
                                                             

 

   1 | I G V C  D e s i g n  R e p o r t  2 0 2 2  W a y n e  S t a t e U n i v e r s i t y   
 

Warrior Robotics Team   
Aasha | IGVC 2022 

 
Faculty Advisors 

Dr. Abhilash Pandya [ECE] | apandya@wayne.edu  

Dr. Marco Brocanelli [CS] | brok@wayne.edu 

Dr. Azad Ghaffari [ME] aghaffari@wayne.edu  

Team Captains 

Nnamdi Monwe [CS] | President | nnamdimonwe@wayne.edu  

Lloyd Brombach [CS] | Vice President | lloyd@wayne.edu  

Keena Pandya [ISE] | Managing Director | kpandya@wayne.edu  

 

“I certify that the design and engineering of the Wayne State University Robotics Team has been significant 

and equivalent to what might be awarded credit in a capstone design course.” 

Abhilash K. Pandya, Ph.D. 

Professor, Department of Electrical & Computer Engineering 

 

Marco Brocanelli, Ph.D. 

Assistant Professor, Department of Computer Science 

 

Azad Ghaffari, Ph.D 

Assistant Professor, Department of Mechanical Engineering 

 

 

mailto:apandya@wayne.edu
mailto:brok@wayne.edu
mailto:aghaffari@wayne.edu
mailto:nnamdimonwe@wayne.edu
mailto:lloyd@wayne.edu
mailto:kpandya@wayne.edu


                                                             

 

   2 | I G V C  D e s i g n  R e p o r t  2 0 2 2  W a y n e  S t a t e U n i v e r s i t y   
 

 

Table of Contents 

1. Our Team ................................................................................................................................................................. 3 

2. Design Process Overview ........................................................................................................................................ 3 

3. Mechanical Systems ................................................................................................................................................. 4 

3.1. Chassis Design ................................................................................................................................................... 4 

3.2. Drivetrain ........................................................................................................................................................... 4 

3.3. Sensor Placement ............................................................................................................................................... 4 

3.4. Weather Proofing ............................................................................................................................................... 5 

4. Electrical Systems and Power Distribution ........................................................................................................... 5 

4.1. The Electronics Suite ......................................................................................................................................... 6 

4.2. Power Requirements .......................................................................................................................................... 6 

4.3. Recharge Rate .................................................................................................................................................... 6 

4.4. Safety ................................................................................................................................................................. 7 

5. Software System ....................................................................................................................................................... 7 

5.1. Obstacle Detection and Avoidance .................................................................................................................... 8 

5.2. Perspective Transform ...................................................................................................................................... 10 

5.3. Mapping and Localization ................................................................................................................................ 11 

5.4. GPS .................................................................................................................................................................. 11 

5.5. Goal Selection and Path Generation ................................................................................................................. 12 

5.6. Simulation ........................................................................................................................................................ 13 

6. Failure Modes ........................................................................................................................................................ 13 

6.1. Electrical and Mechanical Failure Modes ........................................................................................................ 13 

6.2. Localization Failure Modes .............................................................................................................................. 14 

6.3. Image Processing Failure Modes ..................................................................................................................... 14 

7. Innovations ............................................................................................................................................................. 15 

7.1. Hybrid Lane-Following + Navstack ................................................................................................................. 15 

7.2. Graphical User Interface .................................................................................................................................. 16 

7.3. Robot Recovery Feature ................................................................................................................................... 16 

8. Key Learning Experiences .................................................................................................................................... 16 

9. Acknowledgments .................................................................................................................................................. 17 

Appendix .................................................................................................................................................................... 17 

Appendix A: Complete Failure Modes and Effects Analysis with CYNEFIN  ...................................................... 17 

Appendix B: Power Requirement Calculations ....................................................................................................... 17 

 



                                                             

 

   3 | I G V C  D e s i g n  R e p o r t  2 0 2 2  W a y n e  S t a t e U n i v e r s i t y   
 

1. Our Team 
Warrior Robotics is a student organization housed under the College of Engineering at Wayne State 

University. We are a team of engineering students comprising both undergraduate- and graduate-level 

students with a wide variety of disciplines this is shown in the table below, Table 1.  

Table 1: Table of Student Members 

Student(s) Department 

Nnamdi Monwe Computer Science 

Lloyd Brombach Computer Science 

Mark Slattery  Computer Science 

Arun Jayaramen Computer Science 

Nini Ola  Computer Science 

Manavendra Desai Mechanical Engineering 

Maysara Elazzazi Robotics 

Luay Jawad Robotics 

Abhishek Shankar Robotics 

Gowtham Kanneganti Robotics 

Keena Pandya Industrial and Systems Engineering 

Venkata Sirimuvva Chirala Industrial and Systems Engineering 

Dimitri Van Well Electrical and Computer Engineering 

James Yoon Electrical and Computer Engineering 

Alexander Politis Electrical and Computer Engineering 

This year, we are introducing a new vehicle AASHA for IGVC 2022.  We focused on using the detailed 

lessons learned and advice from previous years by creating a lighter frame and adjustable system with 

improved sensor placement techniques. We modeled our team using an AGILE production method with 

scrum meetings using the Trello Kanban boards as task management tools. Using this pull system, we had 

the ability to maneuver around the non-deterministic needs of our robot throughout our development 

cycle, providing clear deliverables and tasks for each of our team members.  

2. Design Process Overview  
The team adheres to a flexible design cycle to develop solutions to our software and hardware-related 

problems. Utilizing the design cycle allows for a clean and repeatable path to creating a solution that 

would otherwise require a longer time to completion. It enabled us to look at failure modes from an 

engineering-first approach instead of a fix-as-you-find approach at every stage of Aasha’s development. 

We ensure to use this cyclical process before creating our backlog tasks in our Kanban board within our 

AGILE framework. The design and development cycles are shown below in Figure 1.  

 

 

Figure 1: Process flow of design process and AGILE Production System 



                                                             

 

   4 | I G V C  D e s i g n  R e p o r t  2 0 2 2  W a y n e  S t a t e U n i v e r s i t y   
 

3. Mechanical Systems  
This year we focused on creating a more modular design with a lighter and simpler frame to allow for 

better maneuverability, flexibility, and modularity. This approach allowed us to add on systems to our 

platform in a systematic way. We divided our mechanical system into four key components: the chassis 

design, drivetrain, sensor placement, and weatherproofing.  

3.1. Chassis Design 
We wanted our design to incorporate a minimal payload bay with easy access to stow the competition 

payload. We also wanted a flatbed design to accommodate the storage of electronics and other critical 

components in a modular manner, and we wanted a reinforced mast to hold our sensors and screen. We 

began the CAD design process once we created a needs checklist to satisfy our robot’s critical function. 

We experimented with sensor and payload placements during the CAD design phase until we were 

confident that the design met our criteria. After validating our CAD model and going through several 

design iterations, we began the fabrication process. The results from our research and implementation 

realized an 8 percent smaller displacement than the previous robot and being approximately 12 pounds 

lighter. 

 

Figure 2: CAD Model of Chassis Frame and Lower Chassis Build Picture 

3.2. Drivetrain 
Unlike our previous designs, we decided to use a set of compact brushless hub motors for our drivetrain. 

These hub motors, shown in Figure 3, are essentially high torque motors that are embedded into a wheel 

with a reinforced hollow axle to bear the weight of the robot’s load. The axle is fixed to the motor’s 

stator, and a set of hall effect sensors are positioned in a perpendicular manner which is used for reading 

changes in magnetic fields and sending them to our onboard controller. The outer part of the wheel is 

attached to an aluminum frame with a set of alternating permanent magnets and a solid rubber tire that act 

as the motor’s rotor. Utilizing a hub motor for our drivetrain makes it more robust and modular as we 

have fewer moving parts and only need to detach the axle clamp to perform maintenance to the system. 

 

Figure 3: Image of Brushless hub motors used in the drivetrain 

3.3. Sensor Placement 
Another critical area we overlooked that hindered the performance of our previous vehicles is the 

placement of our sensors this is shown in Figure 4. Our lower latency sensors and instrumentation that 



                                                             

 

   5 | I G V C  D e s i g n  R e p o r t  2 0 2 2  W a y n e  S t a t e U n i v e r s i t y   
 

require USB access are all housed within reasonable proximity to the host computer. We made sure to 

make the mast tall to accommodate the GPS Antennas and help increase our ZED camera’s field of view. 

We also expanded the frontal area of the chassis to accommodate a 3D Lidar without having to modify 

the chassis.    

 

Figure 4: Sensor Placement on Robot Mast 

3.4. Weather Proofing 
To ensure we created a functional machine focused on weatherproofing for adverse weather conditions, 

we utilized IP66-rated enclosures to house our batteries, laptops, smaller sensors, and wires within our 

robotic system. In addition to this, external sensors such as the ZED Camera and the Velodyne Lidar, that 

were not housed within the enclosures are rated with an IP66 rating to ensure that they can survive 

adverse outdoor weather conditions. The monitor that is fastened to the mast of the robot is protected by 

using a plastic partition secured to the mounting platform of the monitor. Lastly, we ensured that the 

wheel bearings of our brushless hub drive motors were sealed to ensure that they do not experience wear 

and tear due to outdoor conditions. 

4. Electrical Systems and Power Distribution 
Aasha uses two 36-volt, 20 amp-hour lithium-ion battery packs. The first battery pack provides 36 volts 

to the motors and its control board and 12-volt and 5-volt DC-DC converters that power the rest of the 

auxiliaries. The second battery is dedicated to powering the laptop via a 19-volt DC-DC converter. Both 

batteries can be easily changed with XT-60 quick connectors or charged in place with weather-resistant 

connectors mounted on the shell of the lower electronics compartment. The laptop does retain its factory 

internal battery, allowing for the auxiliary 36-volt battery to be changed without powering down. Each 

battery has its own disconnect switch. 



                                                             

 

   6 | I G V C  D e s i g n  R e p o r t  2 0 2 2  W a y n e  S t a t e U n i v e r s i t y   
 

 

Figure 5: Auxiliary and System Battery Power Diagrams 

4.1. The Electronics Suite 
Aasha uses a Lenovo Legion 5 gaming laptop with an eight-core, 3.2Ghz AMD CPU, an Nvidia GeForce 

3050Ti GPU, and 32 GB of RAM for the main processing unit. Automatic power control to the motor 

driver board, Velodyne Lidar, cooling fans, and a safety beacon is provided by relays and an Arduino 

microcontroller interfaced to the main computer running a custom ROS node to manage it. 

The motor driver board is a repurposed hoverboard control board that has been reprogrammed with 

firmware from an open-source ROS hoverboard project. Communication with the motor driver board, 

which also provides odometry feedback to the main computer, uses USB serial and an FTDI USB to TTL 

serial converter.  

The sensor suite consists of a Velodyne VLP-16 360-degree 3D LIDAR, a ZED2i stereo depth camera, an 

embedded IMU, hall effect sensors (embedded in the brushless DC motor/wheel unit), and a Sparkfun 

GPS-RTK module. The computer auxiliaries communicate via USB, except for the Velodyne VLP-16, 

which uses ethernet. 

4.2. Power Requirements 
For the power requirements for Aasha, we separated the criteria into the main battery requirements and 

the laptop battery requirements.  

Table 2: Aasha Power Requirements table 

Main Battery Requirements Laptop Battery Requirements 

Total Required 340 watts 
Max consumption 230 watts. 160 watts typical. 

9.43 typical amps required. 

Limiting discharge of our 20 AH main battery to 50%, we can expect 

10AH/9.43A = 64 minutes of runtime per charge. 
Battery duration is 2.65 hours typically. 1.8 hours minimum. 

 
 

 

4.3. Recharge Rate 
The chargers supplied by the battery manufacturers charge the batteries at two amps. Given our 50% 

depth-of-discharge maximum, 5 hours are required to achieve a full charge. To ensure minimum 

interruption in operations, we have acquired multiple batteries and can quickly swap batteries with quick 

connects—further, the laptop’s internal battery charges from the auxiliary laptop battery. The computer 

does not need to be powered down to swap the auxiliary laptop battery. The batteries can be changed, and 

the robot is put back in service in less than two minutes. 



                                                             

 

   7 | I G V C  D e s i g n  R e p o r t  2 0 2 2  W a y n e  S t a t e U n i v e r s i t y   
 

4.4. Safety 
Our robot complies with IGVC Auto-Nav rules standard and has a mechanical and wireless E-stop. The 

two emergency stop systems work both independently and in tandem to ensure proper vehicle 

disengagement in the event of an anomaly. Both local and remote E-stops are wired in series, so either 

can interrupt the control signal to the motor control board. Without a control signal, the control board 

powers down the motors. 

 

Figure 6: EStop Wiring Configuration Diagram 

In addition to compliant E-stops, we decided to issue all movement commands through the ROS 

navigation stack instead of directly through our own software instead of issuing lane-following speed and 

steering commands directly. This adds the complexity of calculating coordinates to pass to the navigation 

stack but provides an extra layer of obstacle avoidance through a much more mature software than our 

own. 

5. Software System 
Building on previous years’ experience, we again implement a Robot Operating System (ROS) software 

stack to encapsulate different tasks and handle data traffic between the many software components. We 

leverage the ROS navigation stack and behavior trees in a way that does not require us to map the entire 

course. Instead, Aasha uses snapshot maps of its immediate surroundings to develop movement plans that 

incrementally take the system along the course until it is close to a GPS waypoint. The lane–following 

branches of the behavior tree are suspended, and the navigation stack is commanded to find the GPS 

waypoint. However, lane marking data are still plotted as local obstacles to be avoided.  

 



                                                             

 

   8 | I G V C  D e s i g n  R e p o r t  2 0 2 2  W a y n e  S t a t e U n i v e r s i t y   
 

 

Figure 7: Software Architecture Overview 

5.1. Obstacle Detection and Avoidance 
The Velodyne LIDAR unit easily detects physical obstacles (barricades, barrels – anything with height 

projecting up from the ground). The Velodyne passes a point cloud of data to the ROS navigation stack 

that plots obstacles on a cost map relative to the position of the robot when a given scan is received. The 

Velodyne is capable of detecting obstacles out to 100 meters. Still, the mapping software is configured to 

ignore the barriers greater than 10 meters away to conserve RAM and processing power.  

Detecting lane-marking obstacles and potholes is a more challenging task that we accomplished with a 

combination of techniques. Lane markings were first found using YOLOP which is an open-source 

panoptic convolutional Neural Network. The model was trained using the BDD100k dataset which has a 

very diverse pool of training data, so it is very accurate and doesn’t need to be retrained or fine-tuned. 

 

Figure 8: Lane Marking using YOLOP 

The YOLOP package doesn’t work natively with ROS. Thus, it needed to be modified for our specific 

application. We converted the package into a node that accepts incoming frames from the Zed2 camera as 

an Image message. The node then performs the segmentation using the neural network. Then a binary 

image is returned to us, which will later be converted into a laser scan topic for easier integration. 

Pothole detection 

The image taken from the right-hand side camera of the Zed2 is used to detect the circular potholes. Zed2 

is coupled with ROS to subscribe to and publish pothole-only images for obstacle avoidance. OpenCV 

image processing and computer vision libraries are utilized to detect and isolate potholes in the field of 

view of the Zed2.  



                                                             

 

   9 | I G V C  D e s i g n  R e p o r t  2 0 2 2  W a y n e  S t a t e U n i v e r s i t y   
 

A Zed2 RGB (red-blue-green) image is first converted to a grayscale image. Using a tuned thresholding 

parameter, binary thresholding is applied to correct the grayscale image into a binary image (black and 

white only). At this stage, both lanes and potholes will be detected in white. An elliptical mask of kernel 

size three is iteratively applied over the binary thresholded image to isolate the pothole. Since the circular 

pothole, and not the rectangular lane, appears as an ellipse to the Zed2 camera, the mask eliminates the 

lane and yields a pothole-only binary image. This image is published to a ROS topic that converts the 

detected pothole to laser-scan data for obstacle avoidance. Sample results of the algorithm developed are 

shown below.   

 

Figure 9: Image looking straight ahead of camera view 

In the scenario above Figure 9, the robot is looking straight ahead. Even in the presence of a white car on 

the left, only the white pothole is extracted in the pothole-only image. The elliptical mask used to isolate 

the pothole successfully removes the rectangular lanes and noise that appear in the binary thresholded 

image. To aid pothole detection, undesired bright objects situated far in the scene are eliminated by 

zeroing the pixels in the top half of the picture. This results in the black rectangular space seen in the 

grayscale and binary thresholded images. Lastly, it is ensured that the non-zeroed portion of the image 

always contains the entire path generated by the motion planner. 

 

Figure 10: Image looking to the right of the camera view 

In the scenario above Figure 10, the robot is looking right. Once again, only the white pothole is extracted 

from the scene. 



                                                             

 

   10 | I G V C  D e s i g n  R e p o r t  2 0 2 2  W a y n e  S t a t e U n i v e r s i t y   
 

 

Figure 11: Image of the left of the camera view 

In the final scenario above, Figure 11 , the robot is looking left, straight at the white car. However, only 

the white circular pothole is extracted from the scene. This can be attributed to using an elliptical mask 

that eliminates the white rectangular side of the car. The result is a black and white image of only the 

pothole.  

5.2. Perspective Transform 
The separate lane and pothole result images are merged into a single image that undergoes a perspective 

transform to obtain a top-down / birds-eye view of the lanes. 

 

Figure 12: Detected Lanes before and after perspective transform 

The transformed image is then passed to the laser scan conversion function, which creates a standard ROS 

sensor_msgs::LaserScan message from the image by calculating the distance and angle of each pixel from 

the transformed image relative to the robot.  

 

Figure 13: Detected Lanes as Image and Laser Scan 

The result is a laser scan message that the ROS navigation stack understands and plots on the same cost 

map on which the Velodyne obstacle data are plotted. This cost map is used by the navigation stack’s A* 



                                                             

 

   11 | I G V C  D e s i g n  R e p o r t  2 0 2 2  W a y n e  S t a t e U n i v e r s i t y   
 

global planner and DWA_Local_Planner to seek a goal within the mapped area while avoiding all 

obstacles. Obstacles detected by all sources are plotted, and the navigation stack reacts within .1 seconds. 

A maximum time of .1 seconds is also required for the motor controller and driver to respond. The total 

time to respond to new obstacles is a maximum of .25 seconds, including the scan and processing rate of 

the sensors and detection algorithms. 

5.3. Mapping and Localization  
No attempt is made to map the entire course, and there is no need to localize relative to the course. 

Instead, Aasha uses the Costmap2d plugin in the navigations stack to create a rolling-window map of the 

immediate surroundings and is always considered the center of that map. Obstacle data is sent to the 

Costmap2d as a point cloud from the Velodyne Lidar and a laser scan message generated from lane and 

pothole detection data. Goals sent to the navigation stack are always relative to the robot, i.e., “Navigate 

to a spot that is three meters forward and two meters to the left of your current position.” When seeking or 

testing proximity to a GPS waypoint, transform data is used to make the necessary conversions. 

RTK-GPS and a heading solution from fused visual, inertial, and magnetic sensor data are used to find 

Aasha’s position and orientation relative to GPS waypoints. The waypoint list includes the finish line, 

which is saved as a waypoint upon the start of every run. GPS latitude/longitude waypoints and fix 

coordinates are both converted to UTM coordinates, which are expressed in meters. Since meters are the 

distance unit convention used by ROS software, this allows direct use by both the navigation stack and 

our own navigation software. Our GPS is accurate to 20cm with correction data, although the software is 

set to accept a 50cm tolerance when determining whether a GPS waypoint has been reached or not. 

Testing has shown that Aasha can reliably navigate to GPS waypoints within 50 cm. 

5.4. GPS  
Our GPS implementation consists of 2 components: the GPS board and NTRIP. For the board, we used a 

SparkFun Dead Reckoning RTK-GPS. In perfect conditions and with corrections for satellite errors (drift, 

atmospheric conditions, etc.), this board delivers ~0.2-meter accuracy. Additionally, it maintains a 

continuous position during poor conditions or complete signal loss, making it an ideal solution for 

challenging environments, such as dense cities. 

To gather correction data, we use a 3rd service called NTRIP, composed of 3 parts: the NTRIP server, the 

NTRIP caster, and the client rover. The server base sends correction data to the caster, and then the client 

rover (in our case, the SparkFun GPS) accesses the caster to obtain correction data. 

 

Figure 14: Relationship between NTRIP server, caster, and client 

The correction data is sent directly to the GPS board, which then calculates and returns a global position 

in terms of latitude, longitude, and altitude at roughly 10Hz. We use ROS to bundle and publish that 

information as NavsatFix messages used in localization. 



                                                             

 

   12 | I G V C  D e s i g n  R e p o r t  2 0 2 2  W a y n e  S t a t e U n i v e r s i t y   
 

 

Figure 15: GPS Software diagram 

5.5. Goal Selection and Path Generation 

 

Figure 16: Behavior tree of Goal Selection and Path Generation 

While the ROS navigation stack is used for path planning to a given goal, a behavior tree shown in Figure 

16 is the backbone of Aasha’s decision-making process that decides which goal to issue next. The 

behavior tree’s method is somewhat analogous to a driver on a freeway heading to an unknown place in a 

distant city. The details of the entire map are unimportant if it is known that the highway has an exit in the 

general area of the destination or waypoint. A driver would likely start by ignoring all but lane data and 

obstacles that create an immediate risk of collision. When near a destination or waypoint, or if otherwise 

disoriented, the driver would then use their senses to observe the drivable areas in greater detail and 

navigate to the exact waypoint or goal. 

The behavior tree first checks with the robot’s health monitor to confirm that the necessary sensors are 

online and reliable enough to carry out the mission. If the health monitor or other data checks indicate a 

deficiency, a human operator is notified through the GUI interface so the flaw can be corrected. If the 

decision is made to proceed, a series of wayfinding submodules are queried to select a suitable “mini-

goal” location that moves the robot along the course and toward the next GPS waypoint or finish line. The 

concept of scanning data ourselves to find a mini goal in free space, then sending it to the navigation stack 

does cost some computational redundancy but comes with the benefit of allowing our software to make 

high-level decisions while enabling us to leverage the proven ROS navigation stack for low-level 

navigation details. 

The mini goal is selected first by checking if the robot is close enough to a waypoint or simply passing 

that to the navigation stack as an immediate goal. If not close enough, by analyzing the most current 

images of lane data and attempting to stay within them. If the confidence in the visual lane data falls 



                                                             

 

   13 | I G V C  D e s i g n  R e p o r t  2 0 2 2  W a y n e  S t a t e U n i v e r s i t y   
 

below a certain threshold, the behavior tree passes the request to a submodule that analyzes the most 

current cost map. The cost map includes both lane and obstacle data and has some memory of recently 

detected lane lines that may have fallen out of the robot’s field of view. Suppose this second wayfinding 

layer returns a result with very low confidence. In that case, a recovery behavior is called to clear the 

maps and perform a slow-scanning rotation in place, and one more attempt is made. In all cases, the mini-

goal is passed to the navigation stack to handle the details of path and trajectory planning. 

5.6. Simulation 
This year, we used a combination of URDF files, Gazebo, RVIZ, and RQT to implement a simulation 

environment. 

 

Figure 17: Simulating robot collecting data in virtual world 

Our simulation team was able to create a simulated robot that is able to interact with the virtual world just 

as a physical robot on the actual competition course. Figure 17 shows our simulated robot collecting 

sensor data of the course from simulated laser scanner and camera. These advances in our simulation 

abilities allow us to test various algorithms in a safe, quick, and cost-effective manner. 

6. Failure Modes  
To complete our understanding of actual and potential failure modes, we decided to conduct a full FMEA 

(Failure Modes and Effects Analysis), found in Appendix A. However, this report will discuss our failure 

points identification and resolution methods. We created a phased approach to conducting this by first 

understanding the scope of our failure mode analysis. We separated our failure modes into three key 

categories to account for all significant potential failure modes that could affect our final goal of the 2022 

IGVC competition. The three areas of our scope were: Electromechanical failure, Localization failure, 

and Vision Failure.  

6.1. Electrical and Mechanical Failure Modes 
Listed below in Table 3 are the failure points that we identified for the electromechanical subsystem and 

the subsequent resolution modes that we established to mitigate these actual or potential failures. 

Table 3: Electromechanical Failure Points and Resolution Modes 

Failure Point Identification Resolution Modes (Actions Completed) 

The laptop Battery is not Charged as 

battery charge depletes over time 

Custom Electrical Stepping Solution to Charge Battery using Lithium-Ion 

Batteries on Board 

Hardware Failures (Any Hardware 

that breaks) 

Buying Backup Hardware and ensuring all modifications or code is 

uploaded to backup hardware 



                                                             

 

   14 | I G V C  D e s i g n  R e p o r t  2 0 2 2  W a y n e  S t a t e U n i v e r s i t y   
 

The monitor is not waterproof Utilizing a plastic screen when needed to prevent any weather-related 

damage 

Robot Moving/harming individuals 

in the way  

Easy to see Safety Light is mounted with onboard and wireless Estop 

Sharp edges harm people Ensure that sharp edges and Deburred and Filed Down 

Batteries exploding - Lithium-Ion / 

Lead Acid 

Having Baking Soda and Proper PPE (Personal Protective Equipment)  

Software Crashing for unknown 

reasoning 

Health Monitor, which describes the status of sensors  

6.2. Localization Failure Modes 
For the localization failure modes, we began to have more specific failures relating to the software that 

was being integrated into the main system. This is shown in our failure points chart in Table 4. 

Table 4: Localization Failure Points and Resolution Modes 

Failure Point Identification Resolution Modes (Actions Completed) 

Waypoint file becomes corrupted  Ensure that protected files are written  

Files Incorrectly named in the software Isolate competition files (UTF) test, ensure two names are reserved 

for the course, Test course  

NTRIP Failure that can occur on a large 

state level for NTRIP 

Utilize a permanent Dynamic Reconfigure 

Duplicate TF Publishers  Ensure that testing ahead of time was done  

Incorrect Launch file tree  Utilizing health monitor listing nodes to show which is being run  

Low GPS Hz Slow down the speed of the robot  

Bad Lane to Laser  Outdoor Testing 

Not Crossing the finish lane and ending up 

right before the finish line  

Waypoint server starting after it has started  

Robot seeing self as obstacle Utilize a permanent Dynamic Reconfigure 

Trajectory planner error where robot hits 

obstacles 

Ensure that proper testing is done and adjustments are made to 

prevent poor trajectory planning 

Extreme LIDAR conditions (bad weather, 

etc.) 

Use backup system of 2D LIDAR rather than 3D LIDAR on board 

6.3. Image Processing Failure Modes 
For the vision subsystem, the failure modes included both failure modes in the vision integration system 

as well as failures that could potentially occur with the ZED camera system that is onboard Aasha. The 

failure points chart is shown below in Table 5. 

Table 5: Image Processing Failure Points and Resolution Modes 

Failure Point Identification Resolution Modes (Actions Completed) 

Too much glare from sun  Use internal filtering (ZED), angling (moving camera), deep learning -- too 

much effort, hood over camera (sunglasses), variable ND filters  

Moisture on Camera lens Use enclosures / ingress protection  

Run out of Memory  skip frames (minutes of frames we are processing) , YOLOP, zed may have 

a controllable frame rate, refactor code 

Node fails within the pipeline Feedback to health monitor to see where the failure occurred 

Compute overheats  Throttle CPU down / cooling fans  



                                                             

 

   15 | I G V C  D e s i g n  R e p o r t  2 0 2 2  W a y n e  S t a t e U n i v e r s i t y   
 

7. Innovations 
7.1. Hybrid Lane-Following + Navstack 
A hybrid lane-following + navigation stack method that attempts to identify lanes in a conventional 

manner but sends an output to the navigation stack instead of directly commanding steering. This hybrid 

method adds a layer of safety because the navigation should refuse to navigate through obstacles our 

software might miss, such as potholes and obstacles detected by the laser scanner. Additionally, some of 

our lane-following program’s recovery behaviors are greatly simplified by issuing goals to the navigation 

stack rather than handling velocity calculations and obstacle avoidance internally. 

 

Lane following starts by applying a morphological operation to clean up small gaps and eliminate all but 

the two largest lane candidates. The location that falls between the end of the two is calculated and passed 

to the navigation stack. If only one lane is detected, the program picks a spot that is 1.5 meters inside the 

end of that lane and reports a reduced confidence to the behavior tree. 

 

 

Figure 18: Lane Detection Program in Action 

Should the robot find itself facing a single lane that is too perpendicular to presume a correct direction of 

travel, it is able to request a rotation toward the next GPS waypoint. This new perspective provides new 

data for a more-informed decision to be made. If the confidence is still too low, a recovery mini-goal can 

be issued to the navigation stack simply in the general direction of the next GPS waypoint, and the global 

planner can use the A* algorithm to consider all known obstacles and proceed toward that mini-goal. 

Once the robot is past the switchbacks or obstacles that caused the disorientation, the lane-follower 

program can resume control. For this reason, the recovery mini-goal does not have to fall between the 

lane markings to be effective. 



                                                             

 

   16 | I G V C  D e s i g n  R e p o r t  2 0 2 2  W a y n e  S t a t e U n i v e r s i t y   
 

7.2.  Health and System Status Interface Graphical User Interface 

 
Figure20: (Left) Graphical User Interface design (Right) Process flowchart for GUI  

The purpose of this interface is to provide an easy way to monitor the health information of the robot 

(battery state, GPS fix status, roslaunch process status, etc.). It will also provide the ability to start or stop 

individual and group components of the robot. Two configuration files are provided in a JSON format 

that stores the component names as keys with the roslaunch commands as values. These files easily allow 

the configuration of the roslaunch commands as associated with each button. The system keeps track of 

the root process IDs of all the roslaunch commands and can easily kill subprocesses to ensure clean 

starting and stopping of system commands. It also provides a systematic method to start roslaunch files in 

the correct order. There are also two primary startup modes, each corresponding to a different 

configuration file. The competition mode starts up the robot with visualization processes, whereas the 

NoViz (no visualization) Competition mode starts up the robot without these processes for a performance 

boost. All launch files provide a beacon signal reflected in the GUI as a blinking icon of stable operations.  

7.3. Robot Recovery Feature 
A final recovery feature is not enabled for the competition mode but is available to align with industry 

standards for recovery behaviors for commercial autonomous delivery robots. The final recovery behavior 

has the robot notify a remote human operator that it needs assistance. The operator can then remotely 

make decisions, manually steer the robot, or dispatch a robot recovery vehicle to bring the machine for 

service. 

8. Key Learning Experiences  
The fabrication of Aasha proved to be a fantastic learning experience well beyond any classroom 

experience. We collectively have learned so much as a team about standard practices utilized in the field 

of engineering. In terms of hardware, we learned a lot about depth cameras and their data. We learned a 

lot about integrating hardware into the ROS environment. This allowed us to keep our software very 

modular.   In terms of software, we learned how to develop the software from the systems perspective and 

spent much time on design the block diagram of the software. We focused on what packages and nodes 

needed to be developed and how all the messages would be subscribed to and published by the various 

nodes.   

There is much more to developing a robot than hardware and software. The essential item is team 

building and making sure that each team member feels like a contributing member and is always 

supported. This in our opinion, is of the most significant value. We want our team to grow and gain 

knowledge and skills well beyond the competition. Our team management approach was much improved. 

It resulted in a much more cohesive team where everyone contributed to a common goal. We used 

standard industry management practices, and it has been a much-improved team.   The main thing we 

learned is that teams are not just building hardware and software but of building relationships.  

We hope to keep on further developing our team, knowledge base and skillsets in our respective areas and 

come next year with a more innovative and improved version of the robot. In all we are grateful to have 

had the opportunity to work on such an ambitious undertaking.   



                                                             

 

   17 | I G V C  D e s i g n  R e p o r t  2 0 2 2  W a y n e  S t a t e U n i v e r s i t y   
 

9. Acknowledgments   
The creation and funding of this group could not have been possible without the expertise of advisors Dr. 

Marco Brocanelli, Dr. Azad Ghaffari, and Dr. Abhilash Pandya. They have contributed an invaluable wealth 

of knowledge and expertise to our club. We would also like to thank Dean Sondra Auerbach for helping us 

facilitate the necessary resources that helped keep the club going. A debt of gratitude is greatly owed to all 

the faculty and members of Wayne State University’s College of Engineering, who have continuously 

helped to support us in our endeavors. Finally, we would like to thank the dean of the college of engineering, 

Dr. Farshad Fotouhi, for facilitating the approval and support of the organization and giving us an amazing 

space and resources to work. Without him, none of this would be possible.   

Appendix  
Appendix A: Complete Failure Modes and Effects Analysis with CYNEFIN  

 

Appendix B: Power Requirement Calculations  
Main Battery (Drive + Auxiliaries): 

 340 watts (9.43 amps) typical required 



                                                             

 

   18 | I G V C  D e s i g n  R e p o r t  2 0 2 2  W a y n e  S t a t e U n i v e r s i t y   
 

Drive: 

Each motor 7 Amp max, 3 amp typical. 

Control board consumes 1-2 amps 

Combined max 15 amps, 7 amps typical 

 

12V auxiliaries: 

Velodyne 8 watts 

Cooling fans 4x 2.4w each max = 10w total 

Beacon 30 watts @12v  

Monitor 30 watts @12 

Total 78 watts/.9 converter efficiency = 87 watts = 2.4 amps @ 36v  

 

5V Auxiliaries: 

GPS .5 watt 

Arduino, relays combined .5 watt 

Total 1 watt / . 9 converter efficiency = 1.1 watts = .03amps @ 36v 

 

Total: 

7 + 2.4 + .03 = 9.43 typical amps required.  

Limiting discharge of our 20 AH main battery to 50%, we can expect 10AH/9.43A = 64 minutes of 

runtime per charge. 

 

Laptop Power Requirements: 

Max consumption 230 watts. 160 watts typical. 

Battery duration 2.65 hours typical. 1.8 hours minimum. 

Internal battery 60 watt hour 

Auxiliary battery = 36v*20AH = 720 WH 

Max discharge 50%: 720 * .5 = 360 WH 

360 + 60 = 420 total watt hours available 

420WH/230W = 1.8 hours  

420WH/160W = 2.65 hours 


