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Introduction
Team AutoZ is an undergraduate student team from VIT, Vellore. We focus our work on autonomous
technologies and in the field of robotics. Our end goal is to create an autonomous mobile robot that can be
retrofitted with different sensors and actuators as per the application such as Delivery, Agriculture, Mine
exploration etc.
Organization

The team comprises undergraduate students under the guidance of our faculy advisor Prof. Denis Ashok.
The members are part of 4 working groups; Mechanical, Electronics & Electrical, Software and Social
Media.

Role Name Domain (s) Major

Captain Shashank M Electronics ECE

Vice Captain Nadheem Nasser Mechanical MECH

Embedded Systems Lead Akash KS Electronics EEE

Autonomous Software Lead Deepesh P Electronics, Computer Sc ECE

Design Lead Hariharan Mechanical MECH

Manufacturing Lead Nandakishore Mechanical MECH

Social Media Lead Harikrishna Social Media CSE

Machine Learning Lead Karthik Computer Sc CSE

PCB Design Lead Sahishnu Raju K Electronics ECE

Power Electronics Lead Gokul Krishna Electronics EEE

Embedded Systems Rahul Electronics ECE

Software Hemanth Computer Sc ECE

PCB Arsalan Electronics ECE

Safety systems Manan Electronics CSE

Social Media Chaitanya Social Media ECE

Social Media Arya Social Media CSE

Safety Systems Asmi Electronics EEE

Software Yashas Computer Sc CSE

Mechanical Umar Mechanical MECH

Mechanical Harinarayan Mechanical MECH

Mechanical Dhanush Mechanical MECH

Computer Vision Prabhav Computer Sc IT

Mechanical Bhuvan Mechanical MECH

Embedded systems Kashish Electronics ECE

Signal Processing Satvik Electronics ECE

Table 1. Team Composition and Roles
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Design Assumptions and Design Process

Along with adhering to the IGVC Rules and Regulations we emphasized on engineering a bot
that is modular with easy disassembly and reassembling capability. During the design and
prototyping phase we relied on rapid prototyping and testing to reach an effective solution.

Figure 1. Design Process
Cost Estimate

The cost of the robot has been split into two parts. The first column represents the Retail Price of
the component. The second column represents the cost to the team for the year. Sponsorships and
previously used components helped us significantly reduce costs. This allowed us to create a low
cost yet efficient system.

ITEM Retail cost Qty Raw Cost Team Cost

Motor Driver $ 85 1 $ 85 $85

RC Transmitter and Receiver $ 75 1 $ 75 $0

High Current Power Distribution $ 360 2 $ 720 $100

STM32F103 Bluepill $ 7 1 $7 $7

ESP32 WROOM $ 5.50 1 $5.5 $5.50

Realsense D415 $ 450 1 $450 $0

Jetson TX2 $ 450 1 $450 $0

LiPo Batteries (6s) $ 380 1 $380 $380

Transmission $ 31 1 $31 $31

Xsens Mti - 670G $ 2970 1 $2970 $1485

Aluminum Extrusion $ 185 1 $185 $0

Motors $ 75 2 $150 $150

Low Current Power Distribution $ 135 1 $135 $135

LiDAR $ 105 1 $105 $105

2



Asus ROG Strix G15 $ 1000 1 $1000 $0

Wiring and Framing $ 100 1 $100 $100

Total Cost $2,524

Table 2. Cost Breakup of the Bot

Mechanical Design

1. Overview
Prathams design was formulated with a strong focus on modularity to achieve faster assembly and
disassembly. We implemented the “Switch and Run” concept to create a bot capable of various functions
such as delivery, mine detection, agriculture etc. With minor changes to control systems and sensor stack,
we can adapt the same chassis to all the aforementioned purposes. For the competition we have gone for a
design capable of running efficiently on road.

2. Structural layout
Our bot's design concept of "Switch and Run" is the basis for the
frame, which is constructed using 40x40 T slot aluminum
extrusion profiles. The aluminum alloy used in the frame is as
strong as some medium-grade steel alloys but is three times lighter
than steel. The frame is designed for easy use of different
aluminum joint profiles in the building of the bot. The dimensions
of the bot meets the requirements of the competition
Vertical support has been provided where more load is
applied. We have used the L bracket and inside corner
bracket to join different supporting rails. The structure is
made into 3 compartment:

a. Payload Bay - where payload is placed for
optimum distribution of weight and secure it
during transit.

b. Electronics Bay - Where we place our
electronics Box and it placed in for easy access
for troubleshooting

c. Battery Compartment - Where we place our
batteries for easy equipping/swapping.

The Intel RealSense sensor has been mounted at the rear of the structure using two 20x20
aluminum extrusions, and a horizontal mount for the RealSense camera clamp which allow the
sensor height and the angle to be adjusted based on the bot's computation and terrain
requirements.
The RP-Lidar is mounted to the front of the bot using a custom 3D-printed mount and shield to
get a precise required field of view for the sensor.
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3. Drive Train:
Pratham is propelled by a two-wheel powered drive with a rear dual
caster. The motor is connected to a shaft, which is mounted on a
sturdy metal sheet using clamps and rubber bushings to absorb minor
vibration shocks. A custom made protective aluminium casing is
provided for the motor. The shaft is connected to two RBI bearings to
prevent damage from vibration and torsional stress on the motor. The
wheel is connected to the shaft, and the power from the motor is
transferred to the wheel. The wheel has a 13-inch diameter and is
made of rubber polyurethane.

4. Steering:
Pratham incorporates the “Differential Steering” mechanism to
facilitate the smooth maneuverability of our robot around tight corners.
This is done by varying the velocities of the two forward drive wheels,
which changes the trajectory of the bot.
We can also perform yaw motion, where the bot rotates along the
Instantaneous Centre of Curvature.

5. Analysis:
FEA can help optimize the rover's weight, strength, stiffness, and
other factors critical to its functionality and efficiency. FEA models
can simulate the rover's behavior under various conditions,
including different terrains, obstacles, and payloads. This analysis
allows engineers to make informed decisions about the rover's
design and geometry, leading to an optimized and efficient design.
Overall, FEA is an essential tool in the development of Pratham,
ensuring that it meets the necessary performance requirements and
delivers reliable and efficient operation.

6. Body and Weatherproofing:
Pratham’s frames and components are enclosed using multiple sheets of PVC foam board. Using these
foam boards has a lot of advantages. Water Resistance helps us to waterproof the inner part of the bot,
Corrosion Resistance protects the body from chemical reactions, Fire Resistance protects the body and the
components from fires. It has a very high strength to its size and its ease of machinability has helped save
tool and time costs and it is cheaper than other alternatives, like mild steel and aluminum sheets. In addition
to that we wrapped it up with vinyl wrap to endure it from damages and for it to look good aesthetically.
The foam board was also used as a base platform to attach all the electrical components of the Electronics
Box.

7. Electronics Box:
In Pratham, the electronics and electrical components are housed in a
“Electronics Box”, to make it easier for the team to integrate the
electrical and electronics components into Pratham and for ease of
access.It is constructed using two Aluminium plates stacked on each
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other with four wooden L-Brackets bolted to support the two layers on top of each other.
The first layer houses all the power distribution and control system components, and the second layer
houses all the computation and sensor components.

8. Implementing Additive manufacturing\ Techniques:
Additive manufacturing i.e, 3D printing is being used in Pratham for
various purposes. We custom designed mounts for the electronics and
sensors and used our inhouse Creality Ender 5 Plus 3D Printer to get all
the required parts printed. We used Ulitmaker Cura slicing software to
get our part compatible to get it 3D printed as shown here.

Electronics and Power Design

1. Power Distribution System (PDS)
Pratham is powered with a 22Ah 6s 24V LiPo , it has a low current PDS with an array of voltage options
(12V, 5V and 3.3V) the ESP32 is powered by a 5V supply from the PDB whereas a 3.3V supply powers
the onboard STM32 Bluepill. There are two 18V high current PDS used on the bot. One supplies power to
the Motor controller which connects to each of motors through a 12V 20A relay, the other one powers the
Jetson TX2.

Figure 8. Power Distribution System

2. Electronics and Sensor Suite
Pratham uses a Jetson TX2 development kit and an AMD Ryzen 9 5900HX Laptop as its computing
system for prognostic calculations. It's connected to the following list of sensors .The XSens IMU is
connected to Jetson using USB used as a sensor input for localisation. The Jetson communicates the
STM32 Bluepill over USB publishing speed commands which runs the Fuzzy PID algorithm for motor
speed control and in turn communicates the feedback of RPM from encoders back to the Jetson. Pratham
contains two Rhino RMCS-2083 motors with inbuilt encoders to enable speed control. Xsens MTi-670G
which encompasses IMU and GPS along with inbuilt encoders in the motors were used for the wheels to
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provide imperative feedback necessary for localisation of the bot. Perception sensors include an RPLidar
and a realsense depth camera which are connected to the laptop.

Figure 9. Signal and Communication Diagram

3. Emergency Stop System
Pratham implements a wired and wireless e-stop. It is implemented as a standalone board. A FlySky
transceiver is used for the wireless estop. ESP32 is employed as the MCU for the ESTOP system. The
signal received from the receiver triggers electromechanical relays to shut off power to the motors. The
ESTOP is also triggered when the battery charge is too low to run the bot to protect the LiPo Battery. The
ESP32 also communicates the status of the ESTOP to ROS2 running on the TX2 using USB serial
communication.

Autonomous Software

1. Software Strategy

The robot’s autonomous navigation software is onboard Jetson TX2 and a laptop with an AMD Ryzen 9
5900HX, 16 GB DDR4 ram, and an RTX-3050. The entire software stack for the robot was built and tested
in a span of 2 months (April, May). It is built on top of the DDS middleware provided by ROS2 (Robot
Operating System) incorporating; localization, perception, path planning and following. A custom
navigation stack was built from scratch with C++/Rust instead of utilizing available navigation stacks for
better customizability and versatility.

Coordinate frames used in algorithms:
a. /odom

This is the frame which is representative of the starting point of the robot. For all means and
purposes, it is an origin for the state estimation node to use as a reference frame for the robot.

b. /base_link
The current position of the robot, with respect to the odom frame. This is used by the path planner,
costmap generator and path follower to make decisions/get feedback and send control signals.

c. /map_link
The map frame is a copy of the base_link frame at the instant the map is updated with data from
the lidar and other sensors. It serves as a temporary odom/origin for the path planner and follower.
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Using the map_link as a temporary origin everytime a new map is generated enables the robot to
avoid integral drift and other losses which may be present in the state estimation algorithm.

The ROS2 middleware is being used for its robust implementation of nodes, and topics, which are used to
exchange and share data across different nodes which facilitate their respective algorithms.

Figure 10. Software Stack
2. Localisation

An EKF (Extended Kalman Filter) was used to fuse data from all the sensors on board the robot and
perform state estimation.

The state vector consists of:
- linear position
- linear velocity
- linear acceleration
- orientation
- angular velocity

Figure 11. Localization

The robot receives data regarding linear acceleration, orientation and angular velocity from the
accelerometer, magnetometer, and gyroscope present in the XSens GNSS.
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Linear velocity in the x direction, along with angular velocity in the yaw direction (z) is obtained from
the wheel encoders on the left and right wheels, by passing it through a differential drive dynamics solver.
Position data is acquired from the GPS sensor on the XSens GNSS.The XSens GNSS provides covariance
matrices for all its measurements, and the wheel encoders’ covariances were calculated manually and used
for the update step of the EKF. State estimation is a very important step and is used across all algorithms
which facilitate autonomous navigation.

3. Obstacle Detection and Avoidance

Table 3. Roles of Perception Sensors

3.1 Lane and Pothole Detection
1. Using HSV Filtering filter out white pixels from the image
2. Detect Potholes using HoughCircles function
3. XOR between HSV image and Pothole image to obtain only Lanes.
4. Apply the masks on depth image
5. Convert depth images into point clouds and add them to the map in their respective

layers.

4. Map Generation
A custom bird’s eye view environment model was built which performs sensor fusion to fuse the data from
the lidar and depth camera with specific post processing methodologies such as inflation and extension.
Subsequent costmaps such as the one shown above are collected and arranged according to the position of
the robot when it was generated and are used to make a global map of the IGCV course. Map is updated
every 0.15s with an inflow of new data. The map contains data of all obstacles in an 8x8m window in front
of the robot. As shown in figure 13, the map always lies in front of the robot, and is updated similarly.

The perception nodes provide point-cloud data of all the obstacles to their respective topics, which is then
added to their respective layers in the costmap. The point-cloud data is placed in tiny cubes called voxels,
where the number of points lying in the voxel decides the weight of the corresponding grid in the costmap.
Each layer has its own post-processing steps based on the type of obstacle and finally, they are all
aggregated using a bitwise or function to be published for the path planner to use.
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Figure 12. Map Generation

Figure 13. Map with Lanes and Obstacle Layers

4.1 Post Processing
The potholes and lidar-obstacles(barrels) layers are just inflated with the help of erosion operations with a
kernel size. The kernel size of the erosion was set to ensure that the area encompassed within 3 feet of an
obstacle detected by either the depth camera or a lidar is set to non-traversable. This will ensure that the
path planner leaves a 1 feet distance while planning paths around obstacles.

Lane Extension

Figure 14. Lane layer of the costmap before post processing
There was a need for heavy post processing due to the limited FOV of the depth camera. Lanes right next to
the bot were not detected resulting in an incomplete lane layer as shown in Figure 14.
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We observe that the part of the lane right next to the robot is not added. A similar problem is faced when
dashed lines are present. This problem is alleviated by dividing the image into 4 segments of equal length
along the height, and extending the lanes along the direction cosines of the minarea rectangle with centroids
superimposed with the blob as long as the angle made by the lane and the vertical axis was either < 15
degrees or in between 87 - 93 degrees, to accommodate all use-cases. The segments shown below are for if
the lanes are directly parallel to the robot.

Figure 15. Sliced Images for Post Processing

Figure 16. Post Processed Image
The same post processing technique works well with Dashed Lanes as shown in Figure 17.

Figure 17. Dashed Lanes
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Figure 18. Lane horizontal to the bot

5. Path Planning and following
The local map generated gets updated every 0.15 seconds, and moves along with base_link. The path
planner node, which uses the D* Lite algorithm, subscribes to the map, and generates a new path every
time it receives a new map. The D* lite algorithm accepts goal coordinates in the XY-plane with respect to
base_link. Goal selection using GPS is described in more detail in the next section. The D* lite algorithm
was chosen over A* as it planned paths which preferred staying away from obstacles over creating the
shortest path, and was computationally inexpensive unlike RRT*, and produced an optimal path unlike
RRT.

Path following is done with an algorithm inspired by total pure pursuit. Where the nearest points in the path
are compared to the current state, as well as what the state will be after propagating it to the future by
lookahead_time seconds. lookahead_time is a tunable constant. A fuzzy proportional control algorithm
was implemented which takes the current error and the propagated error to generate velocity commands
which will be given to the control systems.
The maximum linear velocity that the path follower will request depends on the curvature of the path. I.e.
higher curvature would require a lot of turns, during which the algorithm has been designed to request
slower speeds to maintain stability.

6. Goal selection and path generation
The robot transforms given goal GPS coordinates to UTM and adds it to a queue. The initial coordinates of
the bot are added to the end of the queue.
To generate a path, the GPS navigation node listens to the GNSS topic which gives the current latitude and
longitude everytime the GPS receiver gets a ping. The current UTM coordinates are subtracted from the
current UTM coordinates to attain the goal vector. The goal vector, rotated by the heading of the robot
(angle between x-axis of the base_link and the “north pole”) gives the goal which should be given to the
path planner.

The path planner has been designed to accept goals which lie outside the costmap. If a goal is given outside
the costmap, it plans a proper path till the edge of the map, and then takes the shortest distance to the goal.
Once the robot starts following the path, it sees a new part of the course and generates a new map.

The goal UTM coordinates are stored in a queue. When the robot reaches within 0.4m of the current goal, it
is popped out of the queue and the next one is used for all the subsequent path generation.
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Failure Modes, Failure points and Resolutions

1. Mechanical

Sl. No. Failure Mode Resolution

1 Tyre Wobbling The issue could be because of the damage to the wheel or
the tyre separation. This could be solved by leveling the
wheel and shaft position or permanent damage to the
wheel requires replacement.

2 Bolts loosening leading to
vibrations

Use of spring washer and thread locking adhesive
solution to prevent further loosening.

3 Non-uniform Wheel traction
results in variable power
distribution to the wheel.

Could be resolved with an adaptive control system or
proper weight distribution.

Table 3. Mechanical failure and resolutions.

2. Electrical

Sl. No. Failure Mode Resolution

1 Loss of communication with
E-Stop transmitter

E-Stop detects loss of signal and cuts off power to
motors.

2 Overheating may cause
malfunction

Fans have been placed to dissipate heat from the chassis

3 Sensor failure (Encoder, IMU) Power to motors will be cut if odometry from Encoders
and IMU have deviations.

Table 4. Electrical failure and resolutions.

3. Software

Sl. No. Failure Mode Resolution

1 Failure of perception sensors Behaviors are programmed to compensate for the loss of
data and to Stop in case of LOS from multiple sensors

2 Odometry frame drifting away
from the actual state

The measurements fill up the state vector completely,
reducing the errors due to integral drift. Unreliable sensors
have inflated and/or dynamic covariances to ensure that the
EKF doesn’t rely on them much for the updation step
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3 The DDS network is open to
anyone in the same LAN

The domain_id has been changed. The DDS network can be
shielded off from the LAN during deployment.

4 Potholes might get added to the
lane layer and get extended

The minarea rectangle drawn is checked to determine
whether it is close to a square i.e. check if abs(length-width)
>= tolerance before extending the lanes

Table 5. software failure and resolutions.

Simulations

A simulation test environment was created using Blender and exported to Gazebo. This involved recreating the
features of the IGVC track as per the provided IGVC Rulebook and from previous reference. The ground vehicle
was simulated with the sensor stack which eventually got implemented on the final vehicle. The simulation also
involved retreating a digital analogue of the vehicle ( differential drive, size constraints, speed and other limits
etc.).The sensors implemented in the simulation are :

a. Realsense depth camera
b. Lidar

Figure 19. Realsense simulated image

Figure 20. Raw RGB image
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Testing and Performance
Apart from the simulation testing performed we have isolated out testing into 5 major sections as per the flow
diagram provided.

Figure 21. Testing Procedure

Initial Performance Assessments

Parameter Result Details

Max speed 5mph Hardware limited

Max Acceleration 5 m/s² Software limited

Approach angle 45° Design parameter

Max Incline 25° Maximum angle tested

Battery Life 1.5 hrs (approx.) Approximation based on testing

Table 6. Test data.

Future Prospects

Our current bot started with a focus on modularity and this concept can be taken further by adding hot-swap
capability to most components and sub systems. The electronics box and components within can be designed with
custom connectors to enable us to remove the box or component without removing or connecting any cables or
connectors manually.

To make the bot safe without human intervention a Diagnostics and BMS system can be implemented to notify the
user or shut down the bot in case of an anomaly. This can be used in combination with or integrated with the remote
E-stop system to ensure both user and bot safety.

Converting the bot to a 4 wheeled rover will allow the bot to traverse harsher terrain unlocking more possibilities to
use the bot in the real world. This will also enable better payload capacity and stability compared to the current
setup.Software can be written to utilize GPU acceleration, this will reduce the complexity of the systems, and be
more power efficient, in addition to operating faster. The perception and path planning pipeline can be done on 3D
data instead of 2D. This can accommodate a traversability layer to include ramps, and banked roads as well. With a
3D perception pipeline, reinforcement learning techniques can be used instead of the pure-pursuit controller to make
the robot more robust in its path planning

14


