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 Introduction 
 After  a  year-long  development  process,  our  team  is  delighted  to  introduce  University  of  Michigan  -  Ann  Arbor’s 
 Autonomous  Robotic  Vehicle  Team’s  (ARV)  new  robot  –  mARVin  for  the  2023  Intelligent  Ground  Vehicle 
 Competition.  ARV  is  supported  by  both  campus  and  corporate  sponsors.  The  team  is  supported  by  the  University 
 of  Michigan  Robotics  Institute.  Our  corporate  sponsors  include  Ford,  Bose,  Ann  Arbor  SPARK,  Aptiv,  Siemens, 
 Northrop Grumman, and Raytheon. 

 Team Organization 
 Our  team  is  organized  into  six  subteams:  Business,  Computer  Vision,  Navigation,  Embedded  Systems,  Platform, 
 and  Sensors.  The  Business  subteam  handles  sponsor  relations,  as  well  as  the  media/marketing  side  of  the  team. 
 The  Computer  Vision  (CV)  subteam  develops  the  lane  and  pothole  detection  system  using  CV  techniques.  The 
 Navigation  subteam  develops  the  path  planning,  control  systems,  and  simulation  systems.  The  Embedded  Systems 
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 subteam  develops  the  electrical  system  for  the  robot;  this  includes  motor  control,  safety  features,  the  status 
 indicator  light,  and  the  power  delivery  on  the  robot.  The  Platform  subteam  designs  and  builds  the  robot  chassis  to 
 fit  within  the  given  design  requirements.  The  Sensors  subteam  configures  the  robot’s  sensors  to  compute 
 odometry  and  Simultaneous  Localization  and  Mapping  (SLAM)  to  produce  a  map  of  the  surrounding 
 environment. 
 The  leadership  team  consists  of  the  Team  Lead,  Operations  Director,  Engineering  Director,  as  well  as  leads  for 
 each  subteam.  The  Team  Lead,  Operations  Director,  and  Engineering  Director  provide  the  general  direction  and 
 strategy for the team, and the subteam leads focus on the technical development of their respective subsystems. 

 Design Process and Assumptions 
 The  design  process  for  the  robot  was  split  up  and  assigned  to  the  aforementioned  subteams.  Throughout  the  fall 
 semester,  the  platform  team  consulted  with  the  other  subteams  to  develop  a  CAD  plan  for  the  robot,  while  the 
 other  subteams  primarily  used  the  time  for  onboarding  and  simulation.  We  also  held  monthly  design  review 
 meetings  with  our  mentors  to  discuss  our  design  choices  and  implementation  plan.  In  the  winter  semester,  we 
 finished  building  the  robot  platform  in  two  months,  and  the  software  subteams  consequently  tested  and  debugged 
 the vehicle code. Figure 1 shows how different aspects of our season contributed to the design process. 

 Fig. 1:  The ARV Design Process 

 There  were  several  key  assumptions  and  design  choices  that  all  subteams  agreed  upon  before  the  chassis  was 
 designed. They are listed below: 

 ●  The  design  must  facilitate  debugging.  This  meant  allowing  the  laptop  to  be  easily  accessible  and  have  a 
 dedicated space on the robot itself. 

 ●  Wheel  slippage  is  negligible.  Both  the  embedded  systems  and  navigation  subteams  have  error  correction 
 built into their software design. 

 ●  The design must be modular. Each subteam must be able to easily add, access, and remove components. 
 ●  The robot should withstand light rain and other debris; the robot is both splash- and water-proof. 
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 Vehicle Design Innovations 
 Two  two  main  innovations  in  our  robot  for  this  year  include  a  rack-railing  concept  as  well  as  improved 
 weatherproofing.  These  innovations  were  necessary  to  increase  the  efficiency  of  hardware  and  software 
 development as well as improve environmental protection of the robot, specifically from rain. 

 Innovative Concept from Other Teams’ Vehicles: Rack-Railing Concept 
 One  innovative  concept  integrated  into  our  new  vehicle  is  the  railing  system.  Last  year,  the  team  had  difficulty 
 debugging  the  vehicle’s  code  because  there  was  a  lack  of  space  for  a  laptop.  Also,  the  difficult  access  to  the 
 components  in  the  system  made  the  identification  of  hardware  problems  worse.  The  railing  system  was  designed 
 so  that  during  the  testing  process,  different  systems  could  be  checked  and  tested  individually,  without  having  to 
 disconnect  wirings  to  systems  other  than  the  one  of  interest.  Figure  2  shows  the  three  movable  shelves,  one  for  the 
 electrical  system,  one  for  the  laptop,  and  one  for  the  Jetson  and  sensor  systems,  along  with  the  rack-railing 
 mechanism  that  facilitates  guided  motion.  Each  shelf  could  be  slid  out  because  the  wirings  are  long  enough  to  not 
 disconnect  from  the  components.  With  the  increased  ease  in  accessibility,  the  testing  process  became  quicker  and 
 allowed the design cycle to move much smoother. 

 Fig. 2  : Complete shelving stack and view of the rack-railing mechanism 

 Innovative Technology Applied to our Vehicle 
 To  improve  our  robot’s  weatherproofing  ability,  we  also  decided  to  use  shower  curtains  to  make  a  raincoat  for  the 
 robot. We will discuss this in depth in the later sections. 

 Description of Mechanical Design 

 The  objective  of  the  mechanical  system  is  to  provide  the  chassis,  payload  support,  and  a  maneuvering  method  for 
 our  robot,  mARVin.  The  team  used  Solidworks  for  designing  the  platform  and  various  machines  for 
 manufacturing  including  a  waterjet,  drill  press,  horizontal  bandsaw,  and  laser  cutter.  CAD  was  used  to  create 
 models  for  different  parts  of  the  chassis  and  to  assemble  all  the  parts  with  bolt  placement  in  consideration.  Figure 
 3 shows the CAD model of mARVin in Solidworks. 

 Decision on Frame Structure, Housing, Structure Design 
 Designed  with  portability,  serviceability,  and  longevity  in  mind,  the  chassis  is  constructed  from  1-inch  square 
 aluminum  tubing  to  minimize  overall  system  weight  and  maintain  rigidity.  The  dimensions  are  within  the 
 competition  requirements  at  35  inches  wide  by  47  inches  long  and  well  below  the  height  limit.  of  six  feet.  The 
 chassis  is  secured  by  custom-made  mending  plates  and  attachment  brackets  and  secured  with  one  common  1/4 
 inch  thread  hex  bolt  and  nut  to  improve  serviceability.  The  brackets  and  mending  plates  can  be  easily 
 manufactured  and  the  hex  bolt  prevents  stripping.  Having  a  common  bolt  and  nut  type  makes  the  entire  system 
 easier  to  service.  The  robot  features  a  two-wheel  drivetrain  with  a  third  free  caster  wheel  to  provide  a  balance 
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 between  power,  stability,  and  maneuverability.  Inside  the  main  chassis  of  the  robot,  there  are  two  gearboxes  with 
 motors,  encoders,  a  battery,  and  shelves  for  the  embedded  system,  Jetson,  and  a  laptop.  The  batteries  are  placed  in 
 the  interior  of  the  robot,  behind  the  drivetrain  to  act  as  a  counterweight  against  the  payload.  This  allows  the 
 chassis  to  be  balanced  even  on  a  fifteen  percent  incline.  Corner  guards  were  3D-printed  to  hold  the  batteries  firm 
 against  the  chassis.  At  the  rear  of  the  robot,  there  is  a  physical  emergency  switch  with  LED  safety  light  and  a 
 power switch of the entire system, as stipulated by the rules requirement. 

 Fig. 3:  Front and back isometric views of mARVin as designed in Solidworks 

 Weatherproofing 
 The  white  main  structure  is  built  from  metal  frames  with  plastic  coverings  on  all  six  sides  to  protect  from  debris. 
 A  covering  made  from  a  sewed  polyester  shower  curtain  was  placed  over  the  vehicle  to  protect  the  primary  and 
 secondary  computers  from  rain.  Figure  4  demonstrates  the  functionality  of  the  covering  as  it  allows  for  ease  of 
 access  to  vehicle  electronics  without  sacrificing  protection  when  needed.  The  LiDAR  and  stereo  camera 
 attachments  are  waterproof,  with  the  LiDAR  having  additional  protection  from  the  rain  in  the  form  of  a  curved  3D 
 printed  covering.  The  safety  stop,  the  stereo  camera,  and  the  payload  holder  are  placed  outside  the  main  metal 
 frame because they would not be damaged by weather conditions. 

 Fig. 4:  A demonstration of the raincoat protecting the electronics stack while not limiting function 
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 Suspension 
 mARVin  lacks  suspension  in  its  structure  as  it  would  create  unnecessary  weight  on  the  vehicle.  We  determined 
 that  suspension  would  not  be  needed  as  the  robot  would  be  driven  on  asphalt,  which  is  relatively  flat  and  smooth. 
 Although  there  would  be  slopes  and  inclines  on  the  course,  the  shock  would  not  be  too  large  on  the  robot  as  the 
 change in slope is not immediate. 

 Electronic and Power Design 
 The  electronic  and  power  design  was  implemented  by  the  Embedded  Systems  subteam.  The  team  updated  the 
 vehicle  with  O-Drive  motor  controllers  with  onboard  PID  tuning  and  new  DC  brushless  motors.  Fig.  7  shows  a 
 diagram of the electrical and power system. 

 Power Distribution System 
 The  power  distribution  system  consists  of  a  single  nominal  12V  50  A-hr  LiFePO  4  battery,  two  power  rails,  several 
 step-down  buck  converters,  and  decoupling  capacitors.  The  battery  is  connected  to  a  main  power  rail  that  roughly 
 maintains  a  13V  difference.  This  then  feeds  into  a  12V  high-power  buck  converter  that  is  connected  to  a 
 secondary  12V  rail.  This  rail  then  feeds  into  a  9V  buck  converter  that  powers  the  Arduino  Mega.  Another  5V 
 buck  converter  exists  to  step  down  the  signal  from  the  remote  E-Stop  before  being  sent  to  the  GPIO  pin  on  the 
 Arduino  Mega.  Almost  all  other  components  that  are  not  powered  by  their  respective  computers  or 
 microcontrollers  are  powered  by  the  12V  rail.  The  exception  is  the  ODrive  and  the  motors,  which  are  powered 
 directly  from  the  13V  rail.  To  ensure  power  integrity,  twelve  4700  µF  capacitors  are  connected  in  parallel  between 
 power  and  ground.  This  mitigates  changes  in  the  rail’s  voltage  upon  sudden  current  draw  changes  from  the 
 various components. 

 Electronics Suite Description 
 We  use  a  wide  range  of  electronics  on  the  vehicle,  including  computers,  GPSs,  and  motors.  These  are  described 
 further below. 

 NVIDIA Jetson Orin 
 The  NVIDIA  Jetson  provides  a  high-speed  discrete  GPU  suitable  for  real-time 
 image  processing  and  pairs  particularly  well  with  the  ZED  camera,  as  Stereolabs 
 maintains  an  SDK  specifically  for  the  Jetson.  The  Jetson  provides  exceptional 
 performance  considering  its  power  consumption,  form  factor,  and  price.  In  addition, 
 the  included  development  board  has  integrated  HDMI,  Ethernet,  USB,  USB-C  and 
 WiFi to speed up development. 

 Razer Blade 15 
 The  Razer  Blade  15  has  an  Intel  i7  CPU  paired  with  Nvidia  RTX  3060  mobile  GPU. 
 This  combination  of  hardware  enabled  the  ability  to  perform  point  cloud  processing, 
 localization  &  mapping,  path  planning,  and  computer  vision  tasks  simultaneously. 
 The  laptop  form  factor  is  convenient  to  work  with  and  allows  for  hours  of  testing 
 without the need to be powered as shown in figure 5.  Fig. 5:  Laptop on the  top shelf 

 Velodyne VLP-16 
 The  Velodyne  VLP-16  outputs  a  360  degree  3D  point  cloud  with  a  refresh  rate  of  10  Hz.  The  Velodyne  has 
 significantly  increased  range,  accuracy,  and  weatherproofing  over  the  RP-LiDAR  we  used  for  the  previous  years 
 and has become an integral part of our sensor systems. 
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 Adafruit BNO055 Absolute Orientation Sensor 
 The  BNO055  IMU  provides  absolute  orientation,  angular  velocity,  acceleration,  magnetic  field  strength,  and 
 temperature  data.  This  sensor  was  chosen  because  of  its  high  refresh  rate,  low  noise  data,  and  the  well 
 documented libraries and packages. 

 Stereolabs ZED 2i Camera 
 The  primary  draw  of  the  ZED  camera  (shown  in  figure  6)  is  its  low  cost  and  high 
 depth-sensing  range.  Compared  to  other  RGBD  solutions,  the  ZED  camera  offers 
 much  higher  depth  cloud  resolution  through  software  processing  of  the  stereo 
 images.  The  Stereolabs  development  team  has  provided  a  rich  SDK  with  ROS 
 integration  included,  speeding  up  deployment  cycles  by  reducing  hardware  and 
 embedded development time.  Fig. 6:  Mounted ZED camera 

 Garmin GPS 18x USB 
 The  Garmin  18x  GPS  offers  <  3  meters  of  accuracy  with  a  95%  typical  through  a  developer  friendly  USB 
 interface.  The  18x  is  designed  for  automotive  applications  and  as  such  comes  weatherproofed,  a  significant  factor 
 in our decision to keep using the same model. 

 ODrive Motor Controller 
 The  ODrive  motor  controller  offers  tight  integration  with  velocity  commands,  having  built-in  PID  position  and 
 velocity  control.  In  addition,  a  wide  variety  of  customization  and  diagnostic  options  provide  a  significant 
 quality-of-life  boost  while  interfacing  with  hardware.  Examples  include  monitoring  system  voltage  and  current 
 usage  for  each  of  the  motors  and  specifying  performance  characteristics  to  match  user-specified  operating 
 parameters.  ODrives  are  also  able  to  add  velocity  and  current  limits  via  software,  creating  another  level  of  safety 
 for the vehicle. 

 Neo Brushless Motors 
 The  Neo  motors  were  chosen  to  drive  the  vehicle  due  to  their  onboard  hall  effect  encoders  and  their  torque  at  the 
 desired  RPM  which  gives  around  5  mph  with  the  gear  ratios.  It  was  necessary  to  change  to  brushless  motors  since 
 the  ODrive  motor  controllers  are  only  compatible  with  brushless  motors.  This  gave  the  opportunity  to  upgrade  the 
 motors  and  include  the  encoders  into  the  motors  instead  of  having  to  attach  them  ourselves.  This  reduced 
 complexity and a point of failure of the vehicle. 

 Phidgets Optical Rotary Encoder ISC3004 
 The  Phidgets  Encoder  is  mounted  on  the  gear  box.  With  the  calculated  gear  ratio,  and  the  360  CPR,  80  kHz  data, 
 we  are  able  to  interpolate  the  position  and  velocity  of  the  robot.  These  encoders  also  add  physical  support  to  the 
 wheel axles themselves. 

 Arduino Mega 
 A  simple  hardware/software  layer  was  required  to  interface  between  our  ROS  layer  and  the  serial  interface  of  the 
 ODrive  motor  controllers.  Using  an  Arduino  Mega  allows  us  to  process  ROS  messages  on  a  lower-level  device, 
 allowing  the  maximum  abstraction  of  the  drivetrain  to  the  ROS  stack.  The  ODrive’s  manufacturer  also  provides 
 and  maintains  an  Arduino  library  to  interface  with  the  velocity  controls  of  many  motor  controllers  connected  over 
 serial, speeding up development and reducing testing time. 

 The  robot  currently  uses  two  Arduino  Megas:  one  to  receive  velocity  commands,  transmit  them  to  the  ODrive, 
 and  set  the  light,  and  another  one  to  solely  read  the  Phidget  encoders  and  transmit  them  for  sensor  fusion  and 
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 odometry.  The  extra  Mega  was  introduced  to  reduce  the  workload  of  a  single  microcontroller  and  better  fine-tune 
 data publishing rates. 

 Fig. 7:  Electronics  and Power diagram 

 Safety Devices and Integration 
 Being  able  to  operate  our  robot  safely  is  a  key  part  of  the  competition.  When  enabling  the  robot,  main  power  from 
 the  batteries  is  enabled  by  flipping  a  circuit  breaker  mounted  on  the  outside  of  the  bot,  easily  seen  and  accessible 
 by  anyone.  When  the  robot  is  turned  on,  power  is  supplied  to  a  status  light,  showing  its  current  state.  In  an  effort 
 to  make  the  robot  more  modular,  the  Platform  subteam  designed  3-D  printed  mounts  for  the  batteries  that  can  be 
 easily attached and removed. 

 To  ensure  that  no  safety  issues  arise  during  a  run,  a  physical  E-Stop,  remote  E-Stop,  and  speed  limiters  are 
 integrated  into  the  robot  using  the  Arduino  microcontroller  and  ODrive.  The  physical  E-Stop  is  a  large  red  button 
 connected  directly  to  the  ODrive,  which  upon  being  pressed,  will  immediately  interrupt  the  ODrive  and  cut  power 
 to  both  motors.  The  remote  E-Stop  has  a  range  of  250  feet  and  is  operated  by  a  small  remote.  Pressing  the  “A” 
 button  will  send  a  signal  to  a  GPIO  pin  on  the  Arduino,  interrupting  the  processor  and  forcing  a  0  mph  command 
 to  be  transmitted  via  software  and  override  any  other  velocity  commands.  Pressing  the  button  again  will  allow  the 
 robot  to  resume  where  it  left  off.  The  ODrives  also  have  a  5  mph  limit  and  30A  current  draw  limit  per  motor  set  as 
 part of its configuration. Upon exceeding this threshold, the ODrive will immediately halt the motor in violation. 
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 Software Strategy and Mapping Techniques 

 All  of  the  robot’s  software  is  powered  by  the  Robot  Operating  System  (ROS)  running  on  a  base  Ubuntu  20.04 
 installation.  In  line  with  our  modular  design  philosophy,  ROS  was  selected  as  the  robot’s  operating  system  due  to 
 its  extensive  modularity,  community  support,  and  power  features.  ROS  is  a  distributed  networking  and 
 communications  library  allowing  multiple  devices  to  work  together.  A  ROS  computation  graph  is  divided  into 
 discrete  nodes  that  can  publish  and  subscribe  messages.  Nodes  communicate  with  each  other  over  TCP,  allowing 
 them  to  connect  to  nodes  on  other  computers  through  our  Ethernet  switch.  This  system  facilitates  the 
 communication  between  different  processes  and  enables  the  team  to  work  on  independent  tasks;  each  software 
 subteam can develop nodes entirely separately from the others. 

 The  goal  of  the  robot  is  to  navigate  through  a  series  of  waypoints  while  avoiding  obstacles  identified  with  data 
 from  the  onboard  sensors.  Figure  8  shows  the  connections  between  the  sensors  and  navigation  subteams.  The 
 sensors  team  creates  an  occupancy  grid  using  a  variety  of  different  tools,  which  is  then  passed  to  the  navigation 
 subteam to path plan to the next GPS waypoint. This process is explained in more detail below. 

 Fig. 8:  Software architecture diagram of mARVin 

 Obstacle Detection and Avoidance 
 We  use  the  Velodyne  VLP-16  for  identifying  obstacles  above  the  ground  level.  It  has  a  100-meter  range,  and  360° 
 field  of  view,  which  is  perfect  for  detecting  cones  and  other  roadblocks.  We  use  the  ZED  camera  for  detecting 
 ground  level  obstacles  such  as  lanes  and  potholes.  We  take  the  raw  camera  feed  and  the  depth  image  as  the  input. 
 First,  we  run  our  lane  and  pothole  detection  algorithm,  which  consists  of  a  white  color  thresholding,  Gaussian 
 blur,  and  other  image  manipulation  techniques.  After  running  our  lane  and  pothole  detection,  we  output  the  depth 
 values of the lanes and potholes in a point cloud format. 

 Finally,  the  point  clouds  from  the  LiDAR  and  the  Depth  camera  are  fed  into  Google  Cartographer  SLAM.  Using 
 the  occupancy  grid  that  Cartographer  outputs,  the  vehicle  navigates  around  obstacles  in  real  time.  The  navigation 
 stack  is  consistently  sent  updated  maps,  and  the  global  planner  and  local  planner  work  together  to  create  a  path  to 
 the  next  waypoint  while  making  sure  not  to  move  too  close  to  any  obstacles  detected.  Our  custom  A*  node  is 
 explained  in  more  detail  in  the  Software  Strategy  and  Path  Planning  section,  but  allows  us  to  quickly  change  our 
 pathing to avoid obstacles that we may discover or encounter while moving. 
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 Fig. 9:  Different steps of the lane detection algorithm 

 Map Generation 
 We  utilize  a  sophisticated  pose-graph  Simultaneous  Localization  and  Mapping  (SLAM)  solution  called  Google 
 Cartographer.  Cartographer  offers  a  robust  and  highly  configurable  solution  that  permits  us  high  confidence  in  the 
 quality of generated maps, especially in noisy environments. 

 Cartographer  integrates  into  ROS  and  provides  an  occupancy  grid  containing  the  obstacles  identified  in  the  point 
 cloud  data  from  the  LiDAR  and  camera.  At  the  same  time,  we  utilize  data  from  encoders  and  the  IMU  in  an 
 Extended Kalman filter,  as well as LiDAR point cloud matching to estimate the location of the robot in the map. 

 Software Strategy and Path Planning 
 Sensor  fusion  between  the  IMU  and  wheel  encoders  is  accomplished  through  an  Unscented  Kalman  Filter,  which 
 is  more  forgiving  than  an  Extended  Kalman  Filter  when  it  comes  to  calibrating  the  sensor  odometry.  The  GPS  was 
 chosen  to  be  left  out  of  odometric  sensor  fusion  due  to  its  non-continuous  nature,  which  testing  revealed 
 significantly reduced the accuracy of pose estimates. 

 Fig. 10:  Picture of the Map 
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 The  final  costmap  from  lane/pothole  detection  and  SLAM  is  continuously  provided  to  our  global  planner,  which 
 uses  a  custom  A*  node.  Our  A*  node  implementation  takes  advantage  of  the  efficiencies  found  in  D*Lite,  leading 
 to  our  algorithm  only  recalculating  a  path  only  when  there  are  new  obstacles  that  would  directly  interfere  with  the 
 current  path  of  the  robot.  We  created  a  MoveBase  plugin  that  uses  our  custom  A*  code  to  replace  the  base  global 
 planner provided in MoveBase by default, which uses repeated A*. 

 Goal Selection and Path Generation 
 The  GPS  waypoints  are  transformed  into  the  robot’s  world  frame  to  simplify  path  planning.  Given  a  global 
 costmap,  a  local  target  is  found  to  move  the  robot  toward  the  nearest  GPS  waypoint.  To  calculate  this  local  target, 
 the  goal  was  to  find  a  straight  line  to  the  GPS  waypoint  and  use  the  intersection  point  between  that  line  and  the 
 border  of  the  cost  map  as  a  target  position.  In  the  end,  we  will  receive  a  cost  map  from  move_base,  perform  our 
 search  algorithm  to  find  a  path,  and  send  a  set  of  nodes  back  to  move_base  for  the  command  velocities  to  be 
 performed. 

 Fig. 11:  Software architecture of the navigation stack 

 Software Vehicle Failure Modes 
 If  the  vehicle  becomes  stuck  or  is  unable  to  find  any  possible  paths  to  the  goal,  the  vehicle  will  enter  a  recovery 
 behavior  state.  The  vehicle  will  start  by  slowly  rotating  in  place  to  re-localize  itself  on  the  created  map.  Once  the 
 vehicle  has  remapped  the  surrounding  area,  and  finds  a  path  to  the  provided  goal,  it  will  resume  normal  navigation 
 behaviors.  In  the  extreme  case  that  the  robot  is  fully  stuck  in  place,  it  will  increase  the  power  provided  to  the 
 motors to forcibly remove itself from an obstacle. 

 In  case  of  SLAM  scan  matching  algorithm  failure,  the  newest  odometry  information  is  used  to  estimate  the 
 current  pose  of  the  robot.  SLAM  nodes  are  updated  using  forward  projection  according  to  the  optimal  solution  for 
 the pose graph. 

 Hardware Vehicle Failure Points 
 Mechanically,  the  robot  could  potentially  fail  from  the  velcros  and  the  plastic  frames  getting  loose.  Furthermore, 
 the  bolt  attachments  could  potentially  get  loose.  Electrically,  the  robot  could  violate  user-specified  thresholds 
 (speed, current, etc.), tripping errors on the ODrive and motors. This in turn could potentially shut off the motors. 
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 Failure Prevention Strategy 
 The general troubleshooting process for hardware and software failures is as follows: 

 1.  Check that the status lights are lit and indicate nominal operation. 
 2.  Check that connector cables are securely attached. 
 3.  Verify that software nodes are running and messages are being transmitted. 
 4.  Run  ROS  troubleshooting  like  roswtf  ,  rqt_graph  ,  and  view_frames  to  verify  that  the  node  and 

 message graphs are properly set up. 

 Mechanical 
 To  prevent  the  aforementioned  mechanical  failure  points,  the  robot  has  been  designed  with  an  aluminum  frame, 
 deferring  most  of  the  potential  stress  on  the  velcros  to  the  subsystems  themselves.  In  case  this  is  not  sufficient,  the 
 team  will  keep  a  surplus  of  extra  velcros  to  replace  any  loose  velcro  connections.  The  bolt  attachments  have  been 
 designed so that there are no shear forces acting on the bolt during robot operation, mitigating this failure point. 

 Electrical 
 To  prevent  the  aforementioned  electrical  failure  point,  the  primary  Arduino  Mega  will  periodically  monitor  the 
 error  flags  the  ODrive  sets  for  each  of  the  motors.  Upon  detecting  any  error,  the  Mega  will  temporarily  halt  the 
 robot,  ignore  all  navigation  commands,  reset  the  ODrive  error  flags,  and  recalibrate  the  motors  that  are  in 
 violation before resuming normal navigation. 

 Software 
 On  the  software  side,  there  are  many  safeguards  put  in  place  to  prevent  unwanted  behavior  of  the  vehicle.  First, 
 the  robot  will  not  map  and  move  to  locations  that  are  in  completely  unknown  space,  outside  the  range  of  the 
 global  costmap.  This  prevents  the  robot  from  moving  too  far  away  from  the  emergency  stop  range  during  testing. 
 Additionally,  real  time  SLAM  and  path  planning  allows  for  dynamic  obstacle  avoidance,  so  the  vehicle  should 
 avoid any spontaneously appearing objects on its path. 

 The  sensors  team  utilizes  sensor  fusion  concepts  to  minimize  the  effect  of  a  sensor  failure.  The  data  from  the  IMU 
 and  the  encoders  are  combined  to  form  odometry  data.  When  either  sensor  fails  during  an  operation,  the  robot 
 position  can  still  be  estimated  using  the  other  sensor,  though  with  less  precision.  We  have  also  added  redundancy 
 and  modularity  in  our  sensor  systems.  The  encoder  readings  can  also  be  provided  by  the  Odrive  motor  controller. 
 Thus,  in  a  case  of  critical  encoder  failure,  it  is  possible  to  read  data  directly  from  the  Odrive  by  simply  subscribing 
 to another topic in ROS. 

 Testing 

 Navigation 
 To  test  the  navigation  systems,  we  took  advantage  of  buildings  on  campus.  We  successfully  planned  paths  through 
 hallways  and  large  rooms  that  contain  many  obstacles  such  as  tables,  chairs,  and  pedestrians.  Waypoints  were 
 added  during  testing  by  directly  adding  a  2D  navigation  goal  through  RViz  on  the  onboard  laptop.  To  test  GPS 
 functionality,  we  collected  multiple  rosbags  of  GPS  data  while  moving  through  the  city  of  Ann  Arbor.  This  GPS 
 data  was  then  tested  with  the  GPS  node  code  separately.  The  main  difficulty  we  faced  during  testing  of  the 
 navigation  stack  was  that  the  sensors  stack  would  often  detect  the  people  setting  up  the  vehicle  as  obstacles 
 directly behind itself. 

 12 



 Lane Detection 
 White  tape  was  placed  on  a  parking  lot  in  the  shape  of  lane  lines,  and  the  robot  was  pushed  through  the  course  to 
 observe  what  the  point  cloud  output  was.  By  comparing  this  to  the  real  world  we  were  able  to  determine  whether 
 or  not  the  computer  vision  algorithm  was  working.  When  testing,  we  found  that  the  depth  map  we  received  from 
 the ZED camera did not always have the depth values on the lane lines as shown in figure 12 below. 

 Fig. 12:  Absence of depth values on lane lines 

 The  left  image  is  the  raw  camera  image,  and  the  right  image  is  the  depth  map  generated  by  the  ZED  camera.  Since 
 the  white  lanes  are  so  uniform,  the  depth  map  has  trouble  generating  depth  values  on  those  lane  lines  which 
 greatly  disrupts  our  lane  detection  pipeline.  Our  solution  is  to  dilate  the  depth  map,  which  allows  us  to  find  the 
 maximum  value  nearby  the  lane  lines,  which  is  close  enough  to  the  correct  depth  that  the  output  will  still  be 
 correct. 

 Sensors 
 Testing the sensor system involves testing individual sensors separately and integration testing with a 
 combination  of  different  sensors.  To  test  the  encoders,  we  have  pushed  the  robot  on  the  ground,  ensuring  no  wheel 
 slippage.  We  then  verified  the  various  distances  pushed  with  the  number  of  rotations  recorded  by  the  encoder 
 multiplied  by  the  corresponding  gear  ratio  and  wheel  radius.  To  test  the  IMU  sensor,  we  were  able  to  visualize  the 
 data  collected  by  the  data  in  RViz  and  ROS.  We  have  observed  an  accurate  gyro  but  a  significant  drift  in  the 
 acceleration  data.  To  combat  inaccurate  readings,  we  wrote  a  custom  python  calibration  script  that  offsets  the 
 acceleration  readings  to  achieve  better  results.  To  test  the  GPS  sensor,  we  walked  different  movement 
 configurations  in  the  parking  lot,  then  plotted  the  collected  coordinates.  The  figure  13  below  shows  the  received 
 coordinates for walking in a straight line along the parking lane. 

 The  sensor  integration  testing  started  with  simulation.  We  have  implemented  a  version  of  Extended  Kalman  Filter 
 (EKF)  for  robot  state  estimation,  and  compared  the  estimated  odometry  data  with  the  exact  odometry  vectors 
 that’s  provided  in  simulation.  We  also  deployed  all  the  sensors  to  the  robot  and  published  the  collected  data  to 
 Google  Cartographer  SLAM.  We  tuned  the  configuration  file  with  an  iterative  approach  and  was  able  to  make  the 
 map building efficient and accurate. 
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 Fig. 13:  GPS coordinates from walking in a straight line 

 Vehicle Safety Design Concepts 
 In  addition  to  both  E-stops  and  software  limits,  both  failure  prevention  strategies  and  testing  implement  several 
 safety  design  concepts.  For  the  software  and  mechanical  prevention  strategies,  a  soft  bumper,  made  using  a  pool 
 noodle,  was  included  in  the  robot  to  minimize  any  damage  from  potential  collisions.  For  the  electrical  prevention 
 strategy,  the  robot  is  halted  to  prevent  any  undefined  behavior.  For  testing,  one  person  is  assigned  to  solely 
 operate the remote E-stop, ensuring that someone can immediately stop the robot when necessary. 

 Simulations in Virtual Environment 
 The  robot  and  its  sensors  are  simulated  in  Gazebo,  and  the  various  types  of  data  visualized  in  RViz.  These 
 software  were  chosen  because  of  their  well  documented  integration  with  ROS.  We  have  built  the  robot  simulation 
 model  from  scratch,  with  simulated  sensors  such  as  the  IMU,  depth  camera,  LiDAR.  The  Navigation  Stack  and 
 Google  Cartographer  SLAM  subscribes  to  the  sensor  data,  generating  the  map  the  the  planned  path  in  the  process. 
 The  environment  map  was  based  on  the  Auto-Nav  course  illustrated  in  the  competition  rules.  We  have  made  some 
 custom models such as ramps and lane lines using Blender and imported them into Gazebo. 

 Fig. 14:  The simulated camera and LiDAR visualized with RViz 

 Theoretical Concepts in Simulations 
 We  were  able  to  simulate  and  debug  the  SLAM  and  autonomous  navigation  inside  simulation.  To  start  with,  we 
 modeled  the  robot  and  its  sensors  using  the  URDF  format  and  Gazebo  sensor  plugins.  We  wrote  custom  launch 
 files  to  spawn  and  tele-op  the  robot  into  the  competition  world  that  we  built  last  year.  We  were  able  to  set  up 
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 Google  Cartographer  inside  simulation,  subscribing  to  the  LiDAR  and  IMU  nodes.  We  tuned  the  LUA 
 configuration files to improve the map generation speed and quality. 

 One  important  theoretical  concept  that  we  implemented  in  simulation  was  the  ground  filter.  The  VLP-16’s  3D 
 scan  will  reach  the  ground  and  make  that  into  an  obstacle.  The  ground  filter  can  then  be  used  to  delete  points 
 below a desired height to achieve clean maps for navigation. 

 Fig. 15:  SLAM algorithm with/without the Ground Filter 

 Performance Testing To Date 

 Component Testing 
 Individual  components  on  the  vehicle  such  as  the  motor  controller,  wheel  encoders,  LiDAR,  GPS,  IMU,  Depth 
 Camera,  wireless  and  physical  e-stops  have  been  tested.  We  utilized  a  tele-op  controller  to  test  the  motor  control, 
 and RViz to visualize the sensor data collected. 

 Integration Testing 
 Combining  the  separate  components  into  a  combined  vehicle  was  a  challenging  task.  While  many  of  our  systems 
 had  problems  at  first,  we  were  able  to  solve  these  during  our  testing  procedure.  While  we  were  able  to  fully 
 combine  the  embedded,  sensors,  and  navigation  stacks  correctly,  we  still  have  trouble  with  the  fusion  of  the 
 computer  vision  and  lidar  point  clouds.  Additionally,  the  computer  vision  system  that  detects  lane  lines  and 
 provides them to Google Cartographer as a depth map is not fully functional. 

 Initial Performance Assessments 

 Metric  Test Result 

 Max Speed  3.4 m/s 
 Acceleration  0.4 m/s  2 

 Ramp Climbing  20 degrees 
 Laptop Battery Life  1 hour 
 Robot Battery Life  50 hours standby 

 1 hour running with motors 
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 Appendix A: Torque and Efficiency Curves for the Neo Brushless Motors 
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 Appendix B: ROS Graph for the Software Stack 
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