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1 Introduction

The Autonomous Robotics Competition Club (ARCC) is a student organization at the Pennsylvania
State University (University Park, PA, USA) that focuses on participating in autonomous robotics
competitions. To date, the club has primarily focused on aerial vehicles and through IGVC we
hope to develop expertise in tackling the unique challenges faced by ground vehicles. Our entry is a
three-wheeled differential drive vehicle which relies primarily on computer vision to map the course
and autonomously navigate it.

1.1 Team Organization

Table 1 lists the name, area of study, contribution, and the estimated number of hours invested by
the team all of whom are currently pursuing their PhD. Due to the small team size, members were
forced to contribute wherever possible which is reflected by the number of tasks taken on by each
member.

Table 1: Team members and roles

Name Major Tasks Hours

Ghanghoon Paik Aerospace Engineering

Electronics
Low-Level Controls
Software
Structures
System Integration

173

Skanda Bharadwaj Computer Science
Computer Vision
Path Planning
Localization

87

Vidullan Surendran Aerospace Engineering

Electronics
Localization
Path Planning
Power System
Structures
Software
System Integration

169

1.2 Design Process

Due to the small team size, our design process was heavily derived from agile management techniques
depicted in flowchart form in Figure 1. This meant breaking the project into sub-tasks which were
ranked by importance and critical tasks that blocked progress on others if not completed were
prioritized first. Quick iterations and a focus on prototyping and producing working solutions over
structured management approaches was preferred.

The team heavily focused on software design as the challenges posed by this year’s course relied
heavily on obstacle detection and path planning rather than innovate vehicle hardware design;



Figure 1: Iterative design process utilized by the team to develop our vehicle in under 2 months

especially when the maximum vehicle speed is capped at an average of 5mph. We utilized a simple
differential drive configuration that would serve as our sensor platform which allowed us to leverage
our expertise which lies in computer vision, optimization, dynamics, and autonomous robotics. This
allowed us to meet the task deadline with limited personnel.

2 Innovations

2.1 Direct drive using brushless hub motors

Inspired by the widespread use of hub motors in personal electric mobility vehicles such as scooters
and hoverboards, we drive our wheels directly using hub motors. Using mass produced motors also
lowered vehicle cost compared to brushed geared motors used commonly in Robotics competitions
which have limited suppliers and consequently much higher cost. In addition to brushless motors
having lower friction compared to brushed designs, the lack of a gear box further reduces mechanical
losses, vehicle mass, and points of mechanical failure further improving vehicle power efficiency.

2.2 Visual SLAM

Similar to TESLA motor car company, we rely purely on vision for obstacle detection, localization
and mapping which eliminates the need for a costly high resolution LIDAR. The LIDAR used on
the vehicle is a low cost LIDAR which is used for reactive collision avoidance and provided as a
redundant sensor in case of vision pipeline failure.

2.3 Safety Through Design Choices

Unlike regular brushed motors which can be accidentally powered on in case of an electrical fault,
brushless motors require a controller to constantly switch phases eliminating the motor spinning in
case of a short to the power source or controller failure. We use two independent batteries to power
the motors and the computational electronics. This ensures that the motors lose power before the
computational stack preventing a runaway scenario.
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2.4 Low Cost Modular Structure/Weatherproofing

We constructed vehicle frame from commonly available 6061 square tube using a plywood board
as the base. Non load bearing members were 3D printed using carbon fiber infused PLA and
PETG allowing rapid prototyping and creation of parts that would be difficult to machine using
subtractive manufacturing. FEA/CAD allowed us to confirm structural stability while minimizing
weight. This platform is easily rebuilt and provides an accessible platform for robotics research.

In order to avoid component damage caused by light rain, our vehicle can be covered with
plexiglass or foam-board. While plexiglass can be visually attractive it has a higher price tag.
Foam-board, on the other hands is cost effective and easy of manufacture but weak against impact
damage. The ability to easily switch between different types of materials allows the vehicle to be
customized on the fly based on use case.

3 Mechanical Design

(a) Relevant dimensions of the vehicle. Drawing
scale 1:20.

(b) CAD model of vehicle with weather covers made
translucent for illustration

Figure 2

We selected a differential drive configuration as it simplifies path planning due to its ability to
virtually turn in place. Having more than 2 driven wheels leads to skid-steering because the inner
wheels traverse a smaller arc compared to the outer wheels. This is undesirable due to the loads
placed on the drive motors. This year’s competition being on asphalt meant much greater tyre grip
further reducing the desirability of skid steering. These considerations led us towards a 3 wheeled
robot with two independently driven wheels with a passive caster in front. The disadvantages of
such a system includes instability during high speed turns and reduced load bearing capability, but
these drawbacks are non-issues due to the restricted top speed and small payload capacity required
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to complete the course.
We did not implement any suspension mechanism and rely on our pneumatic wheels to provide

damping. In addition, a rubber damping pad is placed between the caster wheel and its attachment
point to reduce the transmission of vibrations to the frame.

We weatherproofed the vehicle against a light drizzle by enclosing the components using panels
made of Plexiglas/foam-board. The side panel seams are treated with silicon sealant to prevent
water from dripping inside whereas the top panel is screwed onto the vehicle in case it needs to
be removed to access the electronics. Since the payload is the tallest component, the height of the
enclosed compartment was chosen based on the largest electronic component. The payload, which
juts out of the top cover is then covered with a removable cover. A labelled CAD model of the
vehicle is shown in Figure 2a where this payload cover is labelled. A drawing of the vehicle is shown
in Figure 2b which calls out the relevant dimensions confirming that the competition requirement
regarding vehicle size and payload dimensions have been met.

(a) Primary load bearing mem-
bers of the vehicle

(b) FEA showing exaggerated deflection at 3G static loading condition

Figure 3

The load bearing members of the chassis are shown in Figure 3a which was constructed out
of a repurposed A356 cast aluminium base and 6061 aluminium alloy 1-inch square tubes with a
wall thickness of 1/20 inches. On top of this chassis, a wooden platform was laid to house the
payload and electronics. We validated the structure using FEA. Figure 3b plots the Von-Mises
stress distribution and visualizes the deflection of the frame under a static loading condition where
the payload and the mass of the vehicle itself were applied normal to the vehicle (in the direction of
gravity). Fixed constraints were applied at the wheel mounting locations. The maximum Von-Mises
stress was 7.9e6N/m2 which was well below yield stress with a maximum deflection on the order of
0.1mm. This was identified as the worst case loading scenario, and as mass of the vehicle was not
identified to be a critical design driver, we did not attempt to optimize the structure any further.

3.1 Mass and Cost Budget

The mass and cost budget is detailed in Table 2.
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Table 2: Weight and cost breakdown

Component Quantity Weight (g) Cost ($) Total Weight (g) Total Cost ($)

Jetson TX2 1 460 600 460 600
Pi Pico 1 3 6 3 6
LIDAR 1 3 600 3 600

Stereo Camera 1 190 300 190 300
GPS 1 6 70 6 70

Hall Sensor 6 0.1 2.2 0.6 13.2
IMU 1 10 150 10 150

Radio Receiver 1 4.5 26 4.5 26
Voltage Regulator 2 2 4.5 4 9

Hub Motor 2 1500 45 3000 90
ESC 2 170 15 340 30

Level Shifter 2 0.1 6 0.2 12
USB Hub 1 42 20 42 20

E-Stop button 1 45 8 45 8
LiPo Battery 1 805 65 805 65
Li-Ion Battery 1 950 60 950 60

Subtotal 5863.3 2059.2

Structure 1 6400 80 6400 80
Caster Wheel 1 650 12 650 12

Payload 1 9070 - 9070 -
Miscellaneous - 500 100 500 500

Total 22483.3 2651.2

4 Drivetrain

Brushed motors and geared systems have inefficiencies arising from mechanical losses with average
efficiency in the range of 75%-80% compared to brushless motors which are typically 85%-90%
efficient. One of our innovations is the use of hub motors for direct drive of the wheels which
provides a space efficient drive train without the extra weight and mechanical complexity of a
gearbox. The hub motor we installed was originally designed for a hoverboard. Each motor is rated
to 36V and can generate approximately 45Nm of torque. Since the designed specification of the
motor exceeds our needs, we used a dedicated micro-controller to enforce a hard limit on the RPM
of motors in order to meet the rules. Our motor controller also operates in low speed mode further
reducing and limiting wheel RPM.

5 Electronics and Power System

The architecture of our system is shown in Figure 4 which lists the components, shows how they
communicate with each other, and the bus voltage. The sensors use a combination of USB, I2C, and
Serial protocols to communicate with the main computer which in turns sends control commands
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Figure 4: Electrical subsystem architecture showing communication protocols and voltage levels

to the motors through a micro-controller which commands motor controllers. A physical E-Stop
that disconnects the motors from the battery, and a wireless e-stop activated by a wireless receiver
provide two redundant methods of shutting down the system in case of an emergency.

5.1 Electronics

Our primary compute board is the NVIDIA Jetson TX2. It was selected mainly due to its 256
CUDA cores which allowed us to perform object detection using deep learning architectures at a
frame rate exceeding 30fps. In addition, its ability to run a Linux based OS allowed us to use
the Robot Operating System (ROS) which provides a framework for autonomous robotics greatly
reducing development time.

Interfacing with sensors and running PID control loops requires real time compute capabilities.
TheRaspberry Pi Picomicro-controller board was used as it had the required number of hardware
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interrupts, I/O pins, serial ports, and its Arm Cortex-M0 processor far exceeded the compute power
required for our application. Our sensor package consists of

• Intel D435 Stereo camera used for lane and object detection, and to generate a depth map

• RPLIDAR-A3 Laser range scanner for accurate distance measurements to objects

• u-Blox Neo-M8N GPS sensor to obtain coarse vehicle position

• Honeywell SS41 Hall sensors to generate wheel odometry

• MPU9250 9 degree of freedom IMU to detect changes in vehicle pose

Other components include

• Lemon RX DSMX 2.4GHz 6-channel radio to receive commands from a handheld trans-
mitter

• Step-down voltage regulators to power the electronics which run at 19V, 5V, and 3.3V

• Logic level shifters to enable devices operating at different logic voltage levels to communicate
with each other

• Powered USB 3.0 hub

5.2 Sensor Fusion

Estimating the current position and velocity of the robot is a key requirement for autonomous
navigation. Physical sensors tend to be noisy and can fail to produce valid outputs given a particular
set of environmental conditions. Thus, we rely on a suite of sensors that measure different modalities
and combine the readings to produce a robust estimate of the robots state parameters.

5.2.1 Filtering hall sensor readings

The 3 hall sensors installed in each wheel produce detectable pulses as the poles of the brushless
motor passes over the sensor allowing one to determine the direction and speed of rotation. But,
this instantaneous wheel angular velocity measurement is noisy and a low pass filter was employed
to attenuate high frequency noise. The transfer function for a low-pass filter is,

H(s) =
ω0

s+ ω0
(1)

This continuous transfer function was converted into its discrete from and then converted from
the frequency to the time domain for a filter with a cutoff frequency of 25Hz and a sampling
frequency of 1KHz. The difference equation of the low-pass filter employed is,

Vn = 0.854Vn−1 + 0.0728 vn + 0.0728 vn−1 (2)

where, V represents the filtered values and v denotes the raw sensor readings. Using the known
wheel radius, this angular velocity can be converted to ground distance traversed by the wheel
assuming no wheel slip occurs.
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5.2.2 Extended Kalman Filter

The readings from the IMU, GPS sensor, and filtered wheel odometry need to be combined to
estimate the current position of the robot and the extended Kalman filter (EKF), which is an
extension of the Kalman filter for non-linear systems, is routinely used for this task [4, 8, 11]. The
12 dimensional state vector consists of the 6DoF vehicle pose describing the position and rotation
of the vehicle around the X,Y, and Z axes, and the velocity twist which is the linear and angular
velocity of the vehicle about the 3 axes. We used the ROS robot localization package which provides
an implementation of the EKF equations [6].

5.2.3 PID Controller

Figure 5: PID controller loop

Control of the actuators, in this case the wheel motors requires the generation of a suitable
control signal. This can be achieved using open loop control where controls signals are generated
based on a known mapping between the signal and the system output, or closed loop control where
feedback in the form of measured system state is used. More precise control is possible using
feedback as the system output can be closely matched to the desired output even in the presence of
external disturbances and system model inaccuracies. For example, we employed a PID controller
to set the motor rotation rate based on the error between the desired output (Motor RPM) and the
current state of the system (Measured Motor RPM). A block diagram of the controller is shown
in Figure 5 illustrating how feedback from the different control actions is incorporated. While
PID controllers are fairly robust to poor coefficient tuning, a well tuned system is able to achieve
a faster response to the steady state value, reduce overshoot, and eliminate steady state errors.
We manually tuned the parameters to achieve an acceptable response although various analytical
techniques exist to perform tuning [10].

5.3 Power System

The system is powered using two batteries, a 36V 4000mAh Li-Ion and a 22.2V 3300mAh Li-Po.
The 36V battery is used to power the motors whereas the 22.2V battery is used to power the
computational electronics. This separation adds an extra layer of safety as the control electronics
will be powered in the event the vehicle runs out of power during motor operation. Table 3 lists
the maximum rated power draw per component. The computational electronics consume ∼24W
whereas the propulsion system draws ∼502W watts.
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Table 3: Max rated power consumption for the components.

Component Voltage (V) Max Power Draw (W) Quantity Total (W)

Jetson TX2 19 15 1 15
Pi Pico 5 0.45 1 0.45
LIDAR 5 3 1 3

Stereo Camera 5 3.5 1 3.5
GPS 5 0.25 1 0.25

Hall Sensor 5 0.05 6 0.3
IMU 5 0.05 1 0.05

Radio Receiver 5 0.1 1 0.1
Voltage Regulator 6-42 0.25 2 0.5

Sub-Total 23.15

Hub Motor 36 250 2 500
ESC 36 1 2 2

Total 525.15

In practice, we measured the average powertrain (Motors+ESC) power draw to be ∼135 watts
and the computational power draw to be ∼12 watts when the vehicle was carrying a 20lb payload
on a level surface. Assuming a maximum discharge of 70% of pack capacity, which is recommended
by manufactures to promote battery health, the 36V battery can provide 100.8W whereas the 22.2V
battery can provide 51.3W. Table 4 lists the system runtime for the worst case scenario of maximal
power draw and the observed power draw when the vehicle is moving at a constant velocity of 2.2
m/s (5 mph) on a level surface. The maximum runtime of the vehicle is limited by the propulsive
sub-system even though the computational systems would continue operation since the vehicle will
not be able to move once the 36V battery has been discharged.

Table 4: Runtime in case of maximum and average power draw

Components Power Draw (W) Power Available (W) Runtime

Maximal Load

Computation 23.15 51.3 2.2 Hours
Propulsion 504 100.8 12 Minutes
Vehicle 525.14 - 12 Minutes

Average Load

Computation 12 51.3 4.3 Hours
Propulsion 135 100.8 45 Minutes
Vehicle 147 - 45 Minutes
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5.4 Safety Devices

One of the key advantages of using a brushless motor is that it requires switching of the powered
phase to produce continuous rotation. Unlike a brushed motor where an electrical fault could lead
to the motor being erroneously connected to the power source leading to uncontrolled rotation, any
faults in the brushless motor controller circuitry, or electrical shorts such as directly connecting the
motor to the power source will result in no rotation. This adds implicit safety into our system. Our
digital motor controller circuit has built in over-temperature protection, over-voltage protection,
and over-current protection. The micro-controller board senses the motor rotation rate at 1000 Hz
and prevents the motor from rotating at greater than 170RPM limiting the top speed to 5.06mph.

As per the competition rules, we have a safety light that shows the current operation mode of
the robot. The physical E-Stop switch located at the rear of the vehicle disconnects the battery
from the motor controllers disabling the propulsion sub-system stopping the vehicle. In addition,
we have a wireless E-Stop using a dedicated 2.4GHz radio receiver which can be activated by a
handheld radio transmitter. Activation of this E-Stop powers down the motor controllers, and this
disables the brushless motors as they are unable to operate without digital switching circuitry. In
contrast to systems that use Wi-Fi and the main compute board to receive the E-Stop signal, our
system is unaffected by computational bugs that can cause the main computer to hang leading to
a dangerous situation where the wireless E-Stop is unresponsive.

Finally, we will install fuses on the battery before the competition to add another layer of
protection which would physically discount the battery from the vehicle if a fault causes increased
current draw.

6 Software Stack

The software stack heavily relies on the Robot Operating System (ROS) as it has implementations
of algorithms used for autonomous robotics and a framework for creating custom modules in either
C++ or Python. It also allowed the team to use the Gazebo simulation environment and seamlessly
deploy the stack on the physical vehicle.

6.1 Computer Vision

We use classical vision techniques to detect the lane markings, employ a deep learning approach
to detect obstacles, and use visual simultaneous localization and mapping (V-SLAM) to determine
the vehicle’s position in the unknown environment.

6.2 Free Space Detection/Lane Detection

Since the boundary lanes for the tracks are white in color, we employ HSV color transformation
followed by thresholding in order to extract the lanes. The HSV color space is more robust to
variations in ambient brightness levels which can affect the RGB values of the pixels in an image.
Therefore, it is ideal to work in this color space in order to extract a particular color in any given
scene. Once we transform the image into HSV space, we perform thresholding to detect lanes
based on a predefined range of values which could represent the lanes of known colour. We use
morphological operations to filter noise in the resultant binary image. The binary image might
contain disconnected regions that represent a single lane. We use the progressive probabilistic
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Figure 6: Free Space Detection

Hough transform (HT) which minimizes the amount of computation compared to the probabilistic
HT to detect lines in the image [5].

The next step is to perform free space detection between the two detected lanes. Assuming that
the vehicle is between the two lane lines at any given instant (we address the boundary condition
where the vehicle is not between the lines later in the pipeline), and that we are only concerned
with the immediate space in front of the vehicle rather than far ahead. This allows us to process
only the lower half of the image reducing computational load and increasing pipeline throughput.
In this half of the image, we split the image into two halves each containing one lane line based on
the output from our progressive probabilistic HT. All the space to the right of the left-lane marking
and the space to the left of the right-lane marking is then classified as free space available for the
vehicle to move in. Output generated at each stage of this pipeline is shown in Figure 6.

6.3 Obstacle Detection

We fine tuned the YOLOv4 [1] deep learning architecture on a dataset consisting of images of
construction barrels, trees, and traffic signs to be able to detect and classify when they are present
in a RGB image. Given that we have detected free space, it is enough for us to simply detect any
obstacle that is within this region of interest. The free space obtained is then updated to exclude
all regions containing an object. The convex hull of the updated free space is computed to obtain
a polygon. These pixel points are projected into world space using the known camera extrinsic and
intrinsic matrices providing a list of legal positions the vehicle can occupy.
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6.4 Visual SLAM

The images from the D435 depth camera are used to localize the vehicle through visual odometry.
This involves detecting suitable features in the image taken at time t and correlating these features
to those identified in the image taken at time t− 1 to track the motion of these feature points over
time. This estimate of motion in the pixel frame can be converted to the world frame through
distance measurements in the world space using a ranging sensor such as a Sonars and LIDARs,
or using stereo image pairs in conjunction with IMU data from which depth can be estimated.
Using this information, we can not only estimate the pose of the vehicle in the world space but also
create a 3D occupancy map (Octomap) of the world without the use of a scanning LIDAR which
is suitable when high resolution maps are required. Many visual SLAM algorithms exists in the
literature [3,7,9] and we use the open source implementation, RTAB-Map [2], to perform V-SLAM.

6.5 Path Planning

Figure 7: Architecture of the ROS navigation stack which is used for path planning.

We use the ROS navigation stack whose architecture is shown in Figure 7 to navigate the
vehicle towards specified waypoints while avoiding obstacles. The navigation stack is fed sensor
data labelled as ’sensor sources’, and the vehicle pose estimate from the EKF discussed in Section
5.2.2 labelled as ’odometry source’. ’sensor transforms’ refers to the transformation matrices used
to move between the local coordinate frame of the individual sensors and the global coordinate
frame. Finally, ’base controller’ is the output of the stack that provides a velocity twist message in
response to a set waypoint, which is converted to equivalent PWM signal values sent to the left and
right motor controllers. The navigation stack has many different planners available, and we use a
dynamic window approach for the local planner and D* algorithm for our global planner.

6.6 Exploration strategy

The first waypoint is manually defined to be a random point in the correct direction the vehicle
must traverse the course. As the vehicle moves towards this waypoint, a map of the environment
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will be initialized and updated. This allows a greedy exploration strategy that highly penalizes the
vehicle from exploring previously mapped regions forcing the robot to move around the track in the
correct direction. Without this cost heuristic, the vehicle could explore the track backwards. When
the vehicle reaches the set waypoint, the furthest waypoint identified through free space estimation
discussed in Section 6.2 is selected as the next waypoint. If the vehicle is in the area with no lane
markings, the GPS waypoints are used instead.

7 Failure and Prevention

7.1 Vehicle Failure modes

Our vehicle is operating on a NVIDIA Jetson TX2 which is running real time image processing
used for mapping and planning. There are several failure scenarios including algorithmic failure
and software crashes.

We employ an operating system level scheduler that constantly checks the status of our ROS
stack. In case of total ROS failure, it will trigger a restart of the program. Our program will log
data to try and resume operation if possible in case of a crash. If a software crash is detected and
no signal is received from the Jetson TX2 for a preset time, the Pico micro-controller will command
the motors to stop.

7.2 Vehicle failure points

Wemay encounter hardware malfunctions and the possible points of failures include all the electronic
components. The most likely components to fail are the hub motors, ESC, computational board,
sensors, and auxiliary electronics such as the voltage regulators. Motor and/or ESC failure is
critical since they cannot be replaced during the competition run and we are not planning to
add redundancies due to the short run time of each attempt. Sensor failures may be recoverable
depending on the particular component. If either the or GPS or IMU fails, the vehicle can still rely
on vision and possibly could complete the mission. If vision fails, we can fall back to LIDAR based
mapping. A battery failure is highly unlikely and thus do not account for a sudden battery failure
during an attempt.

7.3 Failure Prevention

We designed our vehicle to be highly serviceable by using 3D printed parts yet ensured sufficient
safety factor to eliminate the possibility of a structural failure. Our electronic components are
encased to minimize exposure to the elements. We have redundant methods of localization and
mapping which can be switched to in case of sensor failures. Batteries are monitored for health and
balanced every time they are charged.

7.4 Testing and Design Concepts

We have conducted failure tests under multiple conditions. We simulated software failure from
killing certain processes and hardware failure by covering sensors and disconnecting them during
test phases. During controlled lab tests, we tested each component failure and the system responses
from the failure. For example, when the Jetson was disconnected, the motors stopped successfully.
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We used open source software in the ROS stack to minimize the introduction of software bugs as
these implementations have been tested continuously by the robotics community.

8 Simulation

Using ROS allowed us to use the Gazebo simulation environment to test our path planning and
navigation stack. We did not test our computer vision algorithms in simulation due to the difficulty
in sim-to-real world transfer.

9 Performance Testing

Our team conducted multiple performance tests of the vehicle to make sure it passes all the com-
petition requirements. List of performance tests and results are following:

• Battery performance test (5mph cruising with 20 lbs load)

– Vehicle was successfully achieved 62 minutes of continuous run.

• Lane keeping ability

– Vehicle was able to detect the lanes from the vision data and drive within the lanes.

• Obstacle detection and avoidance

– LiDAR and distance camera were able to reliably detect the cylindrical obstacles from
up to 15 meters away as the RPLIDAR we use has a maximum range of 20m outdoors.
The vehicle was able to perform collision avoidance maneuvers by driving around them.

• Driving between multiple GPS coordinates

– Vehicle was able to travel between given coordinates in order. Also, combined with
obstacle detection and avoidance capability, it was able to drive between GPS coordinates
without hitting any obstacles.

• Ramp climbing up and down

– Vehicle was successfully move along the 15 degree ramp with 5 mph speed.

10 Performance Assessment

We have run all the tests multiple times to improve the performance of our vehicle. During the
initial tests, we have found some issue with weight balance while climbing the ramp. The vehicle
was showing noticeable instability. The front section of the vehicle was too light and started lifting
as it climbed up the ramp. We have solved the issue by moving the center of mass and slowing
down the vehicle on ramp. Besides of minor instability issues, all the sensors and components were
fully functioning as expected. Before the competition, our team will run few more tests to fully
assess our vehicle’s performance and system stability. If possible we would like to run a full scale
test space permitting.
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