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Conduct of Design Process, Team Identification, and Team Organization 

Introduction 
This report describes the Cedarville University’s AutoNav senior design team’s work during 2020-2021 

academic year in constructing an autonomous vehicle.  The purpose of this vehicle is to safely and 

effectively navigate the IGVC (Intelligent Ground Vehicle Competition) obstacle course using line 

following, obstacle avoidance, and GPS waypoint navigation technologies. In this report, we describe our 

approach to this project, as well as our design and overall progress. 

Team Organization 
Our team consists of four senior computer engineering students. Joshua Kortje functions as the team’s 

Chief Executive Officer and is responsible for facilitating communication between the team and the IGVC 

officials. Isaiah Higgins functions as the team’s Chief Financial Officer and is responsible for tracking and 

reporting all financial operations. Daniel Jacobs functions as the team’s Chief Technical Officer and is 

responsible for reporting on the robot’s current physical state. Finally, Trevor Loula functions as the 

Chief Software Officer and is responsible for reporting on the robot’s current software state. Each team 

member had their areas of expertise on the project, but as a small team they also all had significant 

overlap and a general understanding of how the entire robot functions. 

Name Year & Major Position 

Isaiah Higgins Senior Computer Engineer Chief Financial Officer 

Daniel Jacobs Senior Computer Engineer Chief Technical Officer 

Joshua Kortje Senior Computer Engineer Chief Executive Officer 

Trevor Loula Senior Computer Engineer Chief Software Officer 

 

Design Assumptions & Process 
Since we are a new undergraduate team with no previous team’s work to continue, the decision was 

made early on to focus on the fundamentals and work toward basic functionality.  We determined these 

basics to be sensing the white lines and construction barrels, and to be able to navigate based on these 

inputs.  We chose to use the ROS (Robot Operating System) as our development environment to allow 

for easy integration and to utilize existing libraries whenever possible.  

Effective Innovations 
All computations are performed on a single Nvidia Jetson Nano development board. As such, we focused 

heavily on keeping all our algorithms simple and lightweight. The various hardware components are all 

connected to the Nano as visualized in Figure 1. The Motor Controller and depth camera connect via the 

USB ports while all the other sensors use the GPIO pins on the side of the Jetson Nano. 

Within a ROS framework, various software nodes were developed to modularize the software and keep 

it easy to debug and extend. Some nodes are primarily input nodes and focus on taking in readings from 

the environment. After those nodes take in the sensor data, that data is often sent to a processing node 

that will do whatever sensor processing needs to be done such as finding a line in the image or detecting 

if an obstacle is in the way. The processing nodes routinely send information to a Finite State Machine 

(FSM) which is at the heart of the decision-making process. This FSM will determine when significant 

changes need to the make to the operation of the robot such as to stop following a line and start 



navigating by GPS waypoints. Either the sensor processing nodes or the FSM will direct the movement of 

the wheels depending on whether the robot is doing a transitionary maneuver or navigating via the 

external sensors.  

 

Figure 1. Connection Diagram 

 

Figure 2. Control Flow Diagram 



Mechanical Design 
When designing the robot frame, the greatest consideration was given to the placement of sensing 

components, weight distribution, and ease of access for internal electronics. Only two driven wheels 

were used to provide the most maneuverability with a back wheel for stability. The frame was made of 

welded ½” square metal tubing.  The major considerations in the chassis design were meeting all the 

requirements of the competition rules while remaining small but fully functional.   The chassis was able 

to house all the needed sensing equipment and allowing them to be placed at ideal angles and positions. 

The frame is lightweight and sturdy and allows for easy access to the inside components, making 

removal, movement, and addition of parts quite easy.  Many mounting components   

 

Figure 3. Robot Chassis 



The height of the camera mounting hardware was designed to be as tall as possible within the rules in 

order to give a clear vantage point for the RealSense Depth Camera which was being used for detecting 

lines and objects. This also allows our GPS unit and digital compass to be placed high and away from the 

main chassis, minimizing interference in their measurements. The back wheel gives stability to the 

weight distribution and moves the center of gravity towards the back of the robot, helping to prevent 

tipping from inclines. 

The camera, GPS, compass, and monitor are all secured to the robot via 3D printed plastic. These 

custom housing and mounting hardware pieces were designed in Solid Works and printed on our 

department printers.  The movement of the robot over rough terrain resulted in the breaking or cracking 

of some of these clamps, so additional clamps and stronger supports were added to stabilize these 

parts. 

The payload is designed to fit on the bottom shelf of the robot near the motor controllers, keeping much 

of the weight low to prevent rocking. The batteries were also placed near the ground to keep a low 

center of gravity. During initial testing, we found that the robot would tip during sudden stops, 

especially on steeper inclines.  As a result, one of the batteries was re-located from its initial design 

location to over the back wheel which effectively shifted the center of gravity further behind the drive 

wheel axis.  The pneumatic tires provide a reasonable but firm suspension for the robot.   

To weatherproof the robot, a thin window heat shrink wrap was used to cover the outside of the robot. 

This wrapping is resistant to light rain and keeps the electronic components dry. On the side of this 

covering, holes were cut for the Time-of-Flight sensors to allow these sensors to function properly. On 

the front of the robot where the payload is to reside exists a covering that will swing open and allow the 

insertion of the payload. The back also has a door that can be opened to view and adjust the electronics 

inside and work with the mouse and keyboard. This maintains easy access to the electronic components 

on the inside of the robot. 

Electronic & Power Design 
The robot electronics can be broken down into the power supply, the core processing unit (Jetson 

Nano), peripherals, the sensing units (inputs), the output units (motors and lights), and the Emergency 

Stop System. The power supply consists of two 12V batteries. The full 24 Volts is applied to a select few 

components while the rest of the components require 12 volts or less. The Jetson Nano and its 

peripherals lie at the center of the robot and receive power from a 12 to 5V Buck Converter. All the 

sensing equipment is linked to the Jetson Nano either through the USB ports or the GPIO pins. Since the 

buck converter is over 85% efficient one can roughly consider the components receiving  +5V as being 

supplied with half the voltage but twice the current. The motor controller, motors, monitor, and lights 

get their power directly from the batteries. The emergency stop system has a mechanical and remote-

control mechanism that both cut off power to the motor controller directly. 

The power requirements of the various components are listed in the table below.  

 

 

 



 

Part Quantity Amps/Unit Rating (Max) Total Amps Drawn from Batteries 

Motors 2 8 A 16 A 

MDDS30 Motor 
Controller 

1 0.2 A 0.2 A 

Monitor 1 1.1 A 1.1 A 

Misc Peripherals 1 1.0 A 1.0 A 

Items below this line are powered through the buck converter so they only draw half the current from 

the batteries. 

Jetson Nano 1 4.0 A 2.0 A 

VL53L0X Time of Flight 2 0.02 A 0.02 A 

QMC5883L Compass 1 0.02 A 0.01 A 

ZED F9P GPS 1 0.1 A 0.05 A 

Depth Camera 1 0.4 A 0.2 A 

Total   20.58 A 

Table 1. Power Consumption by Component 

 

The robot uses two batteries rated for 20 Amp-hours. Adding up all of the power consumption from 

these components amounts to 20.58 Amps.  Our maximum runtime under this load is calculated as 

follows: 

 

20 𝐴𝑚𝑝 ∗ ℎ𝑜𝑢𝑟𝑠

20.58 𝐴𝑚𝑝𝑠
= 0.972 ℎ𝑜𝑢𝑟𝑠 = 58.3 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 

 

This is more than enough time to run the AutoNav course multiple times on a single battery charge. It is 

worth noting that this is the worst-case scenario. The main power draw is the motors, and they are 

rated for 8 A under maximum load. It would be very rare for the motors to actually draw this kind of 

current from the batteries and they certainly would not draw that much current for an extended period 

of time. Our expected battery life should be much longer than 1 hour. The team has been able, to test 

and run the robot for up to 4 hours without the batteries even starting to die. In all the testing done 

over the year, the team has never actually seen the batteries run low or experienced a power outage. 

List of key electronic components  

Nvidia Jetson Nano 
The Nvidia Jetson Nano serves as the primary controller for the robot. It is connected to the RealSense 

Camera over USB 3.0, the time-of-flight sensors and compass using I2C, the motor controller using a USB 

to UART cable, the GPS using UART over the GPIO pins, and the signal tower using the GPIO pins directly. 

Motor Controller 
The motor controller is an MDDS30 Cytron SmartDriveDuo-30. It was particularly well suited for our 

application since it accepts commands by several different means including RC (Radio Controlled) Mode 



and a Serial UART connection. The team can easily manually drive the robot into position and test things 

in RC mode and then when the robot is switched to autonomous mode the controller uses the 

Simplified Serial Mode. 

Intel RealSense D435 Depth Camera 
The Intel RealSense D435 Depth camera is used to capture color images for line detection, line-

following, and pothole detection as well as stereo depth arrays for obstacle detection. 

Compass 
The compass is an orientation sensor used to aid our transitions between states – particularly the exiting 

of obstacle avoidance. 

Global Positioning System 
Our team used the ZED F9P GPS to do our GPS navigation. Our software utilized the GEOPY library to 

determine the distance that we were from a waypoint. We also utilized complex numbers and phase 

angles to determine our orientation utilizing the Python “cmath” library. 

Time of Flight Sensors 
There are two VL53L0X Time of Flight (ToF) sensors mounted on the robot, one on each side. These 

sensors are used to determine if there is an obstacle on the side of the robot and when detected are 

used to follow around the obstacle. 

Safety Devices 
The robot has both wired and wireless emergency stops. The wired emergency stop consists of a large 

red mushroom pushbutton controlling the flow of power to the motor controller. Activating the e-stop 

cuts off the power to the motor controller and immediately brings the robot to a halt. The wireless 

emergency stop is triggered by a nob on the robot’s wireless controller. Upon receiving the signal from 

the wireless receiver, a servo motor manually flips a switch which also cuts off power to the motor 

controller. Both E-Stop mechanisms work regardless of whether the robot is in RC mode or Autonomous 

mode. 

The red light on top of the robot functions as a safety light. This light indicates whether the robot is set 

to the autonomous mode or the manual mode. When the robot is being manually driven the red light is 

solid and when the robot is set to move autonomously the red light will flash. 

In addition to the Emergency Stop mechanisms and the safety light, the software of the robot requires 

that each piece of software be successfully initialized and functioning for the robot to operate 

autonomously. If any software node shuts down or does not initialize properly, all other nodes will also 

be shut down to prevent unpredictable behavior from some nodes not being operational. 

Software Strategy and Mapping Techniques 
We utilized the Robot Operating System (ROS) framework for connecting the various components of our 

robot. Each of our input and output devices is initialized as a ROS node. We also have the main node 

which is set up as a finite state machine (FSM) and functions as the primary controller for the robot. The 

overall architecture of the main robot controller is shown in Figure 4.  We did not implement any 

mapping algorithm; rather, our robot navigates the course solely using the sensors and logical state 

transitions. 



Obstacle detection and avoidance are accomplished by utilizing the Intel RealSense Depth camera for 

detecting obstacles immediately in front of the robot, and then the dual time of flight sensors for 

navigating around detected obstacles. Proper exit conditions are then determined by either detecting a 

suitable line to resume following or determine that the robot is angled properly when GPS following. 

Our obstacle detection node is continually running and outputs when there is an obstacle in the path of 

the robot as well as when the path is clear. When the main robot controller receives a message that an 

obstacle is present, it transitions to an obstacle avoidance state respectively to the current mode that 

the robot is in (line following or GPS following). It then reads the distance information from the time-of-

flight sensors to drive around the obstacle(s). While navigating around obstacles in line following mode, 

the robot performs line detection which utilizes a Probabilistic Hough Transform to determine if a 

suitable line is present to follow. If a suitable line is detected, the robot transitions back to the line 

following mode. While navigating around obstacles in GPS mode, the robot continually checks for an 

acceptable angle between GPS position readings to trigger a return to GPS following. 

Our robot takes a strategy of using a Finite State Machine (FSM) to navigate the obstacle course. Rather 

than planning and mapping a path through the obstacle course, the robot will handle obstacles in the 

course as it encounters them. This strategy of focusing on what is directly in front of the robot helps to 

simplify the software and avoid complex computations.  

 

Figure 4. Alpha Bee State Graph 



The FSM has four major states or modes of operation where it is moving based on information from a 

particular sensor. In the Line Following mode, the robot uses the camera to find the line and follow it 

until some disturbance from the surrounding takes precedence such as an obstacle. In the GPS 

Navigation mode waypoints are followed based on heading until an obstacle is found in the way or the 

waypoint is reached. There are two Obstacle Avoidance modes: one for when line following and one for 

when navigating by GPS. Each of these will follow along the side of the obstacle until the robot can 

return to the previous state of following a line or GPS waypoints.  

In between the major states are several transition states where the robot performs specific maneuvers 

based on surrounding sensor data to move smoothly into the next main state. For example, when an 

obstacle is seen, the robot turns at a set speed and direction until the obstacle is no longer in front of it 

and then begins to follow the side of the obstacle. Likewise, when following an obstacle, if the line is 

seen the robot will turn until it is properly oriented with the line and then start following the line again.  

Failure Modes, Points, and Resolutions 
The main failure in the software that could arise would be if the state machine gets out of sync with the 

course. If a state is entered on accident (due to an invalid sensor measurement or inadequate logical 

processing of the sensor data), the flow of the run could be disrupted, resulting in undefined behavior. 

For example, if the robot thought it saw an obstacle when there was no obstacle in front of it, that 

would cause the robot to turn away from the line it was following. We attempted to minimize the effect 

of these types of errors by keeping all state transitions based on environmental stimuli and by requiring 

multiple transition flags before changing states. The other event that is most likely to cause a software 

fault is if one of the cues to leave a state is missing causing the robot to stay in the same state rather 

than leave when it should. We minimize this kind of failure by carefully setting the sensor read rates and 

keeping the speed of the robot at a level where we should always be able to detect a noteworthy 

change in the environment. One last kind of failure that could come happen is for one of the ROS nodes 

to shut down unexpectedly. This is handled by the software because ROS can detect if a node shuts 

down and attempt to restart the node (which usually takes about a tenth of a second). This keeps the 

robot from having to finish the run without an important piece of software such as the node that 

detects objects. 

The failure points in the hardware are primarily concerned with communication between the sensors 

and the Jetson Nano. In particular, the I2C busses for the Time-of-Flight sensors and the Compass. Our 

team found that because of the long length of the communication busses, they were prone to fail due to 

electromagnetic interference from the motor controller. This risk has been alleviated in a couple of 

ways. First, pull-up resistors were installed on the lines on the side of the sensors to hold the lines high. 

We found that having pull-up resistors on both sides of the I2C line helped support the bus from 

interference. Also, we shielded the wires with aluminum foil to further prevent interference. Lastly, in 

the software, we detect errors on the I2C bus and restart the connection whenever it goes down.  

Other failures could come from loose connections in the wiring. These were mitigated by good solder 

joints and covering the solder joints with electrical tape and heat shrink wrap. The connections to the 

Jetson GPIO pins have been carefully checked to ensure a secure connection. Most wiring such as the 

USB and UART lines have been very stable and not prone to errors. 



To prevent failures as much as possible both during development and at the competition, the robot was 

designed with a very modular approach in mind. This helps in debugging and allows for replacing various 

components or software nodes should something fail. This was accomplished in part by keeping all 

sensors distinct from one another. Any single hardware component can easily be replaced with a 

substitute. In using ROS for the software management of our system, each distinct software component 

is given its own node. All the nodes communicate by predefined communication channels and protocols. 

Not only does this allow each node to be tested individually, but it also makes it easy to debug and find 

failures. 

The robot was tested incrementally throughout the entire design process. This was accomplished both 

using simulations with ROS bags (recorded camera and sensor data that can be played to simulate how 

the robot would respond) and through real-time tests and small demo runs. The first tests done on a 

piece of software were usually with ROS bags. For both software and hardware, most testing was then 

done in our lab with conditions that approximated as closely as possible the expected conditions on the 

course. Once this phase was completed, the robot was often taken outside to a makeshift obstacle 

course and allowed to run on the course to test various functionalities. The process was followed during 

the entire design process to facilitate the testing of new code and its integration with the existing 

system.  Since we have been doing real-world testing since October, we have found and eliminated 

many bugs. 

The robot was designed to be as safe as possible for all bystanders. The primary means of these safety 

considerations were in the form of the Emergency Stop Mechanisms, which shut off power to the motor 

controller at the user’s discretion. Additionally, the robot is also made to move at a slow enough speed 

that it will not pose a significant safety hazard to anyone in the nearby vicinity. Different speeds were 

even used for the various navigational modes to ensure that the robot was never traveling so fast that it 

lost control. 

Employed Simulations 
For much of our original vision algorithm development, we recorded ROS bag files of our robot manually 

driving through an obstacle course. We then played back the bags and ran our algorithms on them to 

test their performance. Due to the nature of our approach, we were unable to run complete simulations 

of overall robot performance in a virtual environment. We did however extensively test our robot 

outside on an obstacle course that we created. 

Performance Testing 
Subsystems and individual components of the robot were tested by utilizing the ROS framework to run a 

single node at a time. In this way, a script could be written in each ROS node to run a basic test of a 

hardware component. For the vision nodes, ROS bag files were used to provide camera-input without 

the other subsystems such as the wheels running. All the sensing nodes were also able to be tested by 

driving the robot manually and allowing the robot to process real sensor input in real-time. This allowed 

realistic conditions to be used in evaluating the performance of various algorithms and techniques. Our 

team found that driving the robot and allowing the robot to process data in real-time from actual data 

was much more helpful than simulations with the ROS bag files. The reason for this was that sometimes 

the incoming frame rate would be different in the simulation, or the lighting conditions or camera angle 



had changed. Driving the robot around manually allowed for very realistic conditions to be tested and 

thus we were able to verify the accuracy of our algorithms. 

The full robot was tested on a small outdoor obstacle course modeled after the real course on which the 

robot was designed to compete. Various conditions were assessed and tested to ensure consistency in 

the robot’s response to obstacles, lighting, and ground gradient. To aid with testing, the tower lights 

were used to indicate which state the robot was in throughout the testing process, giving the team an 

accurate, up-to-date knowledge of which state the robot was currently in and why it acted the way it 

did. 

Initial Performance Assessments 
Alpha Bee is currently working very well. It runs with an average speed of about 1.8 miles per hour 

carrying a full load and can navigate consistently by following a line and following GPS waypoints. In 

both line-following and GPS-navigation mode, Alpha Bee can gracefully handle obstacles in its way by 

navigating around them. Obstacles are detected at a dynamic distance, allowing just-in-time detection 

and avoidance. The GPS has an observed accuracy of 1 meter allowing adequate detection of the course 

waypoints. The Time-of-Flight sensors allow objects on the side of the robot to be detected up to 1.5 

meters away which allows the robot’s obstacle following to be about half a meter away on average. 

Overall, Alpha Bee is ready to compete in the competition in June. 


