
1

Intelligent Ground Vehicle Competition 2023

Indian Institute of Technology Madras

Team Abhiyaan

Vikram

IGVC Cyber Challenge Report

I hereby certify that the development of the vehicle, Vikram, as described in this report, is equivalent to the work
involved in a senior design course. This report has been prepared by the students of Team Abhiyaan under my

guidance.

Dr. Sathyan Subbiah
Faculty Advisor, Team Abhiyaan

Professor, Department of Mechanical Engineering
IIT Madras

Team Members

Electronics Mechanical Software

Adil Mohammed K Advait Abhijeet Kadam Aahana Hegde

Arun Krishna AMS Ananya Dhanvantri Guruprasad Aayush Agrawal

Dhaksin Prabu K Aneesh Bhandari Amar Nath Singh

Kesava Aruna Prakash R L Arvind P Keerthi Vasan M

M.R.Kaushik Hiran Neelakantan Lalit Jayanti

Niranjan A. Kartha Jayesh soni Saiharan Rajakumar

Rahul Krishma Mehta Sukriti Shukla

Soumya Ranjan Behera Mugdha Meda Suneet Swamy

Vamsi Krishna Chilakamarri Reitesh KV Raman Suraj Rathi

Saumya Mathur U.K.Arvindan

Shobhith Vadlamudi

Sudharsan Raja
*Names are hyperlinks for emails.

mailto:adilmohammed2000@outlook.com
mailto:advaita.kadam@gmail.com
mailto:hegdef123@gmail.com
mailto:arunkrish2603@gmail.com
mailto:ed21b010@smail.iitm.ac.in
mailto:aayush.agrawal2003@gmail.com
mailto:dhaksin693@gmail.com
mailto:aneeshmb02@gmail.com
mailto:amarnathsingh.iitm@gmail.com
mailto:kesavaarunaprakash@gmail.com
mailto:arvindpalanikumar@gmail.com
mailto:keerthivasan.de.villiers.17@gmail.com
mailto:mrkaushik1211@gmail.com
mailto:hiranneels03@gmail.com
mailto:jayanti.lalit@gmail.com
mailto:niranjankartha@gmail.com
mailto:Sonijayesh963@gmail.com
mailto:saiharan12@gmail.com
mailto:me20b145@smail.iitm.ac.in
mailto:ae21b038@smail.iitm.ac.in
mailto:ed20b067@smail.iitm.ac.in
mailto:beherasoumya849@gmail.com
mailto:me21b119@smail.iitm.ac.in
mailto:suneets2000@gmail.com
mailto:vamsi.ckris@gmail.com
mailto:reiteshraman@gmail.com
mailto:suraj.rathi00@gmail.com
mailto:me20b158@smail.iitm.ac.in
mailto:arvindanuk@gmail.com
mailto:shobhith.v@gmail.com
mailto:s.sudharsan.raja@gmail.com


Contents

1. The NIST RMF Process 3

1.1. Overview 3

1.1.1. Prepare 3

1.1.2. Categorize 3

1.1.3. Select 3

1.1.4. Implement 3

1.1.5. Assess 3

1.1.6. Authorize 3

1.1.7. Monitor 3

1.2. Identified Threat Concept 3

1.3. How the team applies the RMF 3

2. Applying the RMF 4

2.1. Prepare 4

2.2. Categorize 5

2.3. Select, Implement 6

2.3.1. Controls that we have implemented 6

2.3.2. Controls that are not implemented but would be appropriate 14

2.4. Assess, Authorize 14

2.5. Monitor 14



3

1. THE NIST RMF PROCESS

1.1. Overview

Security issues often come from oversight or negligence on the developers’ side. In order to prevent this to a large

extent, one could follow a comprehensive process that tries to make sure that all the boxes are checked with regard to

security, before deploying a product out into the world. The NIST RMF is such a process, in which an organization

decides the level of security risk it can tolerate, and applies protections accordingly. It prescribes the following steps:

1.1.1. Prepare

The “Prepare” step, which was newly added to the RMF in 2018, involves properly organizing the team to deal with

information security, and also clearly establishing the level of risk tolerance required. We identify the different kinds

of information processed, and decide what level of security each type of information entails, based on the priorities of

the organization.

1.1.2. Categorize

We examine of the information we identified in the Prepare step. We determine the worst-case impact that a

malicious actor could have on the system if they managed to compromise the confidentiality, integrity, or availability

of all these kinds of information.

1.1.3. Select

Once we are done with categorization, we can select appropriate controls to protect the information, and tailor them

according to our needs. We plan out how we will implement and follow-up on them. We also create a strategy for

continuously monitoring the system after the controls have been deployed.

1.1.4. Implement

After selecting appropriate controls, we implement them in our system and document it.

1.1.5. Assess

A team, ideally independent of the one that implemented the controls, is selected to determine whether the controls

are functional and meet the privacy requirements of the system. Any extra privacy concerns are also documented, and

plans are made to remedy them over time.

1.1.6. Authorize

An authorizing official considers the assessments and plans made, and determine whether they are acceptable to the

organization.

1.1.7. Monitor

We continuously monitor the deployed controls based on the strategy decided in the Select step, in order to make
sure that our controls stay functional, and no new risk factors have come up.

1.2. Identified Threat Concept

The hypothetical use-case for our bot is as a delivery robot within our institute. People could request the bot’s

services using an app, place a package inside, and ask for it to be delivered to a location within the campus. Once

that location is reached, the intended recipient could command the bot to open up, and retrieve the package.

1.3. How the team applies the RMF

As we are team of 30 college students as opposed to a large organization, we have focused more on categorizing

threats and implementations of controls, than documenting organizational risk tolerance standards.

We first came up with an architecture to implement our sevice, with information security in mind. We use two

different information systems — one is the NUC, and the other is the server which co-ordinates delivery requests. The

NUC only takes commands from the server and gives location telemetry, and has no knowledge of the user data or

delivery requests.

Next, we identified the kinds of information that we need to process.



4

2. APPLYING THE RMF

2.1. Prepare

This is the information that we need to process in order for our service to work properly:

1. Data that users provide us to register for the service (stored on the server)

• Name

• Roll number

• E-mail address

• Password used for Registration

2. Data that users provide us while using the service (stored on the server)

• Pick-up location

• Delivery location

• Recipient details

3. Telemetry data sent from the bot to the server

• Location

4. Commands sent from the server to the bot

5. Data stored on the bot required for it to function (stored on the bot)

• Source code

• GPG keys

6. Debugging information and commands (between the bot and developers in the team)

• Sensor data

• Tele-operation commands

• Remote e-stop

7. Delivery tokens for opening the bot to access delivery contents (sent to the intended recipient when the bot

reaches its destination)



5

2.2. Categorize

Kind of Informa-
tion

Confidentiality Integrity Availability Description of threat

User profile data High High Low Malicious actors might try
to harvest user information
that they may later use for
spamming or identity theft.

Usage data High Low Low We do not want to leak user
location or delivery details
as these are highly sensitive.

Bot-location-
telemetry

None Moderate Moderate We want users to know of
the bot location only when it
is currently performing a de-
livery for them, or it is close
to their location.

Bot commands Low High Moderate We do not want malicious
actors to be able to send
rogue commands to the bot,
as they may be able to take
control over it.

Bot credentials and
code

High High High Access to passphrases used
to control the bot would re-
sult in a complete takeover
of the service.

Debugging
information

Low High Moderate Debug access to the bot can
also let anyone take full con-
trol over it by tele-operating
it.

Delivery tokens High Moderate Moderate We do not want unautho-
rized people to access others’
packages



6

2.3. Select, Implement

Based on the impact that a particular kind of information has on our system, the NIST RMF recommends that we

select a particular set of controls. We then tailor each control to our specific needs.

We have selected controls based on our judgement of which ones would be the most appropriate, while also considering

their demonstrability.

2.3.1. Controls that we have implemented

AC-1 (Access Control Policy and Procedures)

Implementation Demonstration Strategy Information Protected Threat mitigated

Only current team members
are allowed to access the
code on our system. Once
someone leaves the team,
their public keys are re-
moved from the git reposito-
ries and computers used.

Observe that
~/.ssh/authorized_keys

file on the NUC only have
team members’ public
keys. Also observe that
the GitHub repositories
have only team members in
them.

Bot credentials and code,
debug information

Malicious actors with access
to ex-members’ accounts

Only people from within the
institute are authorized to
request deliveries.

Observe that the server re-
quires you to specify an in-
stitute e-mail ID when you
register.

User details, bot commands Spammers from outside the
institute trying to DoS the
service by registering rogue
accounts

Figure 1. Public keys of team members in /.ssh/authorizedkeys



7

Figure 2. Only current team members have access to Github repositories

AC-2 (Account Management)

Implementation Demonstration Strategy Information Protected Threat mitigated

Only team leads’ accounts
have ‘root‘ access on the
NUC.

Observe that only the team
leads are in the ‘sudo‘ group.

Bot credentials and code Malicious actors with access
to team members’ accounts

A separate www-data user is
used for running deployed
code. This user does not
have read access to the
source code, and has heavily
curtailed permissions. (SC-
2)

Log in as www-data and ob-
serve that this user cannot
open extra ports, read files,
etc.

Bot credentials and code,
debugging information

Someone with code execu-
tion access on the NUC now
requires privilege escalation
to do serious damage.



8

Figure 3. bolt & suraj: user accounts of team leads having sudo access

AC-4 (Information Flow Enforcement)

Implementation Demonstration Strategy Information Protected Threat mitigated

The bot refuses to con-
nect to the server unless
the connection is served over
HTTPS.

We could temporarily switch
the server to HTTP, and ob-
serve that the bot goes of-
fline. Starting it as HTTPS
makes it work again.

Bot commands, telemetry Man-in-the-middle attacks

All unused networking ports
are blocked on the NUC.

Try to run netcat as
www-data on a blocked port,
and observe that we are not
allowed to do so.

Debug information, bot cre-
dentials and code

Hackers cannot run a shell.

The www-data account on
the NUC is only allowed to
access a pre-determined set
of IP addresses. Any packets
going elsewhere are filtered
out and logged.

Try pinging an unauthorized
IP address as www-data and
observe that it fails.

Debug information, bot cre-
dentials and code

Hackers cannot send pay-
loads to the NUC.



9

AC-7 (Unsuccessful Logon Attempts)

Implementation Demonstration Strategy Information Protected Threat mitigated

Users are timed out of logins
on the server after five failed
attempts.

Perform five failed attempts
and observe that we are
locked out temporarily.

User data, usage Hackers cannot easily
brute-force the user account
passwords.

AC-12 (Session Termination)

Implementation Demonstration Strategy Information Protected Threat mitigated

All logins to the NUC time
out after five minutes of
inactivity.

Open ~/.bashrc and ob-
serve that the environment
variable TMOUT is set to 300.
Change this to 5 to demon-
strate how it works for a
timeout of 5 seconds.

Bot credentials and code,
debug information

Minimizes the risk of some-
one catching one of the team
members’ laptops unlocked
and accessing the NUC from
there.

AC-17 (Remote Access)

Implementation Demonstration Strategy Information Protected Threat mitigated

We only allow access to SSH
using public keys of suffi-
cient length.

Observe that trying to SSH
into any account on the
NUC using a password al-
ways fails. Also observe that
the authorized_keys on the
NUC have sufficiently large
keys.

Bot credentials and code,
debug information

Hackers cannot access the
NUC remotely by guessing
passwords.

Figure 4. RSA 2048 bit asymmetric public encryption key



10

AC-18 (Wireless Access)

Implementation Demonstration Strategy Information Protected Threat mitigated

The on-board router em-
ploys WPA2 PSK encryp-
tion, and uses a strong pass-
word, and the SSID is not
broadcast.

Observe that encryption is
enabled for the WiFi net-
work, and that we need to
manually enter the SSID to
connect to it.

Bot credentials and code,
telemetry data, debug
information

Hackers cannot bruteforce
the WiFi password, or per-
form evil twin attacks.

The administrator page of
the router uses a different
passphrase than the net-
work. (AC-18(4))

Observe that the WiFi pass-
word (copy/pasted from a
password manager) does not
work on the router adminis-
tration page.

Bot credentials and code,
telemetry data, debug
information

Hackers with access to the
WiFi network cannot change
any settings.

Figure 5. Router Administration page password(For Illustrative purposes only)



11

IA-3 (Device Identification and Authentication)

Implementation Demonstration Strategy Information Protected Threat mitigated

Only machines with autho-
rized MAC addresses are al-
lowed to connect to the net-
work. (AC-18(1))

Observe that a phone with
the wireless credentials can-
not log in to the network,
while a laptop with an au-
thorized MAC address can.

Bot credentials and code,
telemetry data, debug
information

Hackers cannot access the
network unless they know
team members’ MAC ad-
dresses as well.

Authenticated communica-
tion between Tiva and NUC
is established.

On connecting a rogue
TIVA, the NUC throws an
error and does not interact
further with the TIVA.

Debug information Hackers with physical ac-
cess cannot easily replace
the TIVA.

IA-5 (Authenticator Management)

Implementation Demonstration Strategy Information Protected Threat mitigated

All users are required to set
strong passwords while sign-
ing up on the server.

The server refuses to create
an account if the password is
too weak.

User data Hackers cannot bruteforce
their way into user accounts.

The team lead saves pass-
words and encryption keys
in a password manager
encrypted using a strong
password.

Unlock the password man-
ager and show the list of
passwords saved.

User data, bot credentials
and code

By not storing encryption
keys in plaintext, we can
prevent people with physical
acceess to machines from de-
crypting data.

IA-9 (Service Idenfication and Authentication)

Implementation Demonstration Strategy Information Protected Threat mitigated

TLS is used to verify the au-
thenticity of the server, and
the NUC refuses to connect
unless the server is served
over HTTPS. (AC-4(4))

Notice that the server
uses HTTPS, and redi-
rects HTTP connections to
HTTPS. Also notice that if
we turn off HTTPS on the
server, the NUC throws an
error.

Bot telemetry, user data,
bot commands

Man-in-the-middle attacks



12

SC-8 (Transmission Confidentiality and Integrity)

Implementation Demonstration Strategy Information Protected Threat mitigated

User passwords are salted
and hashed before they are
stored.

Create a new dummy ac-
count and observe that the
database entry is salted and
hashed.

User data Someone with access to the
database cannot know user
passwords.

SC-13 (Cryptographic Protection)

Implementation Demonstration Strategy Information Protected Threat mitigated

User data on the server is
encrypted.

Observe the database con-
trols to verify that encryp-
tion is enabled.

User data, usage details A rogue actor on the
server cannot view the user
database unless they have
encryption keys.

SC-41 (Port and I/O Device Access)

Implementation Demonstration Strategy Information Protected Threat mitigated

Unused I/O ports on the
NUC are disabled.

Plug in a microcontroller
into a disabled port, and ob-
serve that it does not get
detected.

Bot credentials and code,
debug information

Rogue live USBs cannot be
booted into.

SI-5 (Security Alerts, Advisories, and Directives)

Implementation Demonstration Strategy Information Protected Threat mitigated

If the bot is idling and it
detects that its GPS loca-
tion has shifted far enough
from its starting position,
the team lead is alerted.

Push the bot away from its
location for a sufficient dis-
tance, and notice that the
team lead gets notified.

Miscellaneous Someone cannot physically
steal the vehicle without
alerting the team lead.



13

SI-14 (Non-Persistence)

Implementation Demonstration Strategy Information Protected Threat mitigated

The NUC uses non-
persistent storage for
every partition accessible by
www-data.

Observe that a file created
in one boot does not appear
once you reboot.

Bot commands, debug
information

Someone with RCE on the
NUC cannot make persis-
tent changes to it.

SI-16 (Memory Protection)

Implementation Demonstration Strategy Information Protected Threat mitigated

The NX bit is enabled in the
NUC.

Run dmesg | grep

’Executable Disable’

and observe that protection
is active. This means that
NX is enabled.

Bot credentials and code,
debug information, bot
commands

Arbitrary shellcode cannot
be executed on the NUC.

Figure 6. dmesg | grep ’Execution Disable’ indicating protection: active



14

2.3.2. Controls that are not implemented but would be appropriate

SC-13 (Cryptographic Protection)

Implementation Demonstration Strategy Information Protected Threat mitigated

The SSD on the NUC is
encrypted to prevent some-
one with physical access to
the system from harvesting
keys.

Boot up the NUC and ob-
serve that it asks for a de-
cryption key.

Bot credentials and code Someone with physical ac-
cess to the NUC cannot view
code and data unless they
have encryption keys.

SI-7 (Software, Firmware, and Information Integrity)

Implementation Demonstration Strategy Information Protected Threat mitigated

The TIVA microcontroller
has Secure Boot enabled, to
prevent unauthorized code
from being uploaded. (SI-
7(15))

Observe that any code up-
load to the TIVA fails unless
it is correctly signed.

Bot credentials and code,
debug information

Someone with physical ac-
cess to the microcontrollers
cannot upload rogue code.

2.4. Assess, Authorize

The team lead reviews the controls selected and the protections implemented, and approves them.

2.5. Monitor

Kernel logs, WiFi logs, and server are continuously checked by team members, to make sure that no unauthorized

access is happening.


	The NIST RMF Process
	Overview
	Prepare
	Categorize
	Select
	Implement
	Assess
	Authorize
	Monitor

	Identified Threat Concept
	How the team applies the RMF

	Applying the RMF
	Prepare
	Categorize
	Select, Implement
	Controls that we have implemented
	Controls that are not implemented but would be appropriate

	Assess, Authorize
	Monitor


