
IGVC 2023 Self-Drive Design Report

Team: ACTor

Date: May 15, 2023

Team Captain Justin Dombecki jdombecki@ltu.edu

Members Devson Butani dbutani@ltu.edu

Adilur Choudhury achoudhur@ltu.edu

Ryan Kaddis rkaddis@ltu.edu

Austin Ramsey aramsey@ltu.edu

Faculty Advisors Nicholas Paul npaul@ltu.edu

Giuseppe “Joe” DeRose gderose@ltu.edu

ChanJin “CJ” Chung cchung@ltu.edu

Faculty Advisor Statement

I, CJ Chung, Nicholas Paul, and Joe DeRose of the Department of Math and Computer Science at Lawrence
Technological University, certify that the design and development on the ACTor research platform by the individuals
on the design team is significant and is either for-credit or equivalent to what might be awarded credit in a senior
design course.

1

1. Conduct of design process, team identification and team organization

Introduction
Our Autonomous Campus Transport (ACTor) vehicle has been a contestant in IGVC, for years. ACTor is an autonomous vehicle
research platform built on a Polaris GEM e2 base. The vehicle is equipped with a drive-by-wire system from Dataspeed, which
consists of throttle-by-wire, brake-by-wire, steer-by-wire, and shift-by-wire. Computers include a primary laptop computer with
GPU and Raspberry PI 3s. Our perception sensors are Velodyne 16-Beam 3D LIDAR, Hokuyo URG 2D LIDAR, Piksi multi
real-time kinematics GNSS, and front-facing Mako PoE camera. The vehicle is able perform IGVC self-drive tasks, like lane
following, obstacle avoidance, waypoint navigation, and object detection. This report describes the ACTor autonomous system
and the methodologies used for the system development and integration.

Major hardware and software changes from 2022 IGVC system [1] include: complete rewiring, new GPU-integrated laptop,
updates to Web UI, GPS software upgrade, YOLO-based[10] trained models for IGVC tasks (i.e. stop sign detection, tire
detection, pedestrian detection).

Team Organization
The team meets in-person at least once a week on Tuesday to set goals, discuss technologies to develop systems for the vehicle
using the incremental agile development concept. These meetings also provide a way to collaborate in creating new ideas and
divide up tasks for the upcoming week. Each member was delegated to specific tasks based on prior experiences and interest.
The team is composed of computer science students (see Table 1). Each student puts around 5 to 10 hours a week coding, testing,
documenting, maintaining, or in meetings to accomplish the tasks.

Name Degree Program Primary Responsibilities
Justin Dombecki M.S. Computer Science Lua engine (Core), Web interface, GPS & Waypoint control, Camera sensing and image

republishing, Lane detection, lane centering & keeping, Drive By Wire System
Devson Butani M. S. Computer Science Mechanical & electrical systems, Re-wiring, eStop, Yolo-based stop sign & pedestrian

detection
Adilur Choudhury B.S. Computer Science Yolo-based tire detection; Pedestrian detection, Pothole detection & avoidance; LED

display system

Ryan Kaddis B.S. Computer Science Turns, Tire & pothole detection and avoidance

Austin Ramsey M. S. Computer Science LiDAR based obstacle detection and avoidance; Parking

Table 1: Team members and roles

Design Assumptions and design process
(1) Highest priority is to meet user requirements through early, continuous and incremental delivery of working software. (2) We
are able to adapt to changes in requirements. (3) Deliver working software frequently. (4) In-person interaction is an efficient
and effective method for sharing information within a team. (5) Progress is measured by working software. (6) Simplicity, the art
of maximizing the amount of work not done, is essential.

2. EFFECTIVE INNOVATIONS IN ACTOR DESIGN

Innovative technology applied to ACTor
The ACTor project is a research environment for students interested in autonomous software development. The project was
designed to be modular, incremental, and dynamic meaning that software modules are easy to switch out, add, or remove
allowing rapid prototyping and development. Testing results show that the ACTor vehicle is capable of performing IGVC
Self-Drive challenges. The design spawned several research projects involving software engineering, machine vision, and deep
learning. Innovations we achieved include:

● Lua script language to specify vehicle behaviors in high level
● Human and object detection using Yolo v8
● Research into lane following alternative using deep learning

2

● Extension of Gazelle Sim, a lightweight 2D simulator

This year, we consolidated all our individual components that were previously distributed in different electrical enclosures
around the vehicle into a single custom dashboard, see Figure 1. These components have shown their reliability and durability
through several iterations of development, and are now integrated into the vehicle as permanent parts rather than temporary test
units.

Figure 1: Major electronics moved under a custom Dashboard

For ease of use, the main laptop (detachable) is on a swivel arm attached to the frame with 3D printed mounts, see Figure 2. It
can be operated by the passenger or the driver safely and comfortably. Since the vehicle has no air conditioning, the arm also
allows it to swing outside for debugging or demonstration.

Figure 2: Laptop swivel arm

3. Description of Mechanical Design

Overview
ACTor is a modified Polaris Gem e2 jointly sponsored by MOBIS, DENSO, Veoneer, Realtime Technologies, Dataspeed, and

3

SoarTech. It has a drive by wire system,
developed and installed by Dataspeed
Inc., for autonomous driving. The vehicle
has outdoor-rated sensors. Other electrical
components are inside the vehicle and
mounted securely. Since the vehicle can
handle common paved surfaces and up to
30% grade, the suspension is kept stock to
the factory design, using MacPherson
struts on the front and independent trailing
arms for the rear Figure 3 shows the
ACTor 1 vehicle with its hardware
components. Figure 3: ACTor components on the outside

Item Price
Polaris GEM e2 vehicle with various options such as doors and trunk $15,000.00

New Polaris GEM ADAS Systems (Drive-By-Wire systems by Dataspeed) including installation fee $35,000.00

Intel NUC Mini PC kit NUC7i5BNH Core i5 $543.00

Velodyne VLP-16 “PUCK” 3D LiDAR, 16 beams $7,999.00

Hokuyo UTM-30LX 2D LiDAR $6,500

Hokuyo URG-04LX-UG01 LiDAR $975

Swift GPS, Piksi Multi GNSS $1,644.56

Additional rover module and antenna to get GPS heading info $896.00

Mako PoE Camera $1,031.00

MSI Gaming Laptop, Intel 8-Core i7-11800H, 16GB RAM, 512GB SSD, GeForce RTX 3050 Ti 4GB $1,258.99

Miscellaneous items including lenses & filters, e-stop switches, wireless e-stop, LED strobe lights, cabin camera, RPIs, inverters,
switches, router, mounting rack, and LED panel, etc. $3,000.00

Total $73,847.55
Table 2: Estimated cost of ACTor vehicle

Description of drive-by-wire kit
The Polaris Gem e2 has a top speed of 20 mph and a range of 20 miles. However, while under autonomous mode we enforce
lower speed limits using the DatasSpeed ADAS Development
Vehicle Kit via ROS. This drive-by-wire (DBW) kit allows the
vehicle to be driven using native or electrically controlled
interfaces with ROS. The Universal Lateral/Longitudinal
Controller (ULC) modulates the native accelerator/brake pedals,
steering wheel and gear selection systems to achieve the desired
linear and angular velocity targets for the vehicle. We use the
default parameters of the ULC, which have a velocity dependent
linear acceleration limit (0.9 - 1.2 m/s2) and a constant
deceleration target of 1.5 m/s2. Figure 4 shows the linear
velocity response with the default acceleration limits for the 5.2
mi/hr speed limit test. The Dataspeed ULC uses a
geometery_msgs/twist ROS message with extra parameters to
adjust the vehicle behavior, such as acceleration limits. This
interface made it easy to connect the DBW system to the
vehicle’s ROS environment.

Figure 4: Dataspeed ULC linear velocity control
example

4

Weather proofing

The stock Polaris Gem e2 has weather-sealed doors and body. All of the external mounted sensors (roof, front/rear bumper, etc.)
are outdoor-rated. These sensors are connected to the in-vehicle components through a common weather-sealed conduit between
the window and body, which is behind the passenger seat.

4. DESCRIPTION OF ELECTRICAL AND POWER DESIGN

Overview
The ACTor vehicle is
powered by the stock
Polaris Gem e2 batteries.
They power three
systems: native vehicle
circuits, a 1kW DC-AC
inverter and the
DataSpeed Power
Distribution System
(PDS). Figure 5 shows
how the computers and
sensors are powered
from these three
systems.

Figure 5: Vehicle, sensor, and components power distribution

Power distribution system (cacacity, max. run time, recharge rate, additional innovative concepts)
The factory-installed batteries take 6-8 hours to charge fully and provide 20 miles of range (while using all autonomous
electronics). The DataSpeed PDS protects components from overload and offers control of all the circuits via a touchscreen
interface or the CAN bus. Some of the power efficiency losses come from the 1kW inverter (92% eff.) and DC to DC converters
(92-96% eff.) adding upto 800W that supply a range of voltages to individual components.

Electronic suite description including CPU and sensors system integration/feedback concepts
The vehicle's components are controlled by a laptop (Intel 8-Core i7-11800H, 16GB RAM, 512GB SSD, GeForce RTX 3050 Ti
4GB VRAM) that runs Ubuntu. This laptop also runs our route scripting tools and performs object detection and sensor fusion
using the camera and LiDAR. These sensors enable high-accuracy real-time detection and 3D positioning of pedestrians and
obstacles. The laptop's discrete GPU allows us to use deep-learning models such as our alternative lane-following system and
Yolo v8 based detection algorithms. We also use Raspberry Pi 3s for hardware e-stop, remote e-stop, safety and status lights, and
an LED panel to display status information outside the vehicle.

Our vision system consists of an Allied Vision Mako G-319C [2] PoE camera mounted beside the rear-view mirror. It captures
2064 × 1544 images using a 6mm 1stVision LE-MV3-0618-1 lens [3] at 1.8 full stops and a 50 degrees field of view. This allows
us to capture the lanes and detect road signs up to 30 feet away. We also use a circular polarizing filter to reduce reflections from
the road, other cars and inside our car. A Velodyne VLP-16 "Puck" LIDAR [4] donated by Veoneer provides 360 x 15 degrees of
field of view with a radius of 100 meters. It outputs 300,000 points per second across its 16 channels. We also use Hokuyo
URG-04LX-UG01 [5], a small two-dimensional lidar with 4 meters of range, mounted on the front and the back. It helps us
detect immediate obstacles of significant size like tires, cones and curbs. These 3 lidars also assist us during parking operations.

To navigate, the vehicle uses two Piksi Multi Modules [6], which are RTK GNSS receivers that can access multiple bands and
constellations. These modules provide position and heading data with centimeter-level accuracy and high update rates. This is
ideal for a moving vehicle that needs to cover large distances in a short time.

We use Ethernet connections for most of the components to ensure reliability and ease of debugging in a noisy electrical

5

environment.

This networked architecture
also allows remote access for
testing and monitoring
purposes. The only
components that do not use
Ethernet are the 2D lidars, the
cabin webcam, and the USB
CAN interface to the DBW
system. The vehicle will
automatically activate an
emergency stop if it detects
any failure in the DBW
connection. Figure 6 shows
the wiring schema of the
ACTor vehicle.

Figure 6: Data connections (Solid lines - physical cable connections, Dashed lines - wireless
communication)

Safety devices and their integration into your system
The emergency stop system consists of two parts. The first part is a loop circuit that connects all the E-stop buttons to a
Raspberry Pi. If any button is pressed, the circuit will break, and the Pi will send an E-stop message to the main computer via
Ethernet. The main computer will then safely halt the vehicle. The second part is a heartbeat mechanism that requires constant
communication between the main computer and the Pi to enable any interaction with the DBW. Additionally, the Pi controls
warning lights on top of the vehicle that flash when the vehicle is in autonomous mode. This dual safety system ensures that all
critical components are functioning properly before allowing autonomous driving.

5. Description of software strategy and mapping techniques

Overview
As the primary function of the ACTor vehicle is for enabling research, the ACTor software architecture requires the ability to
onboarding new students quickly and allow them to integrate their ideas simply. Using the distributed and modular software
design principles of the Robot Operating System (ROS) [7], our software design should enable quick development cycles by
allowing its inputs and outputs to be
interchangeable. With these
requirements in mind, our software
can be quickly tested and allows for
smooth implementation of new
hardware and software.

The system architecture is distributed
into packages: sensors, input
processing, route input, route system
and web API. Figure 7 shows a high
level overview of the contents of these
packages.

Figure 7: Basic data flow through core packages

6

Obstacle detection and avoidance

Obstacle Detection and Resolution
The obstacle avoidance package currently uses input from the VLP-16.
Using built in functionality, ground and obstacle PointClouds are
generated from the VLP-16’s input.
The current implementation of the obstacle avoidance algorithm checks
regions defined by parameters as shown in Figure 8. These regions are
published to the route system, which determines the action to be taken.
If an obstacle is within an emergency region, the vehicle will halt. If it is
far ahead in the road, it may execute an avoidance maneuver or halt
depending on the scenario. The obstacle detection node allows for
detection of objects in arbitrarily defined spaces. This allows different
events to occur based on which detection region the object is in.

Figure 8: How to define detection region

Pedestrian Detection
To locate humans, we employ a very effective deep neural network model
Yolo v8 that has been pre-trained on the large COCO dataset and can
recognize a “person”. With the help of the discrete GPU on the main
computer, it can swiftly and precisely detect any person in the image, and
we combine this information with our LiDAR data to obtain a labeled and
highly accurate 3D positioning of pedestrians. This allows us to determine
their location and enable basic interactions, such as stopping, avoidance or
lane changing. Figure 9 shows an example of the Yolo v8 person detection
on a rainy day.

Figure 9: An example of detecting people

Sign Detection
Our previous algorithm used
color filtering and HAAR
classifiers to detect signs based
on shape and color. We trained
the HAAR classifiers with
thousands of images of stop
signs. The algorithm was fast and
worked in different environments.
However, it also detected
anything else that had a similar
shape and color to a stop sign (eg:
red car at a distance). There were
many false positives and false
negatives including fake stop
signs that did not say “stop”
explicitly.

Figure 10: HAAR Cascade v/s Yolo v8 Detecting stop signs in various conditions

We developed a new deep neural network to detect stop signs using Yolo v8 and a custom dataset with more than 3600 images.
Our new model can detect stop signs in various conditions such as clear, obstructed, vandalized or fake. It can also distinguish
fake stop signs from real ones that are in poor conditions as shown in the figure above. Using our laptop GPU and clear images
from the Mako camera, we can achieve fast detection speeds (120ms interval, roughly 1 feet of travel at 5mph) while reducing
false positives and identifying fake signs. This new Yolo v8 architecture also allows us to add more road signs if necessary in the
future. Figure 10 shows a comparison between our previous algorithm and the new Yolo v8 solution given certain use cases.

7

Pothole and Tire Detection & Lane Change
Pothole detection is accomplished through color filtering to isolate the pothole
in the frame. The pothole – and everything else within the color range – is
depicted as a white mask, and the rest of the image is shown as a black
background. If the mask covers a sufficient portion of the frame region, then the
vehicle will execute the lane following algorithm.

Tire detection is accomplished using YOLO v8 object detection. The YOLO v8
tire model is responsible for finding tires using the AVT Mako camera. When
the tire is detected by the camera with a high confidence level (see Figure 11)
and is within a close range from the vehicle, the lane changing program will be
triggered. Lane changing uses dead reckoning to turn for a certain amount of
time and reactivates the lane following algorithm afterwards.

Lane Following
Figure 11. Tire Detection Examples

Lane following consists of two
functions: lane detection and
centering within a lane. Both
of these are handled by a
single node called ‘blob’.
Figure 14 shows the steps of
the lane detection algorithm
[8].

Figure 14: Lane detection filtering process

Using OpenCV functions (i.e. Canny edge detection, blurring. dilation), the second image is generated, which highlights the
edges of the initial input image. Next, applying a Hough transform determines lines from the edges.

Those lines are filtered by their angle, only 45 degrees
of vertical are accepted. The remaining lines are
extended in length to produce the final ‘blob’ lane mask.
Lane centering uses the ‘blob’ lane mask image to
generate springs that will push and pull the vehicle to
the center of the lane. In Figure 15, a fan of probes is
sent from the front center of the vehicle (i.e. red dot) to
find the Hough lines, creating springs at the
intersections. The length of each spring determines its
force and impact on centering the vehicle in the lane. Figure 15: Rays are generated from the vehicle. Springs are

created, where the ray intersects a Hough line.

Denoting the front center of the vehicle as CV and the center of the lane as CL, the goal of the lane centering algorithm is to
minimize the distance between CV and CL. The generated springs together attempt to achieve an equilibrium by pushing CV

toward CL at shorter springs lengths, and pulling CV toward CL at longer lengths. The horizontal component of these combined
forces is the steering input to the vehicle. Figure 16 shows these terms in context to the vehicle within a lane, while Figure 17
shows the representation within the ‘blob’ node.

Figure 16: Lane centering reduces the distance between the
front center of the vehicle CV and the center of the lane CL.

Figure 17: Springs with the shorter lengths push CV

toward CL, while springs with longer lengths pull.

8

Software strategy and path planning

Sensors
The sensors package contains publisher nodes and configuration files for each sensor (e.g. GPS, LiDAR, camera). Each sensor
node translates raw data into ROS messages and publishes them on ROS topics, which creates a higher level abstraction for the
vehicle routing system. Integrating new sensor hardware or software is simple, given that the new nodes publish to the existing
ROS topics used by the router. Specific to the LiDAR, there are actually two nodes that manage this sensor type, as a pair of
front and rear Hokuyo URG two-dimensional LiDARs are used for tasks, where the Velodyne unit (mounted on the roof) is not
able to make the necessary detections.

GPS
Using a two antenna Piksi Multi GNSS configuration, ACTor is capable of high precision position and heading accuracy using
SBAS. With an optional base station, a RTK fix can be achieved for even better accuracy. Our ROS nodes use positional
coordinates (latitude & longitude in the ECEF format), inertial measurement units (IMU) and heading info (NED - north east
down). This GPS data is used to calculate the distance from a static waypoint. For example, in the merging task, a waypoint is set
at the point at which the lanes diverge, indicating to ACTor when to begin turning into the correct lane. This year required the
upgrade of this Piksi software to the latest supporting ROS version 1, which moved from a Python to a C++ node. As such, many
of the topics and message types required reimplementation. For additional debugging, the positional and heading information has
been added to the Web UI.

Input Processing
The input processing package performs data transforms on specific topics before forwarding to the route input package. Used
specifically for the camera, the package applies algorithms (filters) to the image data to control white balance, gaussian blur, and
other options from OpenCV, which provides more normalized inputs into the routing package.

Route Input
The route input package acts like a switchboard operator for the vehicle route system. Used mainly for image processing, this
middleware between sensors and routing may be extended to process a sensor fusion for any specific task. The routing package is
able to subscribe and unsubscribe from each task-specific node, thereby only running those nodes required for a task. As many
nodes are resource intensive, this pattern reduces computational overhead on the system. This route input package is applied in
the following use cases: lane centering (“blob”), obstacle maps (avoidance & emergency monitoring), objection detection (stop
sign, one way sign, stop line, pothole), waypoint follow and parking maneuvers. These nodes can even be combined together to
accomplish the necessary tasks.

Route System & Lua Scripting
ACTor is a frequent competitor at IGVC Spec2/Self-Drive. For many years, our team has used the Lua scripting language to
create a routing abstraction, which has negated much of our code compilation overhead [9]. During competition, this allows the
team to focus on detection and routing tasks, and not waiting on the code to compile. The Lua scripting abstraction is within the
‘Router’ node, shown in Figure 12, which outputs a Twist message to the ACTor Drive-by-Wire system within ROS.
To determine the correct Twist message, the
router will receive the Sensor data streams and
-- either use Lua scripting override instructions
-- or forward instructions provided by our
navigation nodes. As our Lua functions are
capable of reading/publishing ROS std_msgs,
we are able to build up methods of abstraction,
send ROS topics directly, or set preconditions
for other instructions to execute. Our system is
centered around the router, its primary goal is
to feed the route script as much data as
possible.

Figure 12: Implementation of Router Server

9

Web API
Lua scripting can be developed
within a Web Application, which is
hosted on the main computer. This
Web UI is configurable using React
and Node JavaScript frameworks
along with Bootstrap CSS. These
frameworks have allowed the team
to customize the page, at-will,
which provides debugging insights
-- such as a live feed of the lane
centering ‘blob’ node and GPS
coordinates. The ACTor vehicle
receives Lua route instructions
from an editable text field on the
Web App which uses predefined
functions in the ‘Router’ node.
Figure 13 shows an example of the
web interface. Figure 13: Web interface example

Map generation
A map is generated when a particular function requires the use of a GPS waypoint, allowing the user to see the current vehicle
location relative to waypoints. However, most of the path planning is done within the Web UI particular to the function at task.

Goal selection and path generation
The Web UI is used to create a path plan given the required task. The follow_lanes() function allows the team to use the ‘blob’
node, ensuring the vehicle stays on course. The dist_from_waypoint() function provides understanding about the vehicle’s
position on the course. Functions like look_for_stop_sign() and distance_from_object() allow the team to set up real-time
control flow, given the current driving conditions. Combining these functions, and writing others during the competition, allow
the team to maintain flexibility around course conditions and the particularities of each task.

Additional creative concepts
Parking
IGVC requires three parking tasks: Pull In, Pull Out, and Parallel Park. The Pull In task demands that the ACTor drive straight
down a lane and then efficiently turn into a parking spot from the furthest lane. This is accomplished using distance commands
based on GPS heading info. The Pull Out task demands that the ACTor pull out of the aforementioned parking spot, turn onto the
given outside avenue, and continue until close to a barrel. The movement is achieved using distance commands, but barrel
detection is achieved using a 2D LIDAR. The Parallel Parking task requires that the ACTor successfully parallel park without
crossing certain boundaries, which represent real-life barriers and objects. This is accomplished using distance commands as
well.

LED Panel System
ROS River is a LED Panel System that shows the user information about the ROS
system on a LED display (See Figure 18). It runs on a Raspberry PI 3B that is
connected to the main computer’s ROS stack via ethernet. The display can be scaled
to any size using the WS2812B LEDs. ROS River subscribes to some ROS topics and
displays the data accordingly. For example, it can display the data from the topic
“display/text” directly or it can also run in “auto” mode that displays information
from the topic “rosout” based on the ROS core’s status. The ROS core is responsible
for communicating the vehicle’s state and objective to people outside the vehicle. The
LED system helps people to understand the vehicle’s current situation & potential
issues. Without the display, only the people inside the vehicle would have this info. Figure 18: LED Panel system “River”

10

6. Description of failure modes, failure points and resolutions

Vehicle failure modes (software, mapping, etc) and resolutions
Table 3 summarizes each failure mode with risk level and description how to resolve.

Failure Mode Type Risk Resolution
Camera is unable to
determine lane lines

Software Medium Verify camera calibration before runs

A ROS node crashes Software Medium Depending on which node crashes one of two things will happen:
1. Non-critical: The node is automatically relaunched by the system
2. Critical: The primary computer issues a stop command within 200ms

Invalid actions or routes
are received.

Software Low Navigation immediately enters a paused state and halts route execution.

Estopped Software Low Enable DBW system

Table 3: Vehicle failure modes

Vehicle failure points (electronic, electrical, mechanical, structural, etc) and resolutions
Table 4 summarizes each failure point with risk level and description how to resolve.

Failure Point Type Risk Resolution
Loss of Power Hardware Very Low Autonomous mode is automatically deactivated and the safety driver takes control.

Primary computer (powered by battery) reports error.
Switch or Network
Malfunction

Hardware Low Primary computer is unable to contact the external safety monitor and issues an E-Stop
command within 200ms.

Inverter Malfunction Hardware Low Primary computer is unable to contact the external safety monitor due to loss of power
and issues an E-Stop command within 200ms.

Raspberry Pi (Safety
Monitor) malfunction

Hardware Low Primary computer detects irregularity in external safety monitor and issues E-Stop
command within 200ms.

E-Stop malfunction Hardware Very Low E-stop requires an active signal, if interrupted, the vehicle executes stop command
within 200ms.

Camera Malfunction Hardware Low Computer displays disconnection error. If needed, the driver may E-Stop the vehicle.
Lidar Malfunction Hardware Low Computer displays disconnection error. If needed, the driver may E-Stop the vehicle.
GPS Malfunction Hardware Low Computer displays disconnection error. If needed, the driver may E-Stop the vehicle.

Table 4: Vehicle failure points

All failure prevention strategy
A Raspberry Pi acts as an external "emergency monitor" (EM) that oversees the safety measures of ACTor's hardware and
software. The EM is connected to the ROS network and acts as a mediator between the ACTor software and the vehicle. The
ACTor software cannot directly control the vehicle, but has to send a motion command to the EM, which checks if the command
is within the limits of max speed, max turn radius, etc. and then passes it to the vehicle through the "host" node (see Figure 19).
The EM also monitors the lidar node and the E-Stop
subsystem for any emergency signals and stops the vehicle
immediately if any are detected. To prevent failures of the EM
and the E-Stop, additional precautions were taken. The host
node will issue a blocking stop command within 200ms if the
EM loses power, disconnects from the network, or sends
invalid data. The E-Stop subsystem requires an active external
hardware signal, so any malfunction will also trigger a stop
command within 200ms. A safety light is attached to the
vehicle and flashes when the vehicle is in autonomous mode.

Figure 19: Emergency Monitor for Safety

11

With minimal latency, the vehicle stops after an
eStop event is triggered. Figure 20 shows how the
vehicle speed changes during an eStop event. In
this example, the target deceleration was set to 1.5
m/s2 and the vehicle was moving at 5 mi/hr before
the event. However, because of some delays in the
feedback system, the actual deceleration was
around 0.75 m/s2 on average.

Figure 20 - An eStop event triggered at 36 seconds, complete
stop at 39 seconds

Testing (mechanical, electrical, simulations, in lab, real world, etc.)
As the EM is an integral part of the ACTor system, this mechanism must be in place for the system to function. As such, the
emergency monitoring system is tested in the real world each time the team tests a function or integrates a new node.

Vehicle safety design concepts
The EM is the main safety feature for software and hardware failure scenarios. In addition, 2D LiDARs have been mounted on
the front and rear bumper. Implemented for use in parallel parking, these can be used for further vehicle safety, by invoking the
estop if a minimum distance threshold is exceeded in the front or rear of the vehicle.

7. SIMULATIONS EMPLOYED

Simulations in virtual environment
The team completed multiple simulation investigations using GazelleSim, a LTU developed ROS simulation package that
supports kinematic models of akermann steer or differential steer robots, a pinhole camera model, an ideal lidar model and GPS
tracking model. The ground plane is supplied to the simulation environment as an image and circular and rectangular
obstructions may be added to simulate approximated lidar directions. Obstructions were added to the simulation environment to
represent barrels, pedestrians and stop signs. Multiple software algorithms were tested by simulating the vehicle behavior on the
IGVC and LTU campus course models. This was done to minimize the physical testing required to validate the system
performance.

8. PERFORMANCE TESTING TO DATE

Component testing, system and subsystem testing,
etc.
The software architecture is modular (see Software Systems
section), which allows testing each function (node) separately or
in combination with others. The nodes undergo rigorous
integration testing during development and on the field. The
vehicle is tested on specific situations for integration tests. At the
time of publication, most of the nodes have been tested thoroughly
and several integration tests have been completed. The tests of
most IGVC functions were performed on a test course created at
LTU campus shown in Figure 21. The vehicle's mechanical,
electrical, and physical hardware have no major performance
issues so far. Figure 21: Test course at LTU

12

9. INITIAL PERFORMANCE ASSESSMENTS

How is ACTor performing to date?
The team is able to test many of the IGVC functions on our test course at LTU. Table 5 shows the status of each qualification,
machine vision, traffic sign, intersection, parking, VRU, curved road and other tests.

Qualification Tests
Complete - Q.1: E-Stop Manual
Complete - Q.2: E-Stop Wireless
Complete - Q.3: Lane Keeping (Go Straight)
Complete - Q.4: Left Turn
Complete - Q.2: Q.5: Right Turn

Machine Vision Tests
Complete - FI.1: White Line Detection
Complete - FI.2: Static Pedestrian Detection (Vision)
Complete - FI.3: Tire Detection

Traffic Sign Tests
Testing - FII.1: Stop Sign Detection

Intersection Tests
Complete - FIII.1: Lane Keeping
Complete - FIII.2: Left Turn
Complete - FIII.3: Right Turn

Parking Tests
Complete - FIV.1: Parking. Pull Out
Complete - FIV.2: Parking. Pull In
Complete - FIV.3: Parking. Parallel

VRU Tests
Testing - FV.1: Unobstructed STATIC pedestrian detection
Testing - FV.2: Obstructed DYNAMIC pedestrian detection
Testing - FV.3: STATIC pedestrian detection. Lane changing
Testing - FV.4: Obstacle detection. Lane change

Curve Road Tests
Complete - FVI.1: Lane Keeping
Testing - FVI.2: Lane Changing

Other Tests
Testing - FVII.1: Pothole Detection
Complete - FVII.2: Merging

Simple Main
Planning - Simple Main

Table 5: Status of each IGVC function on design report submission date. (Planning, Developing, Testing, Complete)

10. UNIT TESTING RESULTS
The mandatory unit tests have been tested at the LTU test course. The following details the results of those tests.

Unit Test 1: Emergency Stop
Referring to Figure 22 -- around 69.32 seconds, the E-Stop is triggered above the driver door of ACTor. At 71.50 seconds, the
vehicle came to a complete stop. That is
2.18 seconds from E-Stop initialization to
a complete stop.

Unit Test 2: Emergency Stop
remote
Referring to Figure 23 -- around 13.00
seconds, the remote E-Stop is triggered.
At 15.76 seconds, the vehicle came to a
complete stop. That is 2.76 seconds from
remote E-Stop initialization to a complete
stop

Figure 22: Emergency Stop unit test Figure 23: Emergency Stop remote unit
test

Unit Test 3: Speed limit test

3 mph (1.34 mps): Referring to Figure
24 -- setting the speed limit to 3 mph
(1.34 mps), the vehicle starts
accelerating at 18.54 seconds and
reaches the target speed at 22.42
seconds. That is 3.88 seconds to
accelerate from 0 to 1.34 mps.

5.2 mph (2.28 mps): Referring to Figure
25 -- setting the speed limit to 5.2 mph
(2.28 mps), the vehicle starts
accelerating at 24.27 seconds and
reaches the target speed at 32.84
seconds. That is 8.57 seconds to
accelerate from 0 to 2.28 mps.

6.0 mph (2.68 mps): Referring to Figure
26 -- setting the speed limit to 5.0 mph
(2.68 mps), the vehicle starts
accelerating at 12.80 seconds and
reaches the target speed at 17.28
seconds. That is 4.48 seconds to
accelerate from 0 to 2.68 mps.

13

Figure 24: 3 mph speed limit unit test Figure 25: 5.2 mph speed limit unit test Figure 26: 6 mph speed limit unit test

Unit Test 4: Right Lane boundary is crossed
Referring to Figure 27 & 28 -- around
61.78 seconds, the remote E-Stop is
triggered. At 64.02 seconds, the
vehicle came to a complete stop. That
is 2.24 seconds from remote E-Stop
initialization to a complete stop during
a right turn.

Figure 27: right boundary unit test (speed
vs time)

Figure 28: right boundary unit test
(lateral speed vs time)

Unit Test 5: Left Lane boundary is crossed
Referring to Figure 29 & 30 -- around
91.00 seconds, the remote E-Stop is
triggered. At 93.16 seconds, the
vehicle came to a complete stop. That
is 2.16 seconds from remote E-Stop
initialization to a complete stop
during a left turn.

Figure 29: left boundary unit test (speed
vs time)

Figure 30: left boundary unit test
(lateral speed vs time)

Unit Test 6: Object detection
Referring to Figure 31 & 32 -- around 26.24
seconds, the vehicle recognizes the object is
within the set safe distance of 4.5 meters. The
vehicle begins to brake. At 28.44 seconds, the
vehicle came to a complete stop. That is 2.20
seconds from recognizing an object in front of
the vehicle to a complete stop at a safe distance
of 2.9 meters.

Figure 31: object detection stop unit
test (speed vs time)

Figure 32: object detection stop unit
test (speed vs distance)

14

Unit Test 7: Backing up operation

1 mph (0.44 mps): Referring to Figure
33 -- setting the reverse speed limit to 1
mph (0.44 mps), the vehicle starts
accelerating at 5.28 seconds and
reaches the target speed at 10.30
seconds. That is 5.02 seconds to
accelerate from 0 to 0.44 mps, in
reverse. The vehicle continues to
accelerate to find equilibrium for an
average velocity at 0.44 mps.

2 mph (0.89 mps): Referring to Figure
34 -- setting the speed limit to 2 mph
(0.89 mps), the vehicle starts
accelerating at 84.94 seconds and
reaches the target speed at 88.48
seconds. That is 3.54 seconds to
accelerate from 0 to 0.89 mps, in
reverse. The vehicle continues to
accelerate to find equilibrium for an
average velocity at 0.89 mps.

3 mph (1.34 mps): Referring to Figure
35 -- setting the speed limit to 3 mph
(1.34 mps), the vehicle starts
accelerating at 25.32 seconds and
reaches the target speed at 29.24
seconds. That is 3.92 seconds to
accelerate from 0 to 1.34 mps, in
reverse. The vehicle continues to
accelerate to find equilibrium for an
average velocity at 1.34 mps.

Figure 33: 1 mph reverse speed limit
unit test

Figure 34: 2 mph reverse speed limit
unit test

Figure 35: 3 mph reverse speed limit
unit test

REFERENCES
[1] 2022 Self-Drive Design Report, http://www.igvc.org/design/2022/27.pdf, accessed 05-15-23
[2] Mako g-319, accessed 05-15-31, https://www.edmundoptics.com/p/allied-vision-mako-g-319-1-18-inch-color-cmos-camera/33094
[3] 1st vision 1” 2 to 3 megapixel oem lens series, https://www.1stvision.com/lens/spec/1stVision/LE-MV3-0618-1, accessed 5-13-21
[4] Velodyne puck, https://velodynelidar.com/products/puck/, accessed 05-15-2023
[5] URG-04LX-UG01, https://hokuyo-usa.com/products/lidar-obstacle-detection/urg-04lx-ug01, accessed 05-15-23
[6] Swift navigation piksi multi gnss, https://www.swiftnav.com/piksi-multi, accessed 05-15-2023
[7] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating system,”

in ICRA workshop on open source software, vol.3, no. 3.2. Kobe, 2009, p. 5.
[8] Paul, N., Pleune, M., Chung, C., Faulkner, C., Warrick, B., Bleicher, S., A Practical, Modular, and Adaptable Autonomous Vehicle

Research Platform, IEEE International Conference on Electro Information Technology 2018
[9] Mitchell Pleune, Nicholas Paul, Charles Faulkner, C. J. Chung, Specifying Route Behaviors of Self-Driving Vehicles in ROS Using Lua

Scripting Language with Web Interface, 2020 IEEE International Conference on Electro/Information Technology
[10] Redmon, Joseph et al. "YOLOv3: An Incremental Improvement". arXiv. (2018)

15

http://www.igvc.org/design/2022/27.pdf
https://www.edmundoptics.com/p/allied-vision-mako-g-319-1-18-inch-color-cmos-camera/33094
https://www.1stvision.com/lens/spec/1stVision/LE-MV3-0618-1
https://velodynelidar.com/products/puck/
https://hokuyo-usa.com/products/lidar-obstacle-detection/urg-04lx-ug01
https://www.swiftnav.com/piksi-multi

