Intelligent Ground Vehicle Competition 2023

Indian Institute of Technology Madras Team Abhiyaan Vikram

IGVC Cyber Challenge Report

I hereby certify that the development of the vehicle, Vikram, as described in this report, is equivalent to the work involved in a senior design course. This report has been prepared by the students of Team Abhiyaan under my guidance.

Dr. Sathyan Subbiah

Faculty Advisor, Team Abhiyaan Professor, Department of Mechanical Engineering IIT Madras

Electronics

Adil Mohammed K Arun Krishna AMS Dhaksin Prabu K Kesava Aruna Prakash R L M.R.Kaushik Niranjan A. Kartha Rahul Soumya Ranjan Behera Vamsi Krishna Chilakamarri

Team Members Mechanical

Advait Abhijeet Kadam Ananya Dhanvantri Guruprasad Aneesh Bhandari Arvind P Hiran Neelakantan Jayesh soni Krishma Mehta Mugdha Meda Reitesh KV Raman Saumya Mathur Shobhith Vadlamudi Sudharsan Raja

Software

Aahana Hegde Aayush Agrawal Amar Nath Singh Keerthi Vasan M Lalit Jayanti Saiharan Rajakumar Sukriti Shukla Suneet Swamy Suraj Rathi U.K.Arvindan

*Names are hyperlinks for emails.

SATHYAN SUBBIAH, Ph.D. Professor

dian Institute of Technology Madras

of Mechanical Engineering

Contents

1.	The NIST RMF Process	3
	1.1. Overview	3
	1.1.1. Prepare	3
	1.1.2. Categorize	3
	1.1.3. Select	3
	1.1.4. Implement	3
	1.1.5. Assess	3
	1.1.6. Authorize	3
	1.1.7. Monitor	3
	1.2. Identified Threat Concept	3
	1.3. How the team applies the RMF	3
2.	Applying the RMF	4
	2.1. Prepare	4
	2.2. Categorize	5
	2.3. Select, Implement	6
	2.3.1. Controls that we have implemented	6
	2.3.2. Controls that are not implemented but would be appropriate	14
	2.4. Assess, Authorize	14
	2.5. Monitor	14

1. THE NIST RMF PROCESS

1.1. Overview

Security issues often come from oversight or negligence on the developers' side. In order to prevent this to a large extent, one could follow a comprehensive process that tries to make sure that all the boxes are checked with regard to security, before deploying a product out into the world. The NIST RMF is such a process, in which an organization decides the level of security risk it can tolerate, and applies protections accordingly. It prescribes the following steps:

1.1.1. Prepare

The "Prepare" step, which was newly added to the RMF in 2018, involves properly organizing the team to deal with information security, and also clearly establishing the level of risk tolerance required. We identify the different kinds of information processed, and decide what level of security each type of information entails, based on the priorities of the organization.

1.1.2. Categorize

We examine of the information we identified in the Prepare step. We determine the worst-case impact that a malicious actor could have on the system if they managed to compromise the confidentiality, integrity, or availability of all these kinds of information.

1.1.3. Select

Once we are done with categorization, we can select appropriate controls to protect the information, and tailor them according to our needs. We plan out how we will implement and follow-up on them. We also create a strategy for continuously monitoring the system after the controls have been deployed.

1.1.4. Implement

After selecting appropriate controls, we implement them in our system and document it.

1.1.5. Assess

A team, ideally independent of the one that implemented the controls, is selected to determine whether the controls are functional and meet the privacy requirements of the system. Any extra privacy concerns are also documented, and plans are made to remedy them over time.

1.1.6. Authorize

An authorizing official considers the assessments and plans made, and determine whether they are acceptable to the organization.

1.1.7. Monitor

We continuously monitor the deployed controls based on the strategy decided in the Select step, in order to make sure that our controls stay functional, and no new risk factors have come up.

1.2. Identified Threat Concept

The hypothetical use-case for our bot is as a delivery robot within our institute. People could request the bot's services using an app, place a package inside, and ask for it to be delivered to a location within the campus. Once that location is reached, the intended recipient could command the bot to open up, and retrieve the package.

1.3. How the team applies the RMF

As we are team of 30 college students as opposed to a large organization, we have focused more on categorizing threats and implementations of controls, than documenting organizational risk tolerance standards.

We first came up with an architecture to implement our sevice, with information security in mind. We use two different information systems — one is the NUC, and the other is the server which co-ordinates delivery requests. The NUC only takes commands from the server and gives location telemetry, and has no knowledge of the user data or delivery requests.

Next, we identified the kinds of information that we need to process.

2. APPLYING THE RMF

2.1. Prepare

This is the information that we need to process in order for our service to work properly:

- 1. Data that users provide us to register for the service (stored on the server)
 - Name
 - Roll number
 - E-mail address
 - Password used for Registration
- 2. Data that users provide us while using the service (stored on the server)
 - Pick-up location
 - Delivery location
 - Recipient details
- 3. Telemetry data sent from the bot to the server
 - Location
- 4. Commands sent from the server to the bot
- 5. Data stored on the bot required for it to function (stored on the bot)
 - Source code
 - GPG keys
- 6. Debugging information and commands (between the bot and developers in the team)
 - Sensor data
 - Tele-operation commands
 - Remote e-stop
- 7. Delivery tokens for opening the bot to access delivery contents (sent to the intended recipient when the bot reaches its destination)

Kind of Informa- tion	Confidentiality	Integrity	Availability	Description of threat
User profile data	High	High	Low	Malicious actors might try to harvest user information that they may later use for spamming or identity theft.
Usage data	High	Low	Low	We do not want to leak user location or delivery details as these are highly sensitive.
Bot-location- telemetry	None	Moderate	Moderate	We want users to know of the bot location only when it is currently performing a de- livery for them, or it is close to their location.
Bot commands	Low	High	Moderate	We do not want malicious actors to be able to send rogue commands to the bot, as they may be able to take control over it.
Bot credentials and code	High	High	High	Access to passphrases used to control the bot would re- sult in a complete takeover of the service.
Debugging information	Low	High	Moderate	Debug access to the bot can also let anyone take full con- trol over it by tele-operating it.
Delivery tokens	High	Moderate	Moderate	We do not want unautho- rized people to access others' packages

2.3. Select, Implement

Based on the impact that a particular kind of information has on our system, the NIST RMF recommends that we select a particular set of controls. We then tailor each control to our specific needs.

We have selected controls based on our judgement of which ones would be the most appropriate, while also considering their demonstrability.

2.3.1. Controls that we have implemented

AC-1 (Access Control Policy and Procedures)

Implementation	Demonstration Strategy	Information Protected	Threat mitigated
Only current team members are allowed to access the code on our system. Once someone leaves the team, their public keys are re- moved from the git reposito- ries and computers used.	Observe that ~/.ssh/authorized_keys file on the NUC only have team members' public keys. Also observe that the GitHub repositories have only team members in them.	Bot credentials and code, debug information	Malicious actors with access to ex-members' accounts
Only people from within the institute are authorized to request deliveries.	Observe that the server re- quires you to specify an in- stitute e-mail ID when you register.	User details, bot commands	Spammers from outside the institute trying to DoS the service by registering rogue accounts

Figure 1. Public keys of team members in /.ssh/authorizedkeys

Chrome File Edit View	w History Bookma	rks Profiles	Tab Window	Help	📟 🖸 🖉	- 🛖 🗉 🐠 🖇	: 🗩 🗢 ५	😑 🍥 Tue 16 May 4:55 AM
🗧 🔍 🔵 🌔 Teams · Team-Abhiy	yaan × +							
← → C a github.com/org	gs/Team-Abhiyaan/tear							😉 🗅 🖈 🗖 🥌 i
🐴 IGVC'23 - Google								
	Q Find a team						New team	
	Select all					Visibility 🕶	Members -	
	abhiyaan2021					1 member	2 teams \land	
	Software module	1 e 2021 recruits				2 members	0 teams	
	elec2021				0 📀 🛞	3 members	0 teams	
	abhiyaan2022					2 members	2 teams \land	
	software202 2022 Software F	2 Peeps		🌗 🕄 🚷 😑	�⊕⊕�	7 members	0 teams	
	elec2022			S 🕸 😌 🖨 🕤	••••	8 members	0 teams	
	abhiyaan2023				٢	1 member	2 teams \land	
	Software202			🌒 🕄 😳 🚷 🖴 🎕) 🔶 🕕 📖	15 members	0 teams	
	Elec2023			ې 🖓 🌍 🥸 🥲	😂 🙆 📖	9 members	0 teams	
¢	🕽 © 2023 GitHub, Inc.	Terms Privac	y Security St	atus Docs Contact GitHub Prici	ing API Training	Blog About		
	42,029							
	<u> 🛛 🖂</u>)					

Figure 2. Only current team members have access to Github repositories

AC-2 (Account Management)

Implementation	Demonstration Strategy	Information Protected	Threat mitigated
Only team leads' accounts have 'root' access on the NUC.	Observe that only the team leads are in the 'sudo' group.	Bot credentials and code	Malicious actors with access to team members' accounts
A separate www-data user is used for running deployed code. This user does not have read access to the source code, and has heavily curtailed permissions. (SC- 2)	Log in as www-data and ob- serve that this user cannot open extra ports, read files, etc.	Bot credentials and code, debugging information	Someone with code execu- tion access on the NUC now requires privilege escalation to do serious damage.

Activities 🕞 Terminal 🕶		Tue May 16 05:47:13 •	÷ ⊕ ⊕ +
<pre>n olt@abhiyaan-msi ~ % sudo usermod ~ sudo] password for bolt: olt@abhiyaan-msi ~ % getent group dialout:x:20:bolt drom:x:24:bolt,suraj udo:x:27:suraj,bolt lip:x:30:bolt,suraj ideo:x:44:bolt lugdev:x:46:bolt,suraj padmin:x:120:bolt,suraj olt:x:1000:suraj ambashare:x:132:bolt,suraj olt@abhiyaan-msi ~ % []</pre>	•aG sudo bolt grep bolt	bolt,@abhiyaan-mst	Ξ - σ ⊗

Figure 3. bolt & suraj: user accounts of team leads having sudo access

AC-4 (Information Flow Enforcement)

Implementation	Demonstration Strategy	Information Protected	Threat mitigated
The bot refuses to con- nect to the server unless the connection is served over HTTPS.	We could temporarily switch the server to HTTP, and ob- serve that the bot goes of- fline. Starting it as HTTPS makes it work again.	Bot commands, telemetry	Man-in-the-middle attacks
All unused networking ports are blocked on the NUC.	Try to run netcat as www-data on a blocked port, and observe that we are not allowed to do so.	Debug information, bot cre- dentials and code	Hackers cannot run a shell.
The www-data account on the NUC is only allowed to access a pre-determined set of IP addresses. Any packets going elsewhere are filtered out and logged.	Try pinging an unauthorized IP address as www-data and observe that it fails.	Debug information, bot cre- dentials and code	Hackers cannot send pay- loads to the NUC.

8

AC-7 (Unsuccessful Logon Attempts)

Implementation	Demonstration Strategy	Information Protected	Threat mitigated
Users are timed out of logins	Perform five failed attempts	User data, usage	Hackers cannot easily
on the server after five failed	and observe that we are		brute-force the user account
attempts.	locked out temporarily.		passwords.

AC-12 (Session Termination)

Implementation	Demonstration Strategy	Information Protected	Threat mitigated
All logins to the NUC time out after five minutes of inactivity.	Open ~/.bashrc and ob- serve that the environment variable TMOUT is set to 300 . Change this to 5 to demon- strate how it works for a timeout of 5 seconds.	Bot credentials and code, debug information	Minimizes the risk of some- one catching one of the team members' laptops unlocked and accessing the NUC from there.

AC-17 (Remote Access)

Implementation	Demonstration Strategy	Information Protected	Threat mitigated
We only allow access to SSH using public keys of suffi- cient length.	Observe that trying to SSH into any account on the NUC using a password al- ways fails. Also observe that the authorized_keys on the NUC have sufficiently large keys.	Bot credentials and code, debug information	Hackers cannot access the NUC remotely by guessing passwords.

Figure 4. RSA 2048 bit asymmetric public encryption key

ssn-rsa AAAAB3NzaClyc2EAAAADAQABAAACAQDD2opBgs6TK1naPQ9XHQN6w68H5LpWsLVJAQi36Pp8302B1+kx1BB2/bP7ZqTgegCoN6DUYE2ey4Z+Hn5t+4EAlFNix9rhlTajlSJMcZHd9MX0jpLT1uXVCA nfMED2WCnwJyj071nZeQvb5CE6qWK0upYXVshxLm6MgaJ2/dADVHy3c0aunIG1Kd2NUlhupxKcbPfji6Fa6WELOVyAp/IIaPjNmEcsaf6jlNiNNau+kIIwHp0a0aE8xq94I6fg784lKMKWhcXnB5bRhH0/cCTX xkd4sARYxwBmPuMbWi632misKMZiNZmXx9xaAqBAQHLBBp6ZgzEdofpJNHFK/CjayjdbbVEF/uEFfi6Fa6WELOVyAp/IIaPjNmEcsaf6jlNiNNau+kIIwHp0a0aE8xq94I6fg784lKMKWhcXnB5bRhH0/cCTX xkd4sARYxwBmPuMbWi632misKMZiNZmX9xxaAqBAQHLBBp6ZgzEdofpJNHFK/CjayjdbbVEF/uEFfi6Fa6WELOVyAp/IIaPjNmEcsaf6jlNiNNau+kIIwHp0a0aE8xq94I6fg784lKMKWhcXnB5bRhH0/cCTX JXoEaLocc0WCKUZBiWjxqMnxIWRERml7s+e7plkv32d8ofeSTtAzUpmSNC9BZXNk9Kjl+zZ9XE+mz0ora4/dBp3eB2sTX00RfKHYthi1+fYXm+9Sek+9zmjQJ5MheUf08EARkvP7g0I+XWTYXl46GajeCpq2fs slqZ+AnPFKmnVSLEn8RV6LYUaaoCDAkjr3PlfvP9ochm+q0+/GiSZl9/p/NVsz/JltPTm+Bd8FJTbhqx5QYb0W+GcQ== suraj@rathi

AC-18 (Wireless Access)

Implementation	Demonstration Strategy	Information Protected	Threat mitigated
The on-board router em- ploys WPA2 PSK encryp- tion, and uses a strong pass- word, and the SSID is not broadcast.	Observe that encryption is enabled for the WiFi net- work, and that we need to manually enter the SSID to connect to it.	Bot credentials and code, telemetry data, debug information	Hackers cannot bruteforce the WiFi password, or per- form evil twin attacks.
The administrator page of the router uses a different passphrase than the net- work. (AC-18(4))	Observe that the WiFi pass- word (copy/pasted from a password manager) does not work on the router adminis- tration page.	Bot credentials and code, telemetry data, debug information	Hackers with access to the WiFi network cannot change any settings.

Figure 5. Router Administration page password(For Illustrative purposes only)

IA-3 (Device Identification and Authentication)

Implementation	Demonstration Strategy	Information Protected	Threat mitigated
Only machines with autho- rized MAC addresses are al- lowed to connect to the net- work. (AC-18(1))	Observe that a phone with the wireless credentials can- not log in to the network, while a laptop with an au- thorized MAC address can.	Bot credentials and code, telemetry data, debug information	Hackers cannot access the network unless they know team members' MAC ad- dresses as well.
Authenticated communica- tion between Tiva and NUC is established.	On connecting a rogue TIVA, the NUC throws an error and does not interact further with the TIVA.	Debug information	Hackers with physical access cannot easily replace the TIVA.

IA-5 (Authenticator Management)

Implementation	Demonstration Strategy	Information Protected	Threat mitigated
All users are required to set strong passwords while sign- ing up on the server.	The server refuses to create an account if the password is too weak.	User data	Hackers cannot bruteforce their way into user accounts.
The team lead saves pass- words and encryption keys in a password manager encrypted using a strong password.	Unlock the password man- ager and show the list of passwords saved.	User data, bot credentials and code	By not storing encryption keys in plaintext, we can prevent people with physical acceess to machines from de- crypting data.

IA-9 (Service Idenfication and Authentication)

Implementation	Demonstration Strategy	Information Protected	Threat mitigated
TLS is used to verify the au- thenticity of the server, and the NUC refuses to connect unless the server is served over HTTPS. (AC-4(4))	Notice that the server uses HTTPS, and redi- rects HTTP connections to HTTPS. Also notice that if we turn off HTTPS on the server, the NUC throws an error.	Bot telemetry, user data, bot commands	Man-in-the-middle attacks

SC-8 (Transmission Confidentiality and Integrity)

Implementation	Demonstration Strategy	Information Protected	Threat mitigated
User passwords are salted and hashed before they are stored.	Create a new dummy ac- count and observe that the database entry is salted and hashed.	User data	Someone with access to the database cannot know user passwords.

SC-13 (Cryptographic Protection)

Implementation	Demonstration Strategy	Information Protected	Threat mitigated
User data on the server is encrypted.	Observe the database con- trols to verify that encryp- tion is enabled.	User data, usage details	A rogue actor on the server cannot view the user database unless they have encryption keys.

SC-41 (Port and I/O Device Access)

Implementation	Demonstration Strategy	Information Protected	Threat mitigated
Unused I/O ports on the NUC are disabled.	Plug in a microcontroller into a disabled port, and ob- serve that it does not get detected.	Bot credentials and code, debug information	Rogue live USBs cannot be booted into.

SI-5 (Security Alerts, Advisories, and Directives)

Implementation	Demonstration Strategy	Information Protected	Threat mitigated
If the bot is idling and it detects that its GPS loca- tion has shifted far enough from its starting position, the team lead is alerted.	Push the bot away from its location for a sufficient dis- tance, and notice that the team lead gets notified.	Miscellaneous	Someone cannot physically steal the vehicle without alerting the team lead.

SI-14 (Non-Persistence)

Implementation	Demonstration Strategy	Information Protected	Threat mitigated
The NUC uses non- persistent storage for every partition accessible by www-data.	Observe that a file created in one boot does not appear once you reboot.	Bot commands, debug information	Someone with RCE on the NUC cannot make persis- tent changes to it.

SI-16 (Memory Protection)

Implementation	Demonstration Strategy	Information Protected	Threat mitigated
The NX bit is enabled in the NUC.	Run dmesg grep 'Executable Disable' and observe that protection is active. This means that NX is enabled.	Bot credentials and code, debug information, bot commands	Arbitrary shellcode cannot be executed on the NUC.

Activities 🗠 Terminat 🕈		·· • • • •
F	bolt@abhiyaan-msi: ~	Q = _ # 8
bolt@abhiyaan-msi ~ % grep flags : fpu vme d dtscp lm constant_tsc art a x est tm2 ssse3 sdbg fma cx ult cat_l2 invpcid_single c invpcid rdt_a rdseed adx sm hwp_act_window hwp_epp hwp arch_capabilities bolt@abhiyaan-msi ~ % dmesg [0.000000] NX (@xmeute bolt@abhiyaan-msi ~ %]	-m1 nx <u>/proc/cpuinfo</u> e pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm rch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes 16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm ab dp_l2 ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust b ap clflushopt clwb intel_pt sha_ni xsaveopt xsavec xgetbv1 xsaves spil lock_detect avx_vnni dtherm ida ara _pkg_req umip pku ospke waitpkg gfni vaes vpclmulqdq tme rdpid movdiri movdir64b fsrm md_clear serialize pc grep 'Execute Disable' pisable) protection: active	pbe syscall nx pdpeigb r 64 monitor d <u>s</u> cpl vmx sm m 3dnowprefetch cpuid_fa mii avx2 smep bmi2 erms t pln pts hwp hwp_notify config arch_lbr flush_l1d

2.3.2. Controls that are not implemented but would be appropriate

SC-13 (Cryptographic Protection)

Implementation	Demonstration Strategy	Information Protected	Threat mitigated
The SSD on the NUC is encrypted to prevent some- one with physical access to the system from harvesting keys.	Boot up the NUC and ob- serve that it asks for a de- cryption key.	Bot credentials and code	Someone with physical access to the NUC cannot view code and data unless they have encryption keys.

SI-7 (Software, Firmware, and Information Integrity)

Implementation	Demonstration Strategy	Information Protected	Threat mitigated
The TIVA microcontroller has Secure Boot enabled, to prevent unauthorized code from being uploaded. (SI- 7(15))	Observe that any code up- load to the TIVA fails unless it is correctly signed.	Bot credentials and code, debug information	Someone with physical access to the microcontrollers cannot upload rogue code.

2.4. Assess, Authorize

The team lead reviews the controls selected and the protections implemented, and approves them.

$2.5. \hspace{0.1 cm} \textit{Monitor}$

Kernel logs, WiFi logs, and server are continuously checked by team members, to make sure that no unauthorized access is happening.