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INTRODUCTION 

Students from Bob Jones University have worked to implement and integrate several subsystems 

to transform a Polaris GEM e2 vehicle into an autonomous vehicle named Bruin 3. This has 

required work from many different fields of engineering to design the different parts of the 

vehicle. Students from BJU have been working for several years to transform this vehicle to have 

fully autonomous capabilities. In 2018 and 2019, students redesigned most of the hardware on 

Bruin 3. In 2020 and 2021, students added several new components to the vehicle, then focused 

on getting all the software working. This report focuses on the designs on Bruin3 over 2020 and 

2021.  

ORGANIZATION 

Table 1 lists members of the project for 2020-2021 and the number of hours contributed to the 

project for a total of 600+ hours. 

Table 1. Team Members and hours worked. 

Name Hours 

Michael Crum 28+ 

Jonathan DeGirolano 28+ 

Zach Kilpatrick 28+ 

Jonathan Layton 28+ 

Charleton Musselman 28+ 

Matthew Palermo 28+ 

Joshua Barr 28+ 

James Emery 28+ 

Douglas Flynn  28+ 

Daniel Zhuang 28+ 

Erick Ross 320 

  

DESIGN ASSUMPTIONS AND DESIGN PROCESSES 

In 2018 and 2019, students designed most of the hardware and mechanical components of the 

vehicle. Thus, much of the basic mechanical design for Bruin3 was already in place from the 

progress made in past years. The design process for these components is covered in detail in the 

2019 IGVC design report, and many of the mechanical details are parallel in this report. This old 

design had a few unresolved problems. So, the 2020 team designed Bruin 3 in order to address 

these issues. They worked to design a dual braking system, an autonomous transmission control, 

and a CAN bus speed sensor. They also designed corresponding ROS (Robot Operating System) 

nodes to control those components. In addition, the 2020 team worked to redesign all of the 

software on the vehicle, and the main design of the software is almost entirely new. The team 

attempted to completely transition over to the Robotics Technology Kernel software. This design 

process met with several challenges. RTK is very poorly documented, and the team did not have 

access to the source code. As a result, much of the design and protocols for RTK had to be 

reverse engineered. 

 



INNOVATIONS 

Dual Braking System 

This vehicle implements a dual braking system in order to reduce stress on the hydraulic actuator. 

Initially, the vehicle had a brake actuated by a hydraulic pump. But in some cases, the vehicle is 

stopped for a longer period of time, and there is no need to continually apply the hydraulic brake. 

So, we designed an additional parking brake. When the vehicle detects a long stop, it switches 

from the hydraulic brake to the parking brake. 

Speed Sensing (Optical Flow Odometer and CAN Speedometer) 

Typically, we would use rotary wheel encoders to determine the speed of the vehicle. But Bruin 3 

does not have any wheel encoders, so we had to come up with some replacement sensors to 

determine speed. First, we used a PX4 Flow Optical Odometer to provide feedback on the speed 

of the vehicle. Mounted between the two rear wheels, the odometer determines the speed of the 

vehicle by capturing images of the ground, rather than with a rotary encoder on the wheels as is 

traditional. We also were able to design a CAN bus to obtain speed measurements. This CAN bus 

connected to a speedometer, and we were able to publish that speed information on a ROS topic.  

RTK 

The main innovation on Bruin3 is the use of RTK (Robot Technology Kernel) software. This 

software was provided by United States Army CCDC Ground Vehicle Systems Center (formerly 

TARDEC) and integrated into our vehicle, as part of a grant to help develop RTK.  The 2019 

vehicle bypassed large portions of RTK and used many custom nodes and hacks. The current 

vehicle fully uses RTK with a minimum of custom nodes. RTK works alongside the software 

designed by the team members, but the difference between them is that RTK is the brain that tells 

the vehicle what to do. According to the information or input that comes in, RTK decides what 

the next action should be and then the system designed by the team sends signals to the various 

parts that control the vehicle. This software is not well documented, and it is innovative to even 

get the software integrated into a vehicle. Several components of RTK were designed for specific 

sensors, which were not available on Bruin 3. So we had to redesign much of the low-level topics 

coming into RTK, and simulate some others that were not being produced. In addition, the entire 

Drive-By-Wire system within RTK had to be redesigned in order to work with our vehicle and its 

actuators. 

 

MECHANICAL DESIGN 

Overview  

The rear of the vehicle is divided into two sections, the bottom rear and the top rear. The bottom 

rear of the vehicle contains the Hydrastar, the PX4-Flow optical odometer, and the back-up 

battery. A metal plate sits on top of the back-chassis frame and supports the three pieces of 

equipment. The top rear section contains the two CPUs (Fanny and Freddy), a 16-port ethernet 

box, two power converters, the IMU, and the Lidar ethernet box.  



The following sensors are located on the top of the vehicle: LIDAR, Mako camera, GPS unit, and 

a light beacon. These are attached on top of a metal plate that is secured with brackets via the T-

slot feature on the sides of the car. 

The front of the vehicle contains the RADAR and the stereo camera. The RADAR is mounted to 

the front, diagonal beams of the frame. The stereo camera is attached to the vehicle right below 

the windshield in the charging port area. 

Drive-by-wire kit  

The team designed and installed their own drive-by wire-kit allowing the computer to control the 

vehicle’s steering, brakes, and acceleration pedal.  

The system consists of three actuators. The brake actuator is a pump called the Hydrastar. This 

pump is in charge of pushing hydraulic fluid into the brakes. An electric stepper motor turns the 

steering wheel. Finally, an electronic accelerator pedal interface was created by the team that 

produces the same signals as the accelerator pedal from the factory car. 

Suspension  

The 2018 GEM e2’s front suspension is a MacPherson strut and the rear suspension is an 

independent trailing arm. No changes were made to the vehicle’s stock suspension. 

Weather proofing 

Bruin 3 must be protected from the weather. Concerning the sensors, the three cameras, LIDAR, 

and Radar, GPS unit, and IMU are unprotected. The enclosed sensors are the DAC, PX4Flow 

odometer, and the steering equipment. In the back, a waterproof box protects the vehicle’s 

batteries and various electronics.  Soft doors and a back window were purchased to protect the 

rest of the vehicle. 

Parking Brake 

For the design of Bruin 3, we wanted to be able to control the parking brake through a ROS node. 

We did this using a RoboteQ actuator. This design for the parking brake required a connection 

between the actuator and the parking brake. The final actuator housing design is a vertical square 

aluminum and carbon fiber shell that slides over a protrusion in the floor of Bruin 3 as shown in 

Figure 1.  

 

Figure 1: The Parking Brake Actuator with its Housing  



The base of this housing has two horizontal flat pieces extending out from the two vertical walls 

to create broad feet on which the entire weight of the housing and motor sit. On the interior of 

these vertical walls there are 4 separate pieces which locate the actuator in relationship to the 

outside walls both horizontally and vertically. 

DESCRIPTION OF ELECTRONIC AND POWER DESIGN 

Overview 

The vehicle uses a 48V Battery Pack as power source and various converters that power the 

computers and sensors.  Additionally, a 12V battery pack serves as a backup battery for 

the HydraStar braking system. 

The vehicle consists of three main computers and sensors. The sensors include cameras for 

obstacle detection and localization sensors. 

 

Figure 2. Block Diagram of the Control System. 

 
Power Distribution System 

There are two 48-to-12V DC-to-DC converters from which the computers are powered. The 

computer that processes images, “Fanny,” requires a 12V power supply and draws 10A. All the 

cameras are connected to this computer. The sensors require 12V power supply and draw 3A. The 

other computer, “Freddy,” receives feedback from the other sensors and sends signals to the motor 

controller and actuators which requires a 12V power supply and draws 5A as seen in Figure 3. 

 



Figure. 3 Power Distribution Diagram. 

     
 

 

Electronics Suite Description 

Computer Hardware 

1. Freddy is a LINUX PC that runs the actuation nodes. 

2. Francisco is a LINUX laptop that runs the high-level RTK nodes and provides a software 

dashboard in the cab of the vehicle. 

3. Fanny is a LINUX PC that runs sensors and localization nodes. 

4. Whyme is a Windows laptop that runs the WMI (Warfighter Machine Interface) and can 

be used by the vehicle’s occupants or a remote operator. 

 

 
Figure 4. Computer Hardware Connections. 

 
 



 

 

Sensors 

1. Cameras 

a. Lane detection camera 

b. Stereo camera 

c. Road sign detection camera 

2. LIDAR 

3. RADAR 

4. Localization sensors 

a. GPS sensor 

b. Odometry sensor 

c. IMU (Inertial Measurement Unit) 

 

 
Figure 5. Sensor locations in the vehicle. 

 

Safety Devices 

Fuses are inserted between the DC-to-DC converters and computers to prevent short circuits. An 

E-Stop system is also implemented in the case that the vehicle must be shut down immediately. A 

backup battery is installed in the HydraStar’s braking system in the case of failure. 

 

CAN-bus Speed Sensor 

For Bruin 3’s speedometer, we used a Kvaser Leaf v2 to collect and process Bruin 3’s CAN bus 

speedometer data. We implemented Kvaser’s Linux drivers to receive the Leaf’s CAN data 



stream. The Kvaser then reads and isolates Bruin3’s speed from the stream and sends it to a 

publishing ROS through a Linux FIFO pipe. Once the publishing ROS node receives Bruin3’s 

speed data from the pipe, it translates the scalar speed values to an odometry message and 

publishes it to the RTK topic /localization/speed. 

Autonomous Transmission Control 

Forward-Neutral-Reverse mode was previously controlled through a mechanical switch. Each 

mode was activated by connecting different ports to create a short circuit to ground. Each of the 

voltage probes represents a wire that tells the motor to be in reverse mode, neutral mode, or 

forward mode. Utilizing this information, our initial design consisted of taking 8 switches and 

using them to control which ports were connected to induce the same logic automatically instead 

of manually. This idea was inspired by the fact the internals of switch was not fully understood. 

However, after finding a schematic of what was going on inside the switch and the car, we were 

able to reverse engineer it, as shown in figure 1. The two switches on the left indicate the 

Forward-Neutral-Reverse (FNR) switch in the car. The 3 voltage probes on the right side indicate 

the 3 sensor wires to indicate which gear we are in. When the sensor wire is at 0 volts, then we 

are in that gear. From top to bottom the sensor wires indicate Reverse, Neutral, and Forward 

gears. Using this information, we were able to control the transmission autonomously through a 

relay board. So we designed a ROS node to change the transmission, based on what RTK 

requested. 

 

SOFTWARE STRATEGY AND MAPPING TECHNIQUES 

Overview 

Our software is based on RTK (Robotics Technology Kernel) which is built on top of the ROS 

(Robot Operating System) framework which is an open-source software package maintained by 

the Open Source Robotics Foundation (OSRF). In ROS each major function is managed by a 

separate smaller program called a node. The nodes communicate between each other and perform 

the various tasks needed for our vehicle to function. RTK is a compilation of ROS nodes 

managed by GVSC, the Army CCDC Ground Vehicle Systems Center. Our team wrote several 

custom ROS nodes to implement different features. 
 

  
Figure 6. Software Architecture. 



 

 

Much of the standard RTK system had to be modified in order to get it working on Bruin 3. 

 

First of all, the localization subsystem of RTK receives sensor inputs from the Sensor subsystem. 

RTK expects a standard localization sensor suite, including a specific Novatel GPS, Microstrain 

IMU, RTD rear wheel encoders, and KVH single axis gyroscope. We did not have all of these 

hardware components available, so the sensor part of RTK had to be entirely rewritten. We had a 

Garmin GPS, and used the GPS driver gps_umd from SWRI Robotics to generate sensor 

messages. In addition, we used  the imu VMU931 from Variense. Variense provides driver code 

that we used to generate sensor messages from the imu. We also used this driver to get gyroscope 

data. Bruin3 does not have wheel encoders, so we used a px4flow camera to get speed 

measurements. This camera scans the ground and detects how fast the ground is moving relative 

to the camera and uses that data to calculate speed. We used the px-ros-pkg/drivers/px4flow ROS 

node to obtain speed measurements. Most of these sensor messages were not formatted correctly, 

so we wrote an additional ROS node to transform each of these topics into the correct format. 

 

Second, RTK has an IOP Bridge subsystem connecting to the OCU (Operator Control Unit). We 

used the standard OCU for RTK: the WMI software (Warfighter Machine Interface). The IOP 

Bridge and WMI use JAUS (Joint Architecture for Unmanned Systems) messages to 

communicate information back and forth. We ran into some networking issues to connect RTK 

up to WMI, but we were able to configure the network in such a way to allow communication. 

 

Third, the motion execution and low-level CAN subsystems had to be rewritten. These are the 

DBW (Drive By Wire) system that RTK uses to control the low-level actuators on the vehicle. In 

standard RTK, the motion execution system sends DBW commands to the CAN Bridge to control 

the vehicle. The actuators on Bruin 3 are very different than the ones that RTK expects, so we had 

to completely redesign the DBW system. We took the four commands from the Motion Execution 

System: brake, throttle, steering, and transmission inputs, and wrote our own ROS nodes to 

implement those commands with the actuators on Bruin3. RTK is also designed to expect several 

messages from these low-level components indicating that everything is working fine. We had to 

fake many of these messages with a stub in order to make the RTK system happy. 

 

Finally, there were several other details in the main part of RTK that we had to change in order to 

get everything working properly. One of these was the VMS (Vehicle Management System). It 

was expecting a lot of messages from different parts of the RTK system that weren’t being 

published. So we had to change some of those things and fake different topics in order to get the 

VMS to do its job.  

 

 

 

Obstacle Detection and Avoidance 

We used three major components for obstacle detection: a stereo camera, LIDAR, and RADAR. 

1. LIDAR is used to create a 3D map of the area around the vehicle as seen in Figure 8. 

2. RADAR senses certain obstacles in front of the vehicle, for example, pedestrians and 

other vehicles. 

3. The stereo camera detects obstacles that are in front of the vehicle as seen in Figure 9. 



 
Figure 7. LIDAR sample. 

 

 

 
Figure 8. Sample depth image from the RealSense stereo camera. 

 

Lane Following 

A camera on the top of the vehicle scans for road marking lines. These marking lines are turned 

into 3D obstacles and added to the cost map so that the path planning will stay between them. 

Map Generation 

The world model module of RTK combines data from the LIDAR, stereo camera, and other sensors 

to generate a map of the world around the vehicle with the obstacles and other parts of the course. 

This world model then generates the costmap for the entire situation. The generated costmap 

indicates the riskiness of different paths the vehicle can take. See example cost map in Figure 10. 

 



 
Figure 9. Example of a costmap generated by RTK. 

 

Path Generation 

The path planning module of RTK uses the costmap and the A* algorithm to find the path of least 

total cost. The RTK module uses the sensor information to determine where the vehicle cannot go, 

like going off the road or crashing, and associates that with a very high cost. The clear road ahead 

of the vehicle will be assigned a very low cost and that is the path that the vehicle will take. The 

vehicle will then use this path that RTK plans to drive the motor and steering of Bruin 3. There will 

be a user interface where the user can provide their desired destination. The vehicle requires GPS 

to perform waypoint navigation. When the next point is entered or identified, the system then uses 

the sensors to ensure all obstacles are avoided. The vehicle stays in the lane while the GPS indicates 

the location to direct the system to head in the right direction. 

 

DESCRIPTION OF FAILURE MODES, FAILURE POINTS AND RESOLUTIONS 

Vehicle failure modes and resolutions 

If the steering actuator subsystem fails, the vehicle may attempt to drive into obstacles. The 

obstacle sensors should detect the obstacles. It will attempt to steer around the obstacles, without 



success, and then stop the vehicle when it becomes clear that a viable path is no longer available. 

The human safety driver is also responsible to observe the operation of the vehicle and intervene 

if the path is toward an obstacle. 

If the brake actuator subsystem fails, we are dependent on the human safety driver to stop the 

vehicle using the independent front wheel braking system. In the unlikely event of failure of both 

brake systems, the parking brake may be used by the human safety driver to stop the vehicle. 

If the accelerator pedal actuator fails, the vehicle may accelerate out of control. The obstacle 

detection systems should intervene and attempt to brake the vehicle. If full acceleration and 

braking are both actuated at the same time, the brakes will be able to stop the vehicle but at a 

reduced rate. The human safety driver may need to intervene in this situation as well. 

Vehicle failure points and resolutions 

If the battery fails, we are dependent on the back-up battery. This battery will continue powering 

the vehicle estop which will be triggered by loss of power. 

If the actuators fail, we are dependent on the e-stop to stop the vehicle, in order to avoid further 

complications. 

If the e-stop communication fails, this will cause an e-stop.  

If the communication between the computers fails, the vehicle will stop driving. 

All failure prevention strategy 

The vehicle health system can detect multiple failure points across the vehicle, and it will stop 

driving. 

The vehicle operation currently requires a human safety driver in the vehicle at all times. The 

human operator can engage the estop at any time. The operator can also brake or steer the vehicle 

manually. 

Testing 

The estop system was tested and the stopping distance was measured at 11 feet at 5 miles per 

hour. It also engaged when a wire was disconnected from the e-stop system. 

The wireless estop system has a specified range of 600 feet, well beyond the IGVC requirement 

of 100 feet. This range has yet to be tested but will be tested before IGVC. 

The torque required to override the steering actuator was measured to be 5 lbs. at 5.5 inches or 

2.3 foot-pounds (3.1 Nm) of torque, which is easily achievable by the human safety driver. 

The manual brakes were tested and are fully functional in autonomous mode. 

The vehicle and our on-campus test track are modeled in the Gazebo simulation environment. 

The vehicle can be driven in the simulated environment using the same software as the real 

vehicle. The resulting vehicle trajectories can be compared. See section 8 for simulation details. 

The actual vehicle was tested on a grassy field on the BJU campus. On March 12 we successfully 

demonstrated driving to a waypoint as seen in Figure 11. See section 9 for testing details. 



 

Vehicle safety design concepts 

The Polaris E2 vehicle meets all the safety standards for a low speed electric vehicle (LSEV) 

including headlamps, tail lamps, stop lamps, reflectors, mirrors, a parking brake, a windshield and 

seat belts. We have not modified any of the safety features except the brakes as described below. 

The speed and path curvature are limited by the software to stay within the limits of the vehicle. 

The vehicle includes a fire extinguisher as required by the IGVC rules.  

Four on-board e-stop buttons and a wireless e-stop provide hardware shutdown of all of the 

actuators. The estop buttons activate normally-closed switches, so any hardware fault in the 

system that results in an open circuit causes an estop. 

The steering wheel and brake pedal are fully functional in autonomous mode, giving a safety 

driver capability to control the vehicle manually at all times. With the current vehicle we intend 

to operate the vehicle only with a human safety driver in the driver’s seat. 

The HydraStar braking system uses a backup battery to provide positive braking in the event of 

an e-stop; the vehicle does not coast after e-stop and will stop even in the case of a total loss of 

primary system power. 

The front (manual) and rear (estop) brakes have separate hydraulic systems, so that if either 

system fails the vehicle can be stopped with the other. 

SIMULATIONS EMPLOYED 

Simulations in virtual environment  

Within RTK’s Operator Control Unit, WMI, RTK provides a sample simulation to test out the 

software and learn how WMI should work. We used simulation to test out driving the vehicle and 

testing how the RTK modes should work. 

The vehicle is modeled in Gazebo for virtual simulation. 

PERFORMANCE TESTING  

Component testing, system and subsystem testing, etc. 

The vehicle has a specified battery range of 20 to 30 miles. In a worst-case battery life test (hilly 

terrain, high speed stop-and-go driving) the vehicle reached a “low battery” level after 12 miles. 

This lowers the range between 8 to 18 miles but is more than adequate for IGVC. 

The vehicle is able to climb a 6-degree (11%) slope easily. 

All sensors have been successfully tested in ROS. 

 

 

 



INITIAL PERFORMANCE ASSESMENTS 

At the time of completion of this report, the RTK is not fully implemented in the vehicle, and the 

vehicle is not yet capable of performing the full set of IGVC tasks. All of the subsystems are 

installed and tested individually. 


