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Introduction  

Throughout the course of the 2021-2022 school year, the Electrical Engineering and Robotics 
and Mechatronics Engineering senior classes worked on a Polaris Gem e2 named NineBits Bot, 
to compete in the Intelligent Ground Vehicle Self Drive Competition (IGVC). This 48V electric 
vehicle has been converted to be capable of completing various autonomous tasks, and capable 
of handling primary driving functions, designed for people with disabilities. These primary self- 
driving functions include lane following, obstacle detection, sign detection, parking, and basic 
vehicle maneuvering such as turning and lane changing. 

In the following document, team organization, design process and organization, innovations, 
vehicle specification overview, and software/failsafe strategies will be discussed.  

Organization  

Table 1: Team Organization and Responsibilities 

Team Member Task Responsibility 

Mariam Bakhaet Lane following 

Kirols Bakheat Vehicle Control and Safety 

Victor Carpenter Sign Detection

Tyler Caton Lane Following 

Kevin Conklin Sign Detection

Renata Gonzalez-Navarro Obstacle Detection

Carson Green Vehicle Control and Safety

Jiyang Guo Sign Detection 

Giovani Olivo Obstacle Detection
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Design Process  

The senior design class first started working on organizing the team structure and responsibilities 
for each student. The beginning of the project involved understanding what capabilities the 
vehicle had prior to beginning our individual responsibility. Once there was sufficient 
understanding of the onboard technology and capabilities our vehicle was equipped with, the 
team was able to identify areas for improvements. The team then created subgroups and assigned  
responsibilities for each subgroup member in the areas where improvements were needed, see 
Table 1. Each student began with a research task that allowed for gaps of knowledge to be filled 
in order to gain a better understanding on how to proceed with the implementation of their task. 
Once research had been completed, a Design Matrix was created that allowed the teams to 
brainstorm solutions to the areas of improvements that were identified during the early learning 
phase of the project. The Design Matrix was helpful in the decision process to identify the best 
possible solution to identified areas of improvement during this phase of the project. A failure 
mode effect analysis (FMEA) was conducted for each of the subgroups' responsibilities in order 
to consider all failure mode possibilities and optimize the robustness of proposed new designs 
and the existing designs. Once a design for an area of improvement was finalized, that team 
would then begin the initial task of implementing, and troubleshooting the new design, as well as 
to continue to refine the design. The new designs were analyzed and tested at project milestones 
in order to ensure that the designs would integrate into the final overall design. Once all designs 
were complete the vehicle went through a final testing and validation phase in order to be able to 
take the vehicle to the IVGC. 

Innovations 

Several innovative techniques were used on vehicle designs to complete tasks for the IGVC. 

Neural Networks – Sign Recognition 

The technology that was used for the traffic sign and lane line recognition task is a Machine 

Learning implementation using neural networks. The neural networks consist of connected nodes 

that are able, through mathematical computations, to learn the features of certain objects based 

on training. Training allows for the detection of objects, and detection is complete when they 

‘see’ those objects. A live video feed from a Prosilica 1290c camera is fed to the Nvidia 

Detectnet network. The network has been trained using Python3 and Pytorch to side load the 

model with thousands of images. These images are of road signs and include stop, right facing 

one way, left facing one way, road closed, and no turn. The system will place a bounding box 

around the object that it thinks it has detected along with the name of the object. The bounding 

box can be used to crop the image to reduce the amount of image clutter. The network can 

process up to 20 frames per second using the Prosilica camera. 
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The neural network was developed on Ubuntu 18.04, running on an NVIDIA Jetson Xavier AGX 

platform. The code is a combination of scripts for different parts of the overall process and C/C+

+ code for the neural network itself was obtained online from a repository on gitHub, Additional 

scripts were developed by our team to manipulate, rename, resize, and organize the datasets that 

were used for training. TensorFlow is the main platform that the neural network was built upon. 

The live video stream from the Prosilica camera is captured and published as a ROS topic, the 

neural network subscribes to this topic and uses the topic data in the sign detection task. The 

output from the sign detection task can be combined with LiDAR positioning information for 

purposes of sign localization.   

Picture 1 Sign Labels 

Image Processing- Lane Line Recognition 

Sign Detection Results for a
required signs in IGVC rul
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A new lane detection system was developed and implemented on the vehicle using image 
processing techniques instead of the incumbent machine learning techniques. This decision was 
made to allow more control over input parameters, as well as easier scalability when adding 
future features. It also forced the lane detection group to learn the ins and outs of how lane 
detection worked, instead of relying on a trained model. The incumbent SVC210 fisheye camera 
was replaced by a standard logitech C90, 1920 x 1080 USB camera, for testing and training with 
a Prosilica 1290GT serving as the detection camera for competition. The NVIDIA PX2 was also 
replaced originally with a Jettson Xavier AGX, and then with an intel NUC once the image 
processing route was decided upon and the reliance on the GPU architecture was reduced. This 
also mitigated several architecture compatibility issues with most of the hardware being ARM 
chipset compatible, and the Jettson available to us being ARCH chipset.  

Several image processing libraries were considered, however the accessibility and open-source 
nature of OpenCV, plus the amount of resources available online, meant that this would be the 
most efficient library to develop with. Integrations between the ROS network and the camera, 
and the ROS network and our algorithm were ultimately easier to develop as a result of this 

decision -although there are more powerful image processing libraries available.  
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The system receives an input image from the camera, and ultimately outputs a vector of points 
that is processed and sent to the PointCloud2. The RGB image (figure 1) is converted to 
grayscale and low-pass filtered to accentuate the important features (white lanes). Then a BW 
binarization with an adaptive threshold is applied to create 0 or 1 binaries of every image pixel. 
This is passed through some morphological processing (figure 2), and finally through a 
connected components analysis (figure 3) to remove some of the visible noise before being 
passed to the Birdseye view node. This does the perspective transformation and metric image 
conversion using the camera’s intrinsic and extrinsic matrices. With the transformed image, lane 
tracking is implemented to collect lane points into a vector<point>, which gets sent to the 
PointCloud2 for publishing (figure 4). In figure 3, the noise is filtered out and after the 
perspective transform is completed, figure 4 is what will be sent to the PointCloud2.  

Figure 1: Input Image 

Figure 2: Image before filtering is complete 

Figure 3: Image after filtering is completed Figure 4: Perspective to PointCloud2 

Lidar – Sign Detection, Obstacle Detection, Parking Lines 

The sensor managing obstacle detection is a VLP-16 Velodyne LiDAR. The LiDAR is mounted 

on the passenger side of Polaris at approximately side mirror height. Due to this positioning, it 

emits lasers that reflect off objects in a 270º horizontal  (instead of the default 360º) by 30º 

vertical view with 16 vertical scanning planes at a maximum range of 30 m. Coordinates are 

collected from each point of a visible surface, thus computing the distance to a point with ease. 

This aids the team in completing the obstacle detection process. When there is a barrier in the 
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vehicle's route, the lidar alerts team members via code, therefore collecting information to avoid 

the object. This LiDAR is very efficient at capturing obstacle data accurately for the purpose of 

developing maps and navigating unknown environments.  

A second Velodyne LiDAR was installed on the rear of the vehicle to allow for a 3-D map 
generation of the car's surroundings. A parent-to-child connection was created between both 
LiDARs by using the center of gravity of the vehicle.  Accurate visualization was created by 
applying a transformation to each LiDARs. The last steps in the process are to adjust the rotation 
and verify that the frame of view (FOV) does not overlap. A screen capture of the lidar data 
shown in rviz, a 3D visualization tool for ROS, is shown in figure 5. 

Figure 5 - Lidar data shown in rviz 

Localization  

The NineBits Bot determines its location using Kalman-filtered GPS and IMU data. The GPS 
with integrated IMU, PowerPak 7D-E1 Novatel receiver, is coupled with two VEXXIS 
GNSS-502 Dual Band Antennas. This setup is SPAN-configured, and allows localization within 
4-40 cm. A Sparton AHRS-8 IMU is also used for velocity, roll, and magnetic heading. An RTK 
node in ROS accepts the input for both devices and creates near and far field headings, as well as 
a filtered IMU heading.  

Simulation 

The team was able to use a Gazebo simulation world and a 3D model of the Polaris Gem e2, that 
was constructed by previous years’ self-drive groups, to aid in the completion of this project. The 
simulation has a ground plane that includes lane lines for the 3D car model to follow, the lane 
lines are a combination of straight runs, left turns, right turns, and intersections. The simulation 
also includes stop signs. The Polaris 3D model also includes several sensors as part of the model, 
lidar units and cameras. These additional models allow for the simulation to be closer to the real 
world vehicle. The simulation allowed the team to verify that the Robot Operating System (ROS) 
published messages were being received correctly and to know how the vehicle would behave. 
Figure 6 shows several screen captures of the Gazebo simulation running through several 
scenarios that the real world vehicle may encounter. 
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Figure 6 - Screen shots of the Gazebo Simulation 

Mechanical, Electronic and Power Design 

Power 

The Polaris is a commercially available electric vehicle. The Polaris’ electric motors are directly 
controlled with a 6.5HP Sevcon 450A controller, which is powered by 48 volts produced by a series of 6V 
batteries. The 48V battery packs are 6kW and capable of giving around a 30-mile range. The charger is 
capable of 1kW. The autonomous hardware is powered from two 48V to 12V DC-DC converters. All of 
the 12V power is fused and contained within the cabin of the vehicle. A Pure Sine Wave 2500W 120VAC 
converter provides AC power to systems that require it, these include are not limited to, computing 
devices running the Robot Operating System (ROS) nodes and a LCD monitor 

Vehicle 

The Polaris is converted to drive-by-wire for throttle, braking, and steering. The suspension of the vehicle 
is the stock suspension that comes with the Polaris Gem e2. There are three microcontrollers that interface 
into ROS for the control of the vehicle. The first is the vehicle control unit (VCU), the second is for 
encoder capture, and the third is for communication with the remote control. 

The first microcontroller is an Arduino Mega2560, which is the vehicle control unit (VCU). The VCU 
controls the throttle, steering, gear, and brake of the vehicle, additionally the VCU monitors the 
emergency stops on the vehicle to communicate to ROS when those have been pressed. The VCU only 
manipulates control signals when the vehicle is put into computer control for safety reasons; and when the 
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vehicle is not in computer control the original factory connections are made. The analog control from the 
Arduino is done using a 10-bit digital-to-analog converter, LTC2465. The autonomous steering for the 
Polaris is done by manipulating the torque sensors in the Electronic Power Assisted Steering (EPAS) 
System, this is done using the first Arduino. A dual channel absolute encoder is attached to the steering 
column of the vehicle to allow for steering effort to be changed under computer computer control. The 
dual channel absolute encoder consists of two potentiometers that are opposite each other and give 
inverted readings of each other. Dual encoders are implemented to add an additional safety feature to 
ensure that the steering position is being read correctly. The position of the steering column is controlled 
by a proportional controller programmed into the Arduino. The braking system is also controlled with the 
first Arduino. The braking system is split between the front and rear brakes. The front brakes are under 
user control at all times, for safety, and the rear brakes are activated by the emergency brake or the 
Hydrastar System. The Hydrastar system controls the autonomous braking and is connected to the VCU 
via an H-Bridge module, During an emergency stop the VCU incrementally increases over 0.5 seconds 
the Hydrastar braking until 100% brake signal is achieved. The control for the throttle, the steer-by-wire 
system, the braking system, and the Hydrastar system are depicted in figure 7.  

Figure 7 - Hydrastar Braking System 

The second microcontroller is programmed to decode the outputs from two through bore incremental 
encoders, Encoder Products Company (776-B-S-1024-QOC-C-P/6-A-N-N), that are installed on each of 
the drive shafts of the Polar-RS. The output from the two incremental encoders are also being captured by 
the third ATMega2560 and sent serially to ROS to be published as a topic, this also supplements the 
SPAN solution from the Novatel system. The sensors can also be utilized to generate odometry data. The 
remote-control system consists of two Arduino Unos that have Zigbee wireless communication. There is 
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also a user node that transmits the desired mode of the vehicle and a vehicle node that receives commands 
from the user node and communicates it to ROS as a published node. The remote control allows the 
vehicle control to be operated in manual drive mode, joystick mode, and autonomous mode. The VCU 
Arduino also controls the operation of the transmission through a set of 3 relays. One rela, the enable 
relay, switches between the dash forward and reverse rocker switch and the arduino controlling the gear 
shift. The other two relays control direction when under computer control, one for forward and the other 
for reverse. The relays are only enabled one at a time, however if both relays are switched on at the same 
time it is considered an error condition and the vehicle is put into neutral. 

Computation 

Sufficient computing power is need for Polar-RS due to the wide array of sensors utilized, 
therefore there are four computing systems used in the NineBits Bot: three general processing 
computers, and one NVIDIA Jetson AGX Xavier 

The first general computer is responsible for lane detection and LiDAR processing, the second 
general processing computer is used for localization, and the third general processing computer 
will serve as our vehicle control unit as the master to allow for integration. The sign detection 
neural network runs on the Jetson computer, the live video feed from the Prosilica camera is fed 
into the Jeston computer to be processed by the sign detection neural network.The lane detection 
is run on one of the Intel NUC general processors, and due to the use of image processing 
techniques it ultimately to reduced GPU reliance. Using general Intel NUC in conjunction with 
the ROS network also allowed for the groups to reuse topics with necessary information as 
opposed to having redundant publishers.  

The Robot Operating System (ROS) is installed on all computational platforms. All of the 
computing units are connected to a private network inside the vehicle via wireless or wired 
interfaces and will be synchronized when started.  

Software Strategies 

Obstacle Detection and Avoidance  

The Polaris is currently able to detect and generate coordinates where objects are located 

utilizing the input data of the LiDAR. This is accomplished by gathering intensity values of real 

world objects at various distances from the vehicle. A higher intensity value is given to surfaces 

such as reflective vests and street signs to be distinguishable from the surrounding environment. 
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Then, a 3-D map is created in Rviz, a visualization tool for ROS applications, with the display 

type PointCloud2, a collection of N-dimensional points in ROS. In order to have an appropriate 

output to use during integration, the raw data from the LiDAR must be continuously processed. 

This is where the use of filtering comes into play.   VoxelGrid Filtering is used to gather points 

approximated with their centroid.   Intensity Filter is used to ensure highly reflective surfaces 

remain in the list of points.  Radius Outlier Removal (ROR) keeps regions containing a user-

specified number of “neighbors” to remain in the list of points. Statistical Outlier Removal 

(SOR)  removes points who have a distance larger than some standard deviation of the mean 

distance to the query point. When these filters have been completed for a given environment, we 

are left with a region of interest (ROI) or the collection of points that are important to a given 

task. The points that are important to object detection are the highly reflective surfaces. 

Therefore, the entire environment is filtered from the PointCloud except for any high intensity 

points.. This does create limitations in our object detection capability. If something important 

like another vehicle does not have high intensity, it can be filtered out when we want to keep that 

information. 

Lane Detection 

The lane detection system had a few notable limitations, as it was designed with the specific 

constraints of the competition in mind. The first of which being that the window tracking 

actually doesn’t not track the top 10 pixels of the image (as shown in Figure 8), due to potential 

errors trying to read pixel values that don’t exist. Under the speed conditions the vehicle is tested 

against, this won’t be an issue however that could change under different test conditions. 

Furthermore, there is significant counter-based and proximity based error checking on outlier 

points to ensure safe lane starting segments and safe tracking practices. In a controlled 

environment like IGVC, this will have little impact on runtime or execution accuracy. However, 

this could compound and slow the system should too many processable elements be introduced. 

Finally, because I am publishing a collection of points as opposed to publishing a polynomial 

that tracks the curvature of the lane segment, should too many points be totalled for the lane this 

could also bottleneck the 

throughput of the system. Under our 

specific environmental and 

requirement-based constraints these 

issues are mitigated, but they 

could play a larger role should those 

things change.  
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Figure 8  

Goal Selection and Path Generation  

Path planning involved first gathering data from our lane detection. For lane detection, we are 
using a lane detection algorithm that is able to detect lines from a camera view. These lane lines 
are then converted from the image to PointCloud2 data. This PointCloud2 data is then used to be 
able to determine a goal point between the lane lines for the vehicle to get to.  

The vehicle dynamics are taken into consideration such as the velocity of the vehicle and the 
current steering angle to be able to determine the smoothest way to correct the path of the 
vehicle. For lane keeping, our team can identify the difference in angle between the goal point 
and the vehicle heading and can use this to appropriately correct the steering angle. The change 
of the steering angle is proportionate to the speed of the vehicle to ensure the vehicle’s jerk is 
reduced to a minimum. 

Map Generation  
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Localization is a foundational requirement which involves the use of various sensors including a 
GPS and IMU in tandem with a Kalman filter. These are used for estimating the vehicle’s 
location in space relative to a given origin. This location estimate was produced by instantiating 
the modules that are built in the Robotics Tool Kit (RTK) for localization. The RTK modules use 
the GPS, Sparton IMU, and speed from the wheel speed sensors. This allows for the vehicle to 
position the vehicle for the near field and far field mapping. These maps are able to localize the 
vehicle to a current location, as well as a goal location as set by the path planner, which uses 
programmed points to generate a path to eliminate the difference in location between the vehicle 
and the next point. This involves setting a steering angle based on the curvature of the difference 
between the points. 

Safety Considerations/Failure Modes 

Safety is a very important consideration in a vehicle such as this, and there are many areas that 
need to be taken into account when designing an autonomous electric vehicle. A brief list of 
areas of concern would include, dead battery or power failure, sensor failure or damage, poor 
weather conditions, undetectable high speed objects crossing the path of the vehicle. The safety 
concerns listed can be mitigated to some degree by charging the battery when the vehicle is not 
in use, be keeping the sensors clean and regularly inspecting for damage, increasing the 
sensitivity of the sensors during poor weather conditions, and having easy access to emergency 
stop buttons, E-Stop, for those unexpected emergencies. During competition the vehicle is never 
run above 5mph, which allows for longer times to react to emergency situations, both inside and 
outside of the vehicle. The vehicle can be stopped remotely via the wireless E-Stop should the 
need arise during autonomous driving. There are also E-Stop buttons located on the front, sides, 
and rear of the vehicle, as well as one located inside the vehicle, see figure 9. 
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Figure 9 

Testing and Validation     

The test and validation tasks were distributed amongst the team, we were able to utilize both 
simulation and real-world testing to complete this project. As mentioned previously in this 
report, we were able to use a Gazebo simulation of the vehicle in a test course to verify the 
functionality of the controls, lidar, and vehicle maneuvers, such as breaking, accelerating, lane 
keeping, lane changing, and turning. Once these models and systems were verified within a 
simulated environment, the systems were then verified for functionality on the vehicle on a test 
track located in a campus parking lot. The real world testing would be the final stage to ensure 
that all the subsystems worked correctly. 
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Operational to this Date 

At the time of submission of this report, our team has completed Localization, lane recognition 
and  tracking - up to the point of metric conversion completion and the publishing of 
PointCloud2 data, detection of obstacles within a desired distance threshold, and detection of 
highly reflective surface obstacles to where only the intensity points are retained in a PointCloud. 
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