8b. New Payload Holder. 

The payload is held in place using a T-slot attached to the lower frame of the robot. This allows for 

the payload to be easily and quickly placed into the robot while still maintaining a low center of 

gravity. 

Suspension 

Melchizedek uses two FastAce Coil-Over Shock Absorbers, as shown in Figure 9, to support 

and reduce the force of impacts on the main body.  

 

Figure 9. FastAce Shock on Robot. 
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The mounting of the TRI-PI and ethernet switch was done with extra care, as the vibration and 

stress limits of those electronics were unknown. The TRI-PI and ethernet switch were both mounted 

to the frame using polycarbonate to ensure they were properly retained as seen in Figure 10a and 

Figure 10b.  

 
 

Figure 10a. Raspberry Pi Mount. Figure 10b. Ethernet Mount. 

Weather Proofing 

Weather proofing on the previous robot design was an inadequate afterthought. Weather proof-

ing early in the design process would be advantageous and allow for easier construction. Using the 

Tri-Pi, instead of a bulky laptop, allowed for complete weather proofing. The Raspberry Pi’s and 

other electronics were moved inside the main body of the robot, which is surrounded by polycar-

bonate, as shown in Figure 11. This design choice ensures that no matter the weather, the robot can 

still operate properly. 

 

Figure 11. Polycarbonate Covering Electronics. 
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For sensors that were not able to be placed inside the main body, such as the camera or LIDAR, 

much care was taken to guarantee limited exposure to unwanted weather. For example, the camera 

is completely encased inside a 3D printed enclosure (Figure 12a) and the LIDAR is covered by a 

sun shield which also protects it from rain (Figure 12b). 

 
 

Figure 12a. Camera Mount. Figure 12b. LIDAR with Sun Shield. 

ELECTRICAL DESIGN 

Overview 

Melchizedek is powered using two 24V Kobalt batteries. These batteries are wired in parallel, 

so they can be swapped without turning off the robot. Multiple voltage converters are used to pro-

vide the correct voltage to the robot’s electronic components. As shown in Figure 13, power con-

verters are used to distribute the power at the correct voltage for each component. 

Power Distribution System 

   The robot power system consists of two 24V 5Ah batteries in parallel with an energy capacity of 

240Wh. While the vehicle is idle, the robot has an estimated power consumption of 75 W. This 

calculation was determined using datasheets from the parts and determining the power each part 

needed. Estimations were made that maximum power consumption should occur when the robot 

was climbing the ramp at maximum speed. While climbing the ramp, the robot’s motor system 

needs 240W and the robot has a maximum power consumption of 314W. Using equation 1, the 

power needed to power the motors was calculated. Equation 2 calculates the force needed to move 

the robot up the ramp at max speed, 5 mph, where Fr = 13lb W = 133 lb 𝜃 = 8.53° r = 0.65ft. 

Equation 3 simplifies the equation on how to calculate the maximum power. The 2 batteries that 

plug into the robot enable it to run for 81 minutes. The batteries have a charge time of 1.5 hours, 

so the recharge rate would be 3.3C, or 3.3A. For the power system, the power distribution was split 

so that one power switch would control the mechanical systems, and the other power switch would 

control the computer systems. 

 𝑃 = 𝜏 × 𝜔  (1) 

 𝐹 = 𝐹𝑟 + 𝑊 × sin(𝜃)  (2) 
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 P= 𝜏 × 𝜔 = 𝜏 ×
𝑣

𝑟
= 𝐹 × 𝑟 ×

𝑣

𝑟
= 𝐹𝑣  (3) 

 

 

Figure 13. Overview of the Power Distribution. 

 

Electronics Suite Description 

  Melchizedek’s electronics system is controlled by 3 Raspberry Pi 4s. These computers al-

low feedback control for the robot. To make things simple the 3 Raspberry Pi’s were named, from 

top to bottom, Apple Pi, Blackberry Pi, and Cherry Pi. Figure 14 shows how all the components 

are connected.  

 

Figure 14. Diagram of Control System. 
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Safety Devices  

Melchizedek has a manual button E-stop and a wireless E-stop. This device allows anyone to 

be able to shut down the robot immediately in case of an emergency. When either the manual or 

wireless E-stop is pressed, the circuit sends a signal to the motor controller so it will transition to 

E-stop mode and immediately turn the motors off. 

Another safety device was the software E-stop. This allows safety services running on separate 

nodes on the Tri-Pi to trigger an E-stop just as if the E-stop button had been pressed. 

Fuses were also added in Melchizedek’s circuit to make sure that there is not any overcurrent 

and that its circuit would not be damaged from excess heat. 

SOFTWARE STRATEGY AND MAPPING TECHNIQUES 

Overview 

The software written by the team is distributed across the Tri-Pi. Cherry Pi handles vision and 

lane map generation, Blackberry Pi handles lidar obstacle detection and mapping, and Apple Pi 

handles odometry, localization, and motor control.  

 

Figure 15. Software Stack. 

Software Strategy 

The team’s custom code runs on top of the prebuilt ROS navigation module, which takes a user 

supplied goal, LIDAR data, and a map, and generates commands to the motor. The custom ROS 

nodes interpret and fuse LIDAR and vision data, provide odometry using an Extended Kalman 

Filter, check for tipping and spinning out, and communicate to the motor controller. Refer to Figure 

16 to see how the nodes interact. 

 

Figure 16. Software Architecture Design. 



 11 

Obstacle Detection and Avoidance 

Obstacle detection and avoidance is done with a combination of camera and LIDAR data. The 

camera detects lanes and potholes, which are then fused with the point cloud representing the phys-

ical obstacles produced by the LIDAR, which is fed into the navigation algorithm. 

Map Generation 

Our software produces two maps, one of which just contains the lane lines and is assumed to 

be the same between matches. This map allows us to start the match with a global map capable of 

producing a global path at the start of the run, which is modified during runtime by the second map, 

generated from LIDAR data. 

 

Figure 17. Sensor Processing Flow. 

Goal Selection and Path Generation 

The main problem encountered with path selection was reconciling the locally accurate but 

globally inaccurate odometry produced by an Extended Kalman Filter on the encoder and LIDAR 

odometries with the local inaccuracy of the GPS unit. Specifically, GPS coordinates of a previous 

position needed to be estimated to a higher degree of accuracy then the GPS can detect. This needed 

to be done so that more accurate knowledge could be obtained of whether the robot had arrived at 

its goal. The team developed a novel technique for averaging GPS measurements without parking 

the robot.  

Given 𝑥𝑖 is the unknown true position at time 𝑖, odometry measurements 𝑂0 = 0⃗ , 𝑂𝑖 ≈ 𝑥𝑖 − 𝑥0 

with accuracy 𝛼𝑖, and GPS measurements 𝐺𝑖 ≈ 𝑥𝑖 with accuracy 𝛽, it is stated, without proof, if 

𝛼 > 𝛽  an estimate of 𝑥0 with accuracy greater than 𝛽 is  

 𝑥0 =
(1−𝛼)∑ 𝛼𝑖(𝐺𝑖−𝑂𝑖)

log𝛼𝛽
𝑖

1−𝛼⌊log𝛼𝛽⌋   (5) 

This equation is the weighted average of 𝐺𝑖 − 𝑂𝑖 where each term has the weight 𝛼𝑖, summing 

only log𝛼𝛽 terms, because if 𝑖 > log𝛼𝛽, 𝛼𝑖 > 𝛽 and the GPS measurement is more accurate than 
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the odometry. The denominator of the average was simplified because it is a geometric series. The 

accuracy of a measurement is equal to 

𝑒−
𝑑
𝑐  

 

(6) 

where 𝑑 is the average distance of the measurement from the true value, and 𝑐 is an arbitrary 

constant distance. 

𝛼and 𝛽 are numbers that can be calculated from data sheets and tested in the field, so the team 

believes this algorithm will be useful in robot-to-world localization needed to accurately meet way-

points. 

Additional Creative Concepts  

In previous years, the robot’s wheels would spin, incurring a penalty for tearing up the grass. 

This year, before the decision to have the course on asphalt, anti-spin software was included, which 

compares the encoder with acceleration data from the IMU, and thus if the encoder outputs indicate 

acceleration while the IMU has no acceleration, then the robot knows that it is in a spin state and 

can stop and try to get out of the state. 

Closely related to this, the team decided to include the ability for software to trigger a hardware 

e-stop. This is useful when the IMU detects that the robot is tipped over, which has happened in 

testing, or if a critical node does not reset the watchdog. Custom nodes were written that subscribe 

to error topics, and if the error is fatal, a hardware e-stop is triggered. The hardware implementation 

of this is described in the Vehicle Failure Points and Resolutions section. 

Another concept the team developed was a custom deploy script to facilitate rapid develop-

ment. This was implemented by hosting a git server on Apple Pi with a post-receive hook to trigger 

the other two RPi’s to pull their code. This allows developers to, with one command, deploy code 

to all the RPi’s, drastically reducing the time needed test an update. 

FAILURE MODES, POINTS, AND RESOLUTIONS 

Vehicle Failure Modes and Resolutions 

Table 3. Failure Modes. 

Failure Modes Resolutions 

Motor controller could disconnect while 

running  

Enable watchdog in motor controller 

and implement in software 

Sensor failure  
Pause the run and wait for a              

reconnect. 

Tipping over due to high acceleration 

Preventive tipping by limiting yaw 

rate at high speeds and max forward 

acceleration 

In case of tipping over despite        

preventive measures, sense and        

E-stop 
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Vehicle Failure Points and Resolutions 

Table 4. Failure Points. 

Failure Points Resolutions 

Possible short circuit and overcurrent in 

a wire 

Ensure that all wires are properly 

fused, and exposed connections are 

covered by 3D printed covers 

Unsteady power connection to CPUs 
Use USB power connectors instead of 

GPIO pins 

Electronic components fail due to 

high   vibration 

Shocks mounted to the main body 

to      absorb large impacts and poly-

carbonate mounts to reduce constant 

vibrations on smaller electronics 

3D printed parts have the possibility 

of breaking 

Important parts are carbon fiber to 

maximize strength 

Sensor mast could break or bend 

Reduce the chance for robot could 

tip in software, polycarbonate front 

plate absorbs most of the impact in 

case of crash 

Raspberry Pi microSD’s could be-

come corrupted 

Pack extra microSD’s pre-imaged 

with the latest version of the code 

All Failure Prevention Strategy 

We considered end states that would cause a robot failure, such as crashing, fire, and having to 

perform an E-stop stop. The team then reviewed possible ways these states could be reached, for 

instance, a damaged sensor, a short circuiting, or loss of connection to the motor controller. With 

these possible failures in mind, the team proposed ways to prevent the failures, for example, having 

redundances for each sensor, adding correctly sized fuses, and enabling the motor controller watch-

dog. This strategy has led to several design changes to increase the safety of Melchizedek. 

Failure Testing 

Table 5. Testing Plan. 

Testing Plan Expected Result 

Unplug motor controller from Raspberry 

Pi 
Watchdog shuts off motors 

Simulate robot in Gazebo to test tipping 

over 

Find the max velocity and yaw the ro-

bot can withstand without tipping 

Simulate loss of sensor data in Gazebo 
Depending on the sensor loss, robot ei-

ther self-stops or continues driving  
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SIMULATIONS EMPLOYED 

Melchizedek was modeled in Gazebo, as seen in Figure 18. Gazebo is used to simulate the 

robot and test new code to ensure there are no major bugs before testing it on the physical robot. 

 

Figure 18. Gazebo Simulation of Melchizedek 

PERFORMANCE TESTING TO DATE 

• The team timed how fast the robot moved 30 feet multiple times. The fastest time the robot 

achieved was 4.73 seconds which results in a speed of 6.34 ft/s or 4.32 mph. Due to the 

limits of the motor controller, this is max speed that can be obtained with hardware limiting, 

while staying under 5 mph. 

• The robot has an estimated battery life of 81 minutes. In practice, the robot only ran for 48 

minutes. This reduction in battery life resulted from the lack of current supplied to the Tri-

Pi from the batteries.  

• Barrels can be detected from 50 feet. Lines and potholes are detected at a maximum of 7.5 

feet. 

 

INITIAL PERFORMANCE ASSESSMENTS  

The team was only able to complete simple checks on the Melchizedek’s driving ability. We 

discovered that it drives with a noticeable drift to the right, but other than that, the drivetrain is 

functional. Initial testing of the camera shows that the white lines can be accurately detected using 

a simple HSV filter. 

 

CONCULUSION 

Melchizedek improves on many of the flaws of Lazarus. Using a digital camera, LIDAR, IMU, 

and GPS Melchizedek traverses the course with ease. At the time of writing, the software is still 

being implemented. With the upgraded frame and payload mechanism, Melchizedek’s payload rack 

securely holds the payload, without the need to tip the robot over. Along with the numerous safety 

additions, Melchizedek is on track to compete successfully at IGVC 2021. 

 


