W¥ CEDARVILLE

II“ UNIVERSITY.

Delta Bee

15 May 2022

Team Members

Joshua Blackburn (Captain) jblackburn@cedarville.edu
McKenzie Barlow mbarlow@cedarville.edu
Rachael Judy rijudy@cedarville.edu
Joshua Mundell imundell@cedarville.edu
Drew Murphy amurphy141@cedarville.edu

Team Advisor

Dr. Clint Kohl kohlc@cedarville.edu

| hereby certify that the design and development of the vehicle Delta Bee, described in this
report is significant and equivalent to what might be awarded credit in a senior design course.
This is prepared by the student team under my guidance.

Clid 7l

Dr. Clint Kohl Ph.D.

mailto:jblackburn@cedarville.edu
mailto:mbarlow@cedarville.edu
mailto:rjudy@cedarville.edu
mailto:jmundell@cedarville.edu
mailto:amurphy141@cedarville.edu
mailto:kohlc@cedarville.edu

Conduct of Design Process, Team ldentification, and Team
Organization

Introduction

For the 28th Annual Intelligent Ground Vehicle Competition at Oakland University, the AutoNav
Team from Cedarville University further developed their entry Alpha Bee which placed 2nd in the
2020-2021 competition. This updated robot, now named Delta Bee, will navigate unknown
environments as described in the competition guidelines with no user input. Upgrades to the
robot this year included implementation of a LIDAR obstacle detection system, high resolution
odometry sensors on both wheels, an upgraded GPS receiver, and software enhancements for
newer tools such as ROS2. The most notable innovation was the development of LiDAR-based
obstacle detection to include mapping drawn on obstacles such as potholes to the LIDAR scans.
The team also prioritized safety with the necessary wireless and on-robot stops, upgrading the
software safety protocols.

Organization

The 2021-2022 Cedarville AutoNav Team is composed of computer and electrical
undergraduate engineers. The chart below in Table 1 shows the areas of concentration for the
members pertaining to Delta Bee . The work was primarily split into hardware design and
software development. The hardware team members worked on CAD modeling and installing
mounts for devices such as the sensors, motors, electronics, and power systems. The software
team members collaborated with the hardware team on developing firmware and also
developed the behavioral drive system. This included integrating ROS into the system and
simulating various runs of the robot from rosbag data. The original robot being designed was for
a separate auto navigation task that used many of the same technologies, and thus additional
time and members were dedicated to developing the robot for the IGVC course. The chart
below provides areas of concentration for the various team members.

Table 1. Team Member Areas of Concentration

Name Major/Year Hours of Hardware/ Software
Contribution Mechanical
McKenzie Barlow EE/Sr. 100 X
Joshua Blackburn EE/Sr. 350 X X
Rachael Judy CPE/Sr. 80 X
Joshua Mundell CPE/Sr. 40 X
Drew Murphy CPE/Sr. 300 X

Design Assumptions and Design Process

The team approached the design process using
the standard waterfall design process, shown in
Figure 1, with emphasis on cycling between design, p
implementation, and testing phases. Delta Bee and : Design
its performance in the previous competition were
closely reviewed, and this evaluation was used to v e —
improve upon the design. Tasks were determined o p
based upon team member specialization and

knowledge.

Implementation
Software- P

To start, the team analyzed the IGVC Figure 1. Waterfall Design Process
competition requirements and previous results. The

team first met to discuss design and consulted with experts in the field. Given the success of the
previous robot, it was decided to focus on a similar behavioral algorithm while implementing
improved sensor odometry. This was also based on the majority of the team’s senior design
project which involved autonomous navigation under different constraints. The final decisions
were made based upon timeline, cost, safety, and reliability. The hardware team implemented
and installed the necessary components and sensors while the software team developed
firmware and integrated the odometry into the drive process. Testing was also conducted
through imitation of competition conditions on pavement and through running previous sensor
odometry from competition through the drive control software. During the testing phase,
implementations and designs were reevaluated until requirements were met.

Effective Innovations

Innovative Concepts

Behavioral Navigation

The previous robot from our university effectively used a behavioral navigation model that
focused on line following, obstacle avoidance, and GPS navigation. This method allows
specialization for the competition constraints instead of overgeneralization. It also allowed the
team to specifically select better hardware for specific tasks instead of spending more on
general sensors. The master state machine from the previous robot was overhauled to take
advantage of better sensor odometry and improve upon obstacle avoidance and navigation.

Innovative Technology

Robot Operating System (ROS)

The programming framework was overhauled from the previous year to better utilize modern
image processing techniques employed by OpenCV and ROS2. ROS usage is gaining
popularity in industry and research sectors. It treats the sensors including the Intel RealSense

camera, the RPLIDAR module, and the GPS unit as publishers and the master state machine
and subcomponents as subscribers able to collect and fuse the data as desired. From this
fusion, decisions can be made about the positioning of the robot. As some of the nodes are
upgraded to ROS2 for the better toolset, a ROS bridge is used to coordinate the nodes. The
setup for Delta Bee is being migrated to the newer versions of the softwares. The ROS package
system also advanced the modularity of design.

LiDAR Obstacle Detection and Vision

The robot this year uses the RPLIDAR-A2 for reliable mapping up to twelve meters. This
LiDAR sensor provides data real time in a 2D point cloud format. The data closest and most
relevant is that within three meters of the device and allows significantly better detection and
distance computation of obstacles for the obstacle avoidance. This is an improvement on the
VL53L0OX Time of Flight sensors used in fusion with the depth camera information in previous
years. The LiDAR point cloud was also modified as it was collected to insert potholes as
obstacles so as to standardize the obstacle avoidance methods.

Shaft Encoders and Computer Upgrade

The Delta Bee frame was already modularized to
make interchanging components fairly simple. The
wheel system was upgraded to include precision
optical shaft encoders (Figure 2) which give
millimeter level resolution on turning. These sensors
will provide feedback to ROS and allow for accurate
positioning of the robot. When combined with the
LiDAR data, accurate estimates can be made for
how close the robot is to obstacles. The previous
computer system (Nvidia Jetson) was replaced with
an HP ProDesk for more computing power and real
time sensor processing was upgraded to a
Teensy microcontroller for precise
management of the shaft encoders and light
tower interface.

Figure 2. Shaft Encoders Added to System

Mechanical Design

Overview

The previous version of the robot, “Alpha Bee”, already provided a skeleton platform that met
the sizing guidelines of the competition. The robot is 39” by 26” by 70” and can be viewed in
Figure 3 below. Modifications were made with consideration for weight distribution and sensor
placement. The two 12” front wheels provide turning, with the back caster wheel providing
stability. Delta Bee was designed to be lightweight, easy to transport, and house the necessary
components. For weather proofing this year, new acrylic shielding was fit around the robot to

provide light rain resistance. The front of the robot has a panel that can be swung up to insert
the payload and access the electronic components.

Figure 3. CAD Model of Delta Bee

Decisions on Frame Structure and Housing

The frame structure was designed to be amenable to sensor installation and development on
board. In terms of materials, the frame consists of a half inch steel pipe skeleton with three tiers
of plastic platforms. The materials were chosen for their rigidity and durability. On the upper
platform, the monitor and other peripherals related to the user interface are mounted using 3D
printed fixtures. The central platform contains the power regulator, motor controller, the
computer running the system, the Teensy microcontroller, and the emergency stop hardware.
This section is protected from the elements both by the other tiers and by the weather proofing
setup. On the bottom tier, the motor controllers and shaft encoders are mounted, with a space

for the payload in between the devices. This places the weight at the bottom of the robot for
stability and to prevent tipping. The Bodine motors generate the necessary torque to maintain
the speed within the 1 to 5 mph bounds while carrying the payload.

Besides the main platforms, special mounts were designed to be placed on the front of the
robot for the LIDAR and on the top for the camera and the GPS system. The camera was
mounted as high on the device as possible to minimize distortion of the image for line following
and pothole detection. The GPS was also mounted on the top bar to optimize its signal from the
satellites. The LiDAR is mounted at the base of the robot where a special protective bar was
installed to protect the LIiDAR from contact. This location allows the most obstacles to appear in
its line of vision. Additionally, the lights are mounted high, near the camera, for clear signification
of autonomous modes and safety. These are all mounted on the steel frame using PLA and
PETG 3D printed mounts designed by the team. The wires are able to be interchanged easily
between components and most have been wired to be compatible with USB for simplicity of
exchange.

Suspension

The robot was designed to move at a slow enough pace that an elaborate suspension
system was not necessary. The pneumatic rubber wheels provide adequate suspension when
crossing over bumps and navigating over the ramp.

Specific New Hardware

Shaft encoders were added to the system to
monitor the distance traveled by each wheel.
This modification of the drivetrain was selected
to better manage precise turns. In order to
install these, encoder mounts needed to be
added to the existing structure, so CAD was
used to design models and 3D print them for
mounting. The final design of these mounts is
shown in Figure 4. The design included adding
two pulleys to the motors, one which rotated
with the wheel and the other which was turned Figure 4. Encoder Mounts
by a belt. The larger upper pulley is monitored by
the shaft encoders.

Cost

The vehicle cost estimate can be seen in Table 2 below. The actual cost of the vehicle for the
team was reduced from the estimate in the table due to reuse of many components already
provided and the sponsorship of the university. This system is considerably cheaper than many
previous competition robots and allows replacement of sensors and components for upgrades
as desired to improve navigation capabilities.

Table 2. Cost Estimate of Delta Bee if Built from Scratch

HP ProDesk 600 G2 $600.00 1 $600.00
Elmid Reach+ GPS $900.00 1 $900.00
Electric Gear Motors $890.00 2 $1,780.00
RPLiDAR $320.00 1 $320.00
Intel RealSense Camera $300.00 1 $300.00
Light Tower $25.00 1 $25.00
Optical Rotary Encoder $25.00 2 $50.00
RC Radio & Receiver $85.00 1 $85.00
Monitor $50.00 1 $50.00
Emergency Switches $25.00 1 $25.00
Motor Controller $75.00 1 $75.00
batteries $80.00 2 $160.00
wheels and Tires $25.00 3 $75.00
Metal Frame $250.00 1 $250.00
Teensy Microcontroller $30.00 1 $30.00
3D Printing & Misc. $120.00 1 $120.00
Total $4,845.00

Electronic and Power Design

Overview

This year’s entry utilized much of the in-place electronics system with some new additions.
The system included four categories: the power and drivetrain, the computing system, the
sensor array, the output units, and the safety system. The components of the emergency stop
system and most of the drivetrain were well developed and kept in in-place while the sensor
array, computing system, and motion and control structure were revamped. The focus was to

better compartmentalize the robot functionalities and allow interchange of components and
sensors with ease. The technologies used in the project can be seen in Figure 5, and an overall

connection diagram can be seen in Figure 6.

o

S

ensors

=
/\7<./\>

=
Sy

EMLID Reach RS+

A

RealSense Camera

RPLidar

%

C

omputing

HP ProDesk PC

/Power & Motion\

Bodine Gear Motor

\ SLA Battery

Dual Motor Controller

/

Figure 5. Technologies Used

Motor
Controller

LIDAR

T eatare)
Safety
Light .
Tower i

GPS

HP ProDesk

Shaft
Encoders

-a—Digital 10

IUSB—

use

Computer

Real Sense
Camera

USB

Teensy

Figure 6. Connection Diagram of Components

Power System

The system was powered with two 12V batteries. Most components such as the sensor array
and the peripherals were controlled off of a single 12V battery with the motor controllers
requiring 24 volts to operate. The computer power system was completely redesigned to step
the 24V battery to the level for the converter for the specific machine. This ensures the
computer safeties and control systems never have unstable power. These motors were rated at
their limits to run at a quarter horsepower at up to 8.8 amps. These limits are never approached
in the competition. The motors were driven by the Cytron Technologies MDDS30 smart motor
controller. A Buck converter was used for the regulation of the power to the lower power devices
such as the peripherals. The input sensors are controlled through USB ports while the motors
and drive system get power directly from the battery. Based on the power consumption of the
various components running at a total of about 20A at the varied voltages, the minimum run
time per charge while loaded can be estimated to be approximately one hour. Testing has
indicated Delta Bee can run for over four hours without the battery being depleted. This is more
than enough time to run the AutoNav course multiple times and is a clear underestimate as the
motors draw the majority of the power and would not likely draw the specified amount since they
are not run constantly at maximum output. It takes approximately six hours to recharge the
overall system.

HP ProDesk Computer

The HP ProDesk Computer acts as the primary controller for the robot. It is connected to the
sensor array through various USB ports and also communicates with the Teensy microcontroller
to manage the shaft encoders. This computer uses an Intel Core i5 processor, has 16GB of
RAM, and a 256GB SSD. It runs Ubuntu 20.04 and a mesh of ROS Noetic and Galactic. The
code was primarily written in Python.

Motors and Controller

The robot uses the MDDS30 Smart Controller to manage the motors. This uses a simple
serial protocol to send speed and direction commands to the Bodine 42A5BEPM-5N electric
motors. These are rated at 24V and one-quarter horsepower and can easily handle the power
and speed required for the course including navigating up the ramp.

Sensor Suite

Intel RealSense Depth Camera

The RealSense camera is used to capture color images for line detection and line following.
The camera provides a stereo solution at up to 10m with ideal capture distance at between .3m
and 3m, which fits our mechanical setup. It also provides a 69 by 42 degree field of view at 30
frames per second. Through a ROS node that subscribes to both the RealSense color image
and the LiDAR laser scan, it is used for detecting and mapping potholes onto the LiDAR scan.
When the camera detects a circle signifying a pothole, it maps this onto the LIiDAR scan which

consists of distances and intensities at varied angles. This required development of a custom
processing node for the camera that included usage of a HSV filter for shadows.

LiDAR

Delta Bee used the RPLIDAR A2 M8 (Figure 7). This
two-dimensional LiDAR has a 360 degree view and turns on
brushless motors, capturing the full circle of 8000 points every
sweep. It has a 12 meter radius and uses optical
communication to prevent electrical connection failure. This
LiDAR was used for obstacle detection and avoidance and was
connected to the CPU through standard USB 3.0. New nodes
and processing techniques were designed for this sensor.

Figure 7. RPLIDAR

GPS

The robot also uses the EMLID Tech RS+ GPS. This is used primarily to navigate in the
no-man’s-land where the robot cannot line-follow and to get across the ramps. This device
comes with a GEOPY library that allows precise determination of distance from a waypoint. The
phase angles reported by the sensor could be used to determine orientation and moving
position is used to determine heading of the robot. Obstacle avoidance methodologies are still in
use during this phase.

Shaft Encoders

The shaft encoders are used to track the wheelbase speeds, maintain straight driving, and
manage more precise turns for obstacle avoidance and line following. The feedback from these
allowed fine tuning of turn control and also better understanding of speeds while in use.

Safety Systems

The robot included both the required on-vehicle and wireless emergency stops in addition to
several other safety features. The wired emergency stop has a large red mushroom push button
that immediately cuts power to the motor controller through a direct voltage cutoff system. This
will bring the robot to a halt as the motors become generators and feed power back to the
batteries. Also connected to the same power lines, the wireless emergency stop is triggered by
flipping a switch. This switch is driven off by a servo that is connected to horizontal movement
on the throttle. It can also be turned off by hand. This duplication of safety stops ensures the
robot will be stopped without cutting power to the sensor array or master navigation to save
restart time. These will both work regardless of whether the robot is in RC or autonomous mode.
Additionally, the overall power to the robot can be cut with the clearly labeled on/off switch which
protects against events such as electrical failure; this however does require a restart overhead.

The red light on top of the robot also functions as a safety light. When the light is solid, this
indicates that the robot is being manually driven. While flashing, the robot is in autonomous
mode.

In addition to the emergency stop mechanisms, the software is all interconnected. If one
node fails, the other nodes will also stop sending messages to the motor controllers so
movement will cease.

Software Strategy and Mapping Techniques

Overview

The intelligent navigation software that operates Delta Bee remains onboard the robot via
the HP computer. The software is based in the Robot Operating System (ROS) and was custom
developed to intake the sensor publications and navigate the course. Although more compact
control devices could be chosen, the minimum space requirements allowed us to increase the
area and processing power of the device. The software on the CPU provides feedback to verify
all systems are operational; when the user presses the start button, the vehicle will begin
autonomous operation. Instead of using the ROS navigation stack, which is more robust under
SLAM conditions, the team used a behavioral pattern and a master finite state machine that
functions as the primary controller for the robot. The overall architecture of the main robot
master state machine appears in Figure 8 below. Delta Bee starts by searching for a line and
following it until it encounters an obstacle. It then turns from lines until it has an unobstructed
view and goes around the obstacle until it finds the line again. This continues until it finds a GPS
waypoint where it travels to the ramp and to the next waypoint, continuing obstacle avoidance. It
then returns to start. The state transitions are based upon messages published by custom ROS
nodes that handle processing of the sensor array.

Key Alpha Bee State Graph

O Major States

O Transistion States
O Object/Pothole States
Timed Exit Found GPS Waypoint
Object/Pothole Seen
Turn ((—Sj -

Nothing in Sight Found GPS Waypoint

GPS
Navigation

Line
Following

Object/Pothole Seen T e
Line

Nothing in Sight

Lined Up With Line

Orient with
Line

Y Found Line ¥

Start Line Found Obstacle
———p=| Find Line Tl:)rz_frolm Avoidance
IS (Line)

Figure &. Delta Bee Master State Diagram

. - Object/Pothole Seen
. Lined Up With Line
Object/Pothole Seen Clear Line of Sight

Obstacle
Avoidance
(GPS)

Obstacle Detection and Avoidance

Various obstacle detection and avoidance algorithms have been in development for the
robot. The transition of grass terrain to parking allows a more specific configuration of the
software. The team used an RGB RealSense camera to detect lane edges and manage line
following. This method generally follows the line unless obstacles on the path are detected at
about one meter away from the robot; in this scenario, the robot attempts to circle around the
obstacle and resume line following. The detection of the lines through the Hough Transform
provides the exit condition for obstacle avoidance while in line following state. During the stage
where Delta Bee needs to resume line following, this is done by using the edge view of the
LiDAR to follow the obstacle either back to the line or the GPS to realign with the original
heading.

The obstacles themselves are detected using LIDAR. This allows Delta Bee to detect the
various barrels and other obstacles in the path and then triggers a new state that takes it around
the obstacle. For complex obstacles, such as switchbacks and center islands, the robot
continues line following unless the obstacle will be an obstruction to the path, in which case it
will circle the obstacle until it either arrives again at a line to follow in the correct direction or the
robot is reoriented. Simultaneously while navigating around obstacles, Delta Bee uses the
probabilistic hough transform for circles in the RGB camera to watch for potholes. One software
specific modification the team made was to insert the RGB camera detected potholes onto the
LiDAR scan so the obstacle treatment could be standardized. The distance mapping from
camera to LiDAR required a computation of the angle and distortion of the image as it extended
away from the robot.

For the state machine, there were several transitional states introduced for obstacle
avoidance. These states included pivoting so the obstacle is not in front and then following the
obstacle until the robot can realign itself with the lines. The various states included several
sensor odometry notifications and a history of values so as to avoid strange state transitions.

Software Strategy and Path Planning

The strategy with this methodology was that it was simpler to implement and allowed course
specific programming to be implemented. This way, the software team could avoid strange edge
cases that might result in the robot being unable to handle the specifics of the course. In
addition, with the knowledge of the constraints and previous simulations, the team was able to
give previous sensor odometry to the state machine and observe how it operated in those
scenarios. By designing a behavioral strategy instead of a mapping algorithm, this allows for
more robust control of the robot during and after the runs. Since the team was aware of the path
that would be indicated, it was not necessary to generate a map but rather just have states for
the line following and the other stages of the course. Thus path planning was based on the
vision and LiDAR information on obstacles and lanes with a reliance on GPS in no-man’s-land.
Map generation was not necessary for our algorithm; it would only be helpful if the team guided
it through the entire course with GPS waypoints or a preliminary SLAM methodology to assist
while running.

For path planning, the robot travels with line following at the anticipated 2 mph until it arrives
at an obstacle or at a GPS waypoint. While line following, it tracks the line slope and closest

point to the robot. When it arrives at the
waypoint section, the strategy, as shown

in Figure 9, consists of taking the GPS JELCRELS
reading

readings, checking distance to the next
waypoint, and correcting for heading error.
Arrival at a waypoint takes precedence Publish error Check Distance
over the line following so it can travel angle to Waypoint
between points while still continuing
obstacle avoidance. The heading is also
used to assist the line following stage
obstacle avoidance. The state machine
manages the incremental objectives as

the robot travels the course. Figure 9. GPS Waypoint Strategy

Failure Modes, Failure Points, and Resolution

Delta Bee was designed to have multiple contingencies in the case of failure and various
recovery operations. The team handled several possible failures in both software and hardware.
One of the primary means of protection was the modularity of the system. This allows both
modifying of nodes specific to a sensor and also interchanging sensors and devices in
connection to the system. This encourages ease of debugging and finding failures. The team
utilized this modularity in modifying sensor arrays and replacing the power supply for the new
computer. Additionally, the failure modes all maintain the safety of the robot, causing voltage
cutoff to the motors if anything causes major malfunctions. The emergency stop mechanisms
and slow speed ensure the user can easily handle any unexpected failures.

Some of the difficulties in designing this robot included development of the sensor fusion and
the shifting of focus as the primary team was originally working with a different robot for a
slightly different auto navigation task. This transition was handled smoothly through porting the
relevant sensors and code development to Delta Bee midway through the spring. The sensor
fusion involved having the software team determine how to modify the LIiDAR scan to consider
the visual odometry and disregard the apparent obstruction of the robot itself. The main difficulty
in the obstacle avoidance was determining the appropriate time to resume the previous
behavior of either line following or pursuing a GPS waypoint. This difficulty was partially
resolved by implementing GPS waypoints at the end to assist in heading for the line following.
This method remains in testing.

Vehicle Failure Modes and Resolutions

Although Delta Bee was designed to be robust and modular, errors could still concur. For the
software, the combination of new nodes and previous team developed ROS1 nodes presented
a challenge in effectively combining the technologies. The main possible failure would be the
scenario where the master state machine became out of sync with the course through bad
sensor data or inadequate processing. This could be an issue if the pothole mapping location
was distorted for instance and an obstacle was populated too early on the sensor odometry. The

team attempted to mitigate this type of error through using multiple measurements from various
sensors before changing states and inserting transitional states. In the case of sensor failure,
the nodes publish sufficient information to allow debugging and replacement of the sensor. This
is minimized also by careful maintenance of the speed and sensor rates for the robot. Finally, if
a node were to shut down unexpectedly, ROS would attempt to restart, and if this were to fail,
the robot would be completely stopped so as to not cause a hazard.

Vehicle Failure Points

Mechanically and electrically, the vehicle has a few possible points although measures have
been taken to ensure the integrity of the components. Primarily, the concept of modularity allows
substitution of parts that fail, and ease of access to the robot encourages repairs in place at any
time. Further waterproofing could also be done to defend against conditions worse than light
rain or working on a wet and thus highly reflective course. To improve on the weatherproofing
this year, the team added plexiglass/acrylic shielding around the robot. The areas of concern
include the possibility of loose connections in the wiring that could trigger power outages. This
potential has been mitigated with good joints and electrical tape. The risk of tipping has been
mitigated by placing the weight on the same axis as the drivetrain. These changes were also
made with concern for the possibility of electrical fire or crashing so as to improve safety.

Testing

The robot was tested incrementally throughout development. This included both graphing of
data as the robot went through simulated and imitation outdoor courses and as it received
sensor odometry from ROS bags of previous robots. Testing was primarily done in the lab and
surrounding parking lots that approximated the course. During this testing process, code was
constantly being redesigned and integrated.

Vehicle Safety Design

Not only did the vehicle have the emergency stops and failure resolutions discussed in the
previous section, it was also developed with safety under consideration. Testing was always
done through previous ROS bags and simulation before activating motor control and other
devices. Additionally, the sensor array data fed into the navigation system included both real
and simulated data to understand how the robot would behave under differing conditions. In the
cases where the vehicle exited the course or performed an unrecognized behavior, the
emergency stop could be initiated.

Performance Testing to Date

Component Testing

For the various sensors and input/output devices on the robot, all were individually tested
under varying conditions. This included outdoor track testing and indoor navigation, simulated
sensor array data, and imitated course conditions inside the lab environment. The path planning

and master state machine is still in development but will be tested through the same means as
the subcomponents including testing on the ramp and further speed testing.

Simulations

Simulation of the course included both testing of code with invented sensor array data but
also preliminary testing of the devices with the algorithm. Based on both previous and live
camera feeds within the lab that were used to examine sample potholes and barrels and do line
detection, the team was able to certify much of the functionality before even taking the robot to
the outdoor course. The same previous course competition feeds were incredibly helpful in
working with the vision system software for the robot. Usage of a rosbag from previous feed
collection to test line detection can be seen in the example of Figure 10.

Line Detection Color Image Line Detection Opened Image

Figure 10. Example of Line Detection in Simulated Images

Initial Performance Assessments

At the time of writing, Delta Bee is in the process of navigation system development. Its
power system and sensor array are in good condition for both hardware and software. Remote
control operation has been successful in testing the hardware of the robot. Based on previous
results, it is safe to conclude the robot can move at about two miles per hour carrying the full
load and has the software in place to handle GPS navigation. The vision system simulations
have also been successful and seem to handle dynamic obstacle detection well. Additionally,
tests have been run with remote control of the motors while doing line and obstacle detection.
Overally, Delta Bee’s development toward the competition in June is progressing according to
the timeline. Attention is now focused on the innovative navigation solution so it can meet the
goals outlined by professors and the IGVC objectives of creating a safe, robust AutoNav robot.

