

1

University of Detroit Mercy

48 GT/ E-Mobility

Date Submitted: May 18, 2023

Team Captain: Allison Sherman: shermaac@udmercy.edu

Team Members: Sima Alim: alimsi@udmercy.edu, Abigail
Dertinger: dertinam@udmercy.edu, Nicholas Ibegbu:
ibegbunc@udmercy.edu, Meghan Johnson:
johnsom15@udmercy.edu, Emil Kyek: kyekem@udmercy.edu, Susan
Magana: maganasm@udmercy.edu, Alan Aguirre Sullivan:
aguirral@udmercy.edu, Mario Padilla Rodriguez: padillma1@udmercy.edu, William Vallespir:
valleswb@udmercy.edu

Faculty Advisor: Dr. Michael Santora, Dr. Mohamed Nafea

Faculty Advisor Statement:
We certify that the engineering design in this vehicle undertaken by the student team,
consisting of undergraduate
students, is significant and qualifies for course credits in senior design and in the
undergraduate program
respectively.

Advisor Signature:

2

Introduction:
The Intelligent Ground Vehicle Competition (IGVC) is a multidisciplinary, theory-based team

project in which the goal is to create a class five autonomous vehicle. Held at Oakland University in
Rochester, Michigan, in June, the competition draws college teams from many states and even different
countries. To accomplish this task, the senior design class split into three sub-teams based on project
specifications. The teams were decided as follows: Controls, Navigation/Localization, and Detection. It
begins with the control team preparing the vehicle to send and receive information relating to the
operation of the vehicle, from steering wheel and tire position to velocity, and using that data to operate
the Dataspeed inc drive-by-wire system. The direct operation of the vehicle is dependent on
information received from Navigation/Localization. The Navigation/Localization team provides the
desired velocity and direction of travel instructions that the controls system uses to control the vehicle
hardware accordingly. These commands are the output of the Extended Kalman Filter (EKF) and
navigation algorithms which combine the inputs of the different localization sensors such as GPS,
IMU, Encoders and LiDAR. The information that guides these decisions is received from the Detection
team, which serves as the eyes of the vehicle. The images from the camera are fed into the obstacle,
traffic sign, and lane line detection algorithms. Furthermore, LiDAR is used to get the location of the
obstacles, traffic signs, and lane lines. The prediction results along with locations in respect to the
vehicle from these algorithms are output to both the Control and Navigation/Localization teams
through ROS nodes.

Organization:
Team Member Responsibility
Allison Sherman Traffic Sign Detection
Sima Alim Vehicle Control
Abigail Dertinger Navigation
Nicholas Ibegbu Obstacle Detection
Meghan Johnson Lane Line Detection and Camera
Emil Kyek Localization
Susan Magana Vehicle Control
Mario Padilla Rodriguez LiDAR Detection
Alan Aguirre Sullivan Navigation/Localization
William Vallespir Vehicle Control
Table 1: Team members responsibilities

Design Process:

The first step taken in the design process was to understand the rules and objectives needed for
the Intelligent Ground Vehicle Competition (IGVC). Once the needs of the competition were identified
the team worked to create a needs/metrics matrix. It was from this matrix the team was able to group
similar needs which led to the creation of the sub-teams utilized throughout the year. The sub-teams are
as follows: Controls, Detection, Navigation/Localization. Each team brainstormed different designs
that could be implemented on the vehicle, research was done to determine the best design and the
method of implementation. The next step was identifying these designs the team worked to begin

3

implementation on the vehicle. After being implemented the next step was to test on the vehicle, upon
obtaining the results the team began to improve upon the design. Once all designs were complete the
vehicle went through a final testing and validation phase in order to be able to take the vehicle to the
IGVC.
Innovations:
Traffic Sign and Obstacle Detection:
Requirements:

The vehicle must be able to detect and determine the type of traffic signs/ obstacle in its
environment; therefore, traffic sign and obstacle detection is needed. The five different signs that the
vehicle must detect are (1) stop signs, (2) no turn, (3) road closed, (4) one way right, and (5) one way
left. Additionally, it must detect if there are no signs present. Furthermore, four different obstacles must
be detected: (1) pothole, (2) barrel, (3) tire, and (4) mannequin. This is needed so the vehicle knows
how to react and maneuver on the roads.

Problem:

For obstacle detection, regardless of the type of obstacle detected the response from the vehicle
is the same. On the other hand, the vehicles response differs based on the sign detected and there is the
possibility of having more than one sign in view of the vehicle. Hence, the vehicle must be able to
detect multiple traffic signs in one image. However, within the dataset, not all combinations of signs
are found within the same image.

Solution:

The Traffic Sign and Obstacle Detection algorithm is a sequence of parallel Support Vector
Machines (SVM) trained on datasets collected by the team. This allows the vehicle to detect all signs in
its’s view. Since the vehicle responds the same for all obstacles, one binary SVM is used for detection.
The image from the camera is sent to all seven SVMs and each returns the SVM’s prediction. Each
SVM is trained and tested with its own individual dataset that has the same name as that SVM, which is
the object it predicts. The datasets with what images are included are found in Table 2.

4

Datasets
Labels
(binary
label)

Type of Images

Stop
Sign

No
Turn

Road
Closed

One-
way

Right

One-
way
Left

No
Sign Obstacle No ob-

stacle

Stop Sign

Stop Sign
(1) X

Not Stop
Sign (0) X X X X X

No Turn
Sign

No Turn
(1) X

Not No
Turn

Sign (0)
X X X X X

Road
Closed
Sign

Road
Closed

(1)
 X

Not Road
Closed

(0)
X X X X X

One-way
Right
Sign

One-way
Right (1) X

Not one-
way

Right (0)
X X X X X

One-way
Left Sign

One-way
Left (1) X

Not One-
way Left

(0)
X X X X X

No Sign
No Sign

(1) X

Sign (0) X X X X X

Obstacle

Obstacle
(1) X

No Ob-
stacle (0) X

Table 2: Types of images within each dataset

Lane Line Detection:
Requirements:

The lane detection system must detect lane lines in a live video stream captured by a camera
mounted on a vehicle. The system needs to output the type and location of the lane lines and their accu-
racy to be used for navigation/localization and control of the vehicle.

Problem:

5

 For the detection of lane lines, the response of the vehicle depends on the type of line detected
and the distance from that line. For lane keeping, a constant distance must be kept from the edge of the
lane lines while following their shape down straight aways and around curves. This requires the identi-
fication and classification of lane lines, their position and their trajectory.

Solution:

To achieve the desired output, the system will first perform preprocessing on the images to filter
noise and isolate white areas, then use connected component analysis (CCA) to identify and localize
lane lines.

When the image is received by the system it is converted to greyscale and then binary. The im-
age is then cropped to the region of interest (ROI), cutting out the horizon and other unnecessary details
to improve efficiency and accuracy of the algorithm. A white mask is applied to the image and then
eroded to remove noise and isolate areas of white pixels. The image is transformed into the bird’s eye
view and passed to the rest of the algorithm. A visual representation of the preprocessing system is
shown in Figure 1.

Figure 1: Overview of Preprocessing Functions

Lane identification and validation is done using connected component analysis (CCA). The
CCA is a way to create objects out of areas of connected white pixels. Once the component is created,
it is analyzed and easily identified. The components are then analyzed based on spatial characteristics
to determine the potential locations of lane lines. The components are also analyzed by the region
properties function to obtain the centroid, area, bounding box, eccentricity (height: width ratio), and
other similar characteristics. These characteristics are then compared to the predicted lane locations.
The boundaries of components with a high number of matches are extracted and put into a point cloud.
The point cloud is then transformed to real-world coordinates using the image2vehicle function and the
resulting point clouds are published and sent to the localization and navigation systems. An overview of
this system is shown in Figure 2.

Figure 2: Overview of Connected Component Analysis and Lane Localization

Mechanical Design:

The 48 GT is a Dataspeed inc. Polaris GEM e2 with a built-in drive-by-wire system. The drive-
by-wire kit allows for computer control braking, steering, and shifting. The driver is able to override
the system by grabbing the steering wheel or pressing on the brake pedal. The system has both CAN
and USB interfaces. The steer-by-wire interface modifies the steering signal when power is applied
along with when the required CAN messages are received. Additionally, the brake-by-wire interface

6

uses a motor to physically move the pedal and add brake pressure. Finally, the shift-by-wire interfaces
uses digital inputs/outputs to trigger the shift buttons in order to change gears. The steering system,
brake pedal, and shift buttons all function normally regardless of the CAN messaging and the applied
power to the drive-by-wire interface.

The Polaris GEM e2 has a complete factory-made body around the chassis. All computers are
housed inside of the body underneath the driver and passenger seat. Furthermore, the camera is also
located within the vehicle in order to help with weather proofing. Additionally, the GPS units are
attached to the body of the vehicle and all wires are fed into the vehicle through the body.

Electronic and Power Design:

The power distribution system from Dataspeed Inc has 12 channels at up to 15 amperes each at
12 volts or up to 10 ampere each for 24 volts. The power distribution system can be changed up to four
units in order for a maximum of 48 channels. The system allows for computer control of fused power
channels and programmable startup and shutdown sequences. There is a touchscreen which is used for
both control and status. These are both available over communication interfaces including CAN,
ethernet, and USB. Finally, for safety, the vehicle is equipped with 5 E-Stops. These are located on the
front, back, left, right, and dashboard of the vehicle.

All the sensors (Hardware/inputs) are physically connected to an NUC, NUC stands for "Next
Unit of Computing," which is a small-form-factor computer. The NUCs are used in this autonomous
vehicle as onboard computers for data processing, sensor fusion, and control. This NUC is used to read
and process information from all sensors by using software drivers for some individual sensors such as
GPS, IMU, Encoders, LiDARs, etc and using them to connect them to ROS.

Software Strategy and Mapping Techniques:
Traffic Sign and Obstacle Detection:

The traffic sign and obstacle datasets are collected through a dash camera and compiled in the
training repository. Additionally, the distribution of each type of image is contained within Table 3 and
4.

The Traffic Sign and Obstacle SVMs are coded in MATLAB using a linear kernel. The datasets
are split into testing and training data which is found in Table 5. When training the SVM models, cross
validation with holdout is used to optimize the regularization parameter (see appendix N for further
explanation). Additionally, after the model is trained and cross validated, the cross-validation error is
produced. This is a generalization error, and accuracy is produced by applying equation 1. Next, the
trained models are used to predict the objects within the images from the test set. These images have
not been previously seen by the model giving an unbiased generalization error. Both the cross
validation and test accuracies are found in Table 6. This training and testing process is seen in Figure 3.
Lastly, the trained models are tested on live data from the cameras (for more information about the
camera data and cameras please refer to appendix L) with the use of Simulink. The SVM models within
Simulink provide a prediction for the objects seen by the vehicle and outputs this into a ROS topic
called cob_object_detection_msgs. This topic is sent to both the Navigation/Localization and Control
teams.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 − 𝑒𝑟𝑟𝑜𝑟	 equation 1

7

Figure 3: SVM flowchart

Traffic Sign data split
Class Percentage
Stop Sign 30.2%
No Turn 15.5%
Road Closed 14.9%
One-way Right 14.2%
One-way Left 12.9%
No Sign 12.3%

Table3: shows percentage of each
sign in dataset

Obstacle split
Class Percentage
Obstacle 54.6%
No Obstacle 45.4%

Table 4: shows percentage of
obstacle in dataset

SVM Splitting for train-

ing and testing
No Sign 75%
No Turn 75%
One-way Left 70%
One-way Right 80%
Road Closed 75%
Stop Sign 60%
Obstacles 80%

Table 5: Specifies the percentage of the
dataset used for training

SVM Model Training

Accuracy
Test Accu-
racy

No Sign 87.71% 87.21%
No Turn 81.23% 80.89%
One Way Left 86.56% 86.52%
One Way Right 85.49% 85.45%
Road Closed 88.6% 88.09%
Stop Sign 67.97% 67.36%
Obstacle 92.24% 91.34%

Table 6: Shows the accuracies for cross
validation and testing of the 7 different
SVM models

8

Extended Kalman Filter:
Extended Kalman Filter (EKF) is an algorithm based on the linearization of the state equation

and measurement equation. It takes the data from the encoders, IMU, GPS, and LiDAR as inputs. The
specifics of these data are specified in the appendix. The state measurement equation updates the state
of the vehicle using the previous state at every time step.

Extended Kalman filtering is a method used to fuse multiple sensor inputs together to minimize
possible errors as described in the design section above. The implementation of this method involves
coordinating the multiple sensor inputs required for the vehicle’s navigation. These sensor inputs would
be from the GPS, the IMU, and the encoders. Before attempting to coordinate the actual sensors from
the vehicle, a simulation is made to test the EKF package we are using.

Failure modes, failure points, and resolution:
Safety is a very important consideration in a vehicle such as this, and there are many areas that need to
be taken into account when designing an autonomous electric vehicle. A brief list of areas of concern
would include: (1) dead battery or power failure, (2) sensor failure or damage, (3) poor weather condi-
tions, (4) undetectable high speed objects crossing the path of the vehicle. The safety concerns listed
are mitigated to some degree by: (1) charging the battery when the vehicle is not in use, (2) keeping the
sensors clean and regularly inspecting for damage, (3) increasing the sensitivity of the sensors during
poor weather conditions, (4) and having easy access to emergency stop buttons for those unexpected
emergencies. Additionally, the obstacle and traffic sign detection algorithms are trained on images
where poor weather conditions are present. Therefore, both traffic signs and algorithms are operable in
more diverse weather conditions including poor conditions. During competition the vehicle is never run
above 5mph, which allows for more time to react to emergency situations. This is applicable for both
inside and outside of the vehicle. The vehicle is stopped remotely via the wireless E-Stop should the
need arise during autonomous driving. There are also E-Stop buttons located on the front, sides, and
rear of the vehicle, as well as one located inside the vehicle seen in Figure 4.

Figure 4: E-Stop located on top of dashboard

Simulations Employed:
Traffic Sign and Obstacle Detection:
 Simulations were ran within the Simulink model to test the traffic sign and obstacle detection
algorithm. Images including predetermined traffic signs and/or obstacles were fed into the algorithm.
The algorithm then outputted the type of sign and/or if an obstacle was present within the image. This
testing was conducted with multiple different traffic signs and obstacles that would be seen in
competition.

Lane Line Detection:

9

To test initial accuracy and model concepts, a simulated environment was created in the lab. The
environment consisted of an 11 feet by 11 feet grid with mock white lane lines on a light grey floor in
the lab. The lab also has adjustable lighting that was used to simulate different lighting conditions.
Simulating an environment with low contrast between the lane lines and the road leads to a reliable and
robust detection system that is still accurate in unfavorable lighting conditions.

EKF:

The simulation involves using a virtual robot, the TurtleBot 3, and its equipped sensors. These
sensor outputs are taken by the EKF package and fused together, resulting in the output of the final
transformed location of the Turtlebot 3.

The EKF package was downloaded from a GitHub repository. The essential components of the
package are (I) the sensor nodes for the Turtlebot 3, (II) the navsat node which fuses the sensor data,
(III) the EKF estimation nodes transform the data between the frames, and (IV) the launch file which
calls all these nodes and the simulation. The main complications with the simulation are organizing the
package to contain all the aforementioned parts as well as getting the data from the simulation to be
fused accurately through the frames. Currently, packages compatible with the Turtlebot 3 are being
researched. Previously, a turtlesim simulation was used, which used only an IMU and encoders. To
simulate GPS as well the simulation needs to switch to Turtlebot 3.

Once a package is found for the Turtlebot 3, the simulation should be able to receive the
Turtlebot 3 sensor data from its IMU, encoders, and GPS. Then, it transforms the data to the proper
frames, and lastly fuse the data through the navsat node and output the final position data.

Operation to Date:
Currently, all hardware and software are being integrated onto the vehicle. The camera, GPS, IMU and
LiDAR are installed and operational. The camera system is sending out ROS messages to be read by
obstacle, traffic sign, and lane line detection. Furthermore, the E-Stops are installed and operational.

