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Introduction:  
The Intelligent Ground Vehicle Competition (IGVC) is a multidisciplinary, theory-based team 

project in which the goal is to create a class five autonomous vehicle. Held at Oakland University in 
Rochester, Michigan, in June, the competition draws college teams from many states and even different 
countries. To accomplish this task, the senior design class split into three sub-teams based on project 
specifications. The teams were decided as follows: Controls, Navigation/Localization, and Detection. It 
begins with the control team preparing the vehicle to send and receive information relating to the 
operation of the vehicle, from steering wheel and tire position to velocity, and using that data to operate 
the Dataspeed inc drive-by-wire system. The direct operation of the vehicle is dependent on 
information received from Navigation/Localization. The Navigation/Localization team provides the 
desired velocity and direction of travel instructions that the controls system uses to control the vehicle 
hardware accordingly. These commands are the output of the Extended Kalman Filter (EKF) and 
navigation algorithms which combine the inputs of the different localization sensors such as GPS, 
IMU, Encoders and LiDAR. The information that guides these decisions is received from the Detection 
team, which serves as the eyes of the vehicle. The images from the camera are fed into the obstacle, 
traffic sign, and lane line detection algorithms. Furthermore, LiDAR is used to get the location of the 
obstacles, traffic signs, and lane lines. The prediction results along with locations in respect to the 
vehicle from these algorithms are output to both the Control and Navigation/Localization teams 
through ROS nodes. 
 
Organization: 
Team Member Responsibility 
Allison Sherman Traffic Sign Detection 
Sima Alim Vehicle Control 
Abigail Dertinger Navigation 
Nicholas Ibegbu Obstacle Detection 
Meghan Johnson Lane Line Detection and Camera 
Emil Kyek Localization 
Susan Magana Vehicle Control 
Mario Padilla Rodriguez LiDAR Detection 
Alan Aguirre Sullivan Navigation/Localization 
William Vallespir Vehicle Control 
Table 1: Team members responsibilities  
 
Design Process: 

The first step taken in the design process was to understand the rules and objectives needed for 
the Intelligent Ground Vehicle Competition (IGVC). Once the needs of the competition were identified 
the team worked to create a needs/metrics matrix. It was from this matrix the team was able to group 
similar needs which led to the creation of the sub-teams utilized throughout the year. The sub-teams are 
as follows: Controls, Detection, Navigation/Localization. Each team brainstormed different designs 
that could be implemented on the vehicle, research was done to determine the best design and the 
method of implementation. The next step was identifying these designs the team worked to begin 
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implementation on the vehicle. After being implemented the next step was to test on the vehicle, upon 
obtaining the results the team began to improve upon the design. Once all designs were complete the 
vehicle went through a final testing and validation phase in order to be able to take the vehicle to the 
IGVC. 
Innovations: 
Traffic Sign and Obstacle Detection: 
Requirements: 

The vehicle must be able to detect and determine the type of traffic signs/ obstacle in its 
environment; therefore, traffic sign and obstacle detection is needed. The five different signs that the 
vehicle must detect are (1) stop signs, (2) no turn, (3) road closed, (4) one way right, and (5) one way 
left. Additionally, it must detect if there are no signs present. Furthermore, four different obstacles must 
be detected: (1) pothole, (2) barrel, (3) tire, and (4) mannequin. This is needed so the vehicle knows 
how to react and maneuver on the roads.  

 
Problem: 

For obstacle detection, regardless of the type of obstacle detected the response from the vehicle 
is the same. On the other hand, the vehicles response differs based on the sign detected and there is the 
possibility of having more than one sign in view of the vehicle. Hence, the vehicle must be able to 
detect multiple traffic signs in one image. However, within the dataset, not all combinations of signs 
are found within the same image.  
 
Solution: 

The Traffic Sign and Obstacle Detection algorithm is a sequence of parallel Support Vector 
Machines (SVM) trained on datasets collected by the team. This allows the vehicle to detect all signs in 
its’s view. Since the vehicle responds the same for all obstacles, one binary SVM is used for detection. 
The image from the camera is sent to all seven SVMs and each returns the SVM’s prediction. Each 
SVM is trained and tested with its own individual dataset that has the same name as that SVM, which is 
the object it predicts. The datasets with what images are included are found in Table 2.  
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Datasets 
Labels 
(binary 
label) 

Type of Images 

Stop 
Sign 

No 
Turn 

Road 
Closed 

One-
way 

Right 

One-
way 
Left 

No 
Sign Obstacle No ob-

stacle 

Stop Sign 

Stop Sign 
(1) X        

Not Stop 
Sign (0)  X X X X X   

No Turn 
Sign 

No Turn 
(1)  X       

Not No 
Turn 

Sign (0) 
X  X X X X   

Road 
Closed 
Sign 

Road 
Closed 

(1) 
  X      

Not Road 
Closed 

(0) 
X X  X X X   

One-way 
Right 
Sign 

One-way 
Right (1)    X     

Not one-
way 

Right (0) 
X X X  X X   

One-way 
Left Sign 

One-way 
Left (1)     X    

Not One-
way Left 

(0) 
X X X X  X   

No Sign 
No Sign 

(1)      X   

Sign (0) X X X X X    

Obstacle 

Obstacle 
(1)       X  

No Ob-
stacle (0)        X 

Table 2: Types of images within each dataset 
 
Lane Line Detection:  
Requirements:  

The lane detection system must detect lane lines in a live video stream captured by a camera 
mounted on a vehicle. The system needs to output the type and location of the lane lines and their accu-
racy to be used for navigation/localization and control of the vehicle.   

  
Problem:   
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 For the detection of lane lines, the response of the vehicle depends on the type of line detected 
and the distance from that line. For lane keeping, a constant distance must be kept from the edge of the 
lane lines while following their shape down straight aways and around curves. This requires the identi-
fication and classification of lane lines, their position and their trajectory.  
  
Solution:  

To achieve the desired output, the system will first perform preprocessing on the images to filter 
noise and isolate white areas, then use connected component analysis (CCA) to identify and localize 
lane lines.  

When the image is received by the system it is converted to greyscale and then binary. The im-
age is then cropped to the region of interest (ROI), cutting out the horizon and other unnecessary details 
to improve efficiency and accuracy of the algorithm. A white mask is applied to the image and then 
eroded to remove noise and isolate areas of white pixels. The image is transformed into the bird’s eye 
view and passed to the rest of the algorithm. A visual representation of the preprocessing system is 
shown in Figure 1.  

  

  
Figure 1: Overview of Preprocessing Functions  
  

Lane identification and validation is done using connected component analysis (CCA). The 
CCA is a way to create objects out of areas of connected white pixels. Once the component is created, 
it is analyzed and easily identified. The components are then analyzed based on spatial characteristics 
to determine the potential locations of lane lines. The components are also analyzed by the region 
properties function to obtain the centroid, area, bounding box, eccentricity (height: width ratio), and 
other similar characteristics. These characteristics are then compared to the predicted lane locations. 
The boundaries of components with a high number of matches are extracted and put into a point cloud. 
The point cloud is then transformed to real-world coordinates using the image2vehicle function and the 
resulting point clouds are published and sent to the localization and navigation systems. An overview of 
this system is shown in Figure 2.  

 

 
Figure 2: Overview of Connected Component Analysis and Lane Localization  
 
Mechanical Design: 

The 48 GT is a Dataspeed inc. Polaris GEM e2 with a built-in drive-by-wire system. The drive-
by-wire kit allows for computer control braking, steering, and shifting. The driver is able to override 
the system by grabbing the steering wheel or pressing on the brake pedal. The system has both CAN 
and USB interfaces. The steer-by-wire interface modifies the steering signal when power is applied 
along with when the required CAN messages are received. Additionally, the brake-by-wire interface 
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uses a motor to physically move the pedal and add brake pressure. Finally, the shift-by-wire interfaces 
uses digital inputs/outputs to trigger the shift buttons in order to change gears. The steering system, 
brake pedal, and shift buttons all function normally regardless of the CAN messaging and the applied 
power to the drive-by-wire interface.  

The Polaris GEM e2 has a complete factory-made body around the chassis. All computers are 
housed inside of the body underneath the driver and passenger seat. Furthermore, the camera is also 
located within the vehicle in order to help with weather proofing. Additionally, the GPS units are 
attached to the body of the vehicle and all wires are fed into the vehicle through the body.  

 
Electronic and Power Design: 

The power distribution system from Dataspeed Inc has 12 channels at up to 15 amperes each at 
12 volts or up to 10 ampere each for 24 volts. The power distribution system can be changed up to four 
units in order for a maximum of 48 channels. The system allows for computer control of fused power 
channels and programmable startup and shutdown sequences. There is a touchscreen which is used for 
both control and status. These are both available over communication interfaces including CAN, 
ethernet, and USB. Finally, for safety, the vehicle is equipped with 5 E-Stops. These are located on the 
front, back, left, right, and dashboard of the vehicle.    

All the sensors (Hardware/inputs) are physically connected to an NUC, NUC stands for "Next 
Unit of Computing," which is a small-form-factor computer. The NUCs are used in this autonomous 
vehicle as onboard computers for data processing, sensor fusion, and control. This NUC is  used to read 
and process information from all sensors by using software drivers for some individual sensors such as 
GPS, IMU, Encoders, LiDARs, etc and using them to connect them to ROS. 
 
Software Strategy and Mapping Techniques: 
Traffic Sign and Obstacle Detection: 

The traffic sign and obstacle datasets are collected through a dash camera and compiled in the 
training repository. Additionally, the distribution of each type of image is contained within Table 3 and 
4.  

The Traffic Sign and Obstacle SVMs are coded in MATLAB using a linear kernel. The datasets 
are split into testing and training data which is found in Table 5. When training the SVM models, cross 
validation with holdout is used to optimize the regularization parameter (see appendix N for further 
explanation). Additionally, after the model is trained and cross validated, the cross-validation error is 
produced. This is a generalization error, and accuracy is produced by applying equation 1. Next, the 
trained models are used to predict the objects within the images from the test set. These images have 
not been previously seen by the model giving an unbiased generalization error. Both the cross 
validation and test accuracies are found in Table 6. This training and testing process is seen in Figure 3. 
Lastly, the trained models are tested on live data from the cameras (for more information about the 
camera data and cameras please refer to appendix L) with the use of Simulink. The SVM models within 
Simulink provide a prediction for the objects seen by the vehicle and outputs this into a ROS topic 
called cob_object_detection_msgs. This topic is sent to both the Navigation/Localization and Control 
teams.  

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 − 𝑒𝑟𝑟𝑜𝑟	 equation 1 
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Figure 3: SVM flowchart 

Traffic Sign data split 
Class Percentage 
Stop Sign 30.2% 
No Turn 15.5% 
Road Closed 14.9% 
One-way Right 14.2% 
One-way Left 12.9% 
No Sign  12.3% 

Table3: shows percentage of each  
sign in dataset 
 

Obstacle split 
Class Percentage 
Obstacle 54.6% 
No Obstacle 45.4% 

Table 4: shows percentage of 
obstacle in dataset   
                                                             
SVM Splitting for train-

ing and testing 
No Sign 75% 
No Turn 75% 
One-way Left 70% 
One-way Right 80% 
Road Closed 75% 
Stop Sign 60% 
Obstacles 80% 

Table 5: Specifies the percentage of the 
dataset used for training 
 
SVM Model Training 

Accuracy 
Test Accu-
racy 

No Sign 87.71% 87.21% 
No Turn 81.23% 80.89% 
One Way Left 86.56% 86.52% 
One Way Right 85.49% 85.45% 
Road Closed 88.6% 88.09% 
Stop Sign  67.97% 67.36% 
Obstacle  92.24% 91.34% 

Table 6: Shows the accuracies for cross  
validation and testing of the 7 different  
SVM models 
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Extended Kalman Filter: 
Extended Kalman Filter (EKF) is an algorithm based on the linearization of the state equation 

and measurement equation. It takes the data from the encoders, IMU, GPS, and LiDAR as inputs. The 
specifics of these data are specified in the appendix. The state measurement equation updates the state 
of the vehicle using the previous state at every time step.  

Extended Kalman filtering is a method used to fuse multiple sensor inputs together to minimize 
possible errors as described in the design section above. The implementation of this method involves 
coordinating the multiple sensor inputs required for the vehicle’s navigation. These sensor inputs would 
be from the GPS, the IMU, and the encoders. Before attempting to coordinate the actual sensors from 
the vehicle, a simulation is made to test the EKF package we are using.  

 
Failure modes, failure points, and resolution: 
Safety is a very important consideration in a vehicle such as this, and there are many areas that need to 
be taken into account when designing an autonomous electric vehicle. A brief list of areas of concern 
would include: (1) dead battery or power failure, (2) sensor failure or damage, (3) poor weather condi-
tions, (4) undetectable high speed objects crossing the path of the vehicle. The safety concerns listed 
are mitigated to some degree by: (1) charging the battery when the vehicle is not in use, (2) keeping the 
sensors clean and regularly inspecting for damage, (3) increasing the sensitivity of the sensors during 
poor weather conditions, (4) and having easy access to emergency stop buttons for those unexpected 
emergencies. Additionally, the obstacle and traffic sign detection algorithms are trained on images 
where poor weather conditions are present. Therefore, both traffic signs and algorithms are operable in 
more diverse weather conditions including poor conditions. During competition the vehicle is never run 
above 5mph, which allows for more time to react to emergency situations. This is applicable for both 
inside and outside of the vehicle. The vehicle is stopped remotely via the wireless E-Stop should the 
need arise during autonomous driving. There are also E-Stop buttons located on the front, sides, and 
rear of the vehicle, as well as one located inside the vehicle seen in Figure 4.  

 
Figure 4: E-Stop located on top of dashboard 
 
Simulations Employed: 
Traffic Sign and Obstacle Detection: 
 Simulations were ran within the Simulink model to test the traffic sign and obstacle detection 
algorithm. Images including predetermined traffic signs and/or obstacles were fed into the algorithm. 
The algorithm then outputted the type of sign and/or if an obstacle was present within the image. This 
testing was conducted with multiple different traffic signs and obstacles that would be seen in 
competition.  
 
Lane Line Detection: 
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To test initial accuracy and model concepts, a simulated environment was created in the lab. The 
environment consisted of an 11 feet by 11 feet grid with mock white lane lines on a light grey floor in 
the lab. The lab also has adjustable lighting that was used to simulate different lighting conditions. 
Simulating an environment with low contrast between the lane lines and the road leads to a reliable and 
robust detection system that is still accurate in unfavorable lighting conditions.   
 
EKF: 

The simulation involves using a virtual robot, the TurtleBot 3, and its equipped sensors. These 
sensor outputs are taken by the EKF package and fused together, resulting in the output of the final 
transformed location of the Turtlebot 3. 

The EKF package was downloaded from a GitHub repository. The essential components of the 
package are (I) the sensor nodes for the Turtlebot 3, (II) the navsat node which fuses the sensor data, 
(III) the EKF estimation nodes transform the data between the frames, and (IV) the launch file which 
calls all these nodes and the simulation. The main complications with the simulation are organizing the 
package to contain all the aforementioned parts as well as getting the data from the simulation to be 
fused accurately through the frames. Currently, packages compatible with the Turtlebot 3 are being 
researched. Previously, a turtlesim simulation was used, which used only an IMU and encoders. To 
simulate GPS as well the simulation needs to switch to Turtlebot 3.  

Once a package is found for the Turtlebot 3, the simulation should be able to receive the 
Turtlebot 3 sensor data from its IMU, encoders, and GPS. Then, it transforms the data to the proper 
frames, and lastly fuse the data through the navsat node and output the final position data. 
 
Operation to Date: 
Currently, all hardware and software are being integrated onto the vehicle. The camera, GPS, IMU and 
LiDAR are installed and operational. The camera system is sending out ROS messages to be read by 
obstacle, traffic sign, and lane line detection. Furthermore, the E-Stops are installed and operational.  
 


