
 ARV
 University of Michigan - Ann Arbor

 Submitted: May 15th, 2023

 Team Captain: Ashwin Saxena | ashwinsa@umich.edu

 Faculty Advisors: Xiaoxiao Du | xiaodu@umich.edu

 Damen Provost | provostd@umich.edu

 Statement of Integrity: Provided Separately

 1

mailto:ashwinsa@umich.edu
mailto:xiaodu@umich.edu
mailto:provostd@umich.edu

 Team Roster

 Name Email Name Email
 Ashwin Saxena* ashwinsa@umich.edu Navigation

 Christian Foreman* cjforema@umich.edu Gannon Smith gansmith@umich.edu
 Jose Diaz* diazjose@umich.edu Chris Erndteman chrisern@umich.edu

 Platform Emily Wu emilyywu@umich.edu
 Kohei Nishiyama* kohein@umich.edu Aarya Kulshrestha akulshre@umich.edu
 Drew Boughton** drbought@umich.edu Krishna Dihora* kdihora@umich.edu

 Felicia Sang fsang@umich.edu Ryan Lee ryalee@umich.edu
 Chloe Akombi cjakombi@umich.edu John Rose johnrose@umich.edu

 Simba Gao simbagao@umich.edu Maaz Hussain maazh@umich.edu
 Cara Blashill blashill@umich.edu Akhil Nair aknair@umich.edu
 Aidan Deacon agdeacon@umich.edu Benjamin Rossano** brossano@umich.edu

 Ryan Bird ryanbird@umich.edu Computer Vision
 Vance Kreider vkreider@umich.edu Alex de la Iglesia alexdela@umich.edu
 Brooke Kelsey bckelsey@umich.edu Connor Pang pangc@umich.edu

 Megan Dzbanski mdzbansk@umich.edu Parsanna Koirala parsanna@umich.edu
 Embedded Systems Lohit Kamatham lohitk@umich.edu

 Aakash Bharat* aakashvb@umich.edu Sydney Belt sydbelt@umich.edu
 Julian Skifstad juliansk@umich.edu Liyufei Meng liyufeim@umich.edu
 Joshua Ning** joshning@umich.edu Awrod Haghi-Tabrizi** ahaghita@umich.edu
 Brinda Kapani bkapani@umich.edu Adi Balaji advaithb@umich.edu
 Eric Barbieri ericbarb@umich.edu David Welch* dswelch@umich.edu

 Sujit Lakshmikanth sujlaks@umich.edu Josh Nigrelli jnigrell@umich.edu
 Yuvraj Singh uvsingh@umich.edu Daniel (Xinzhou) He xinzhouh@umich.edu
 Peter Susanto psusanto@umich.edu Tom Vu tomvu@umich.edu
 Grace Strom gstrom@umich.edu Waseem Alsayed alsayed@umich.edu

 Liam Donegan ldomegan@umich.edu Nihal Kurki nkurki@umich.edu
 Katherine Shih katshih@umich.edu Sensors

 Layth Abdelkarim laythabd@umich.edu Jason Ning* zyning@umich.edu
 Business Annie Li anranli@umich.edu

 Alan Teng* thtalan@umich.edu Deric Dinu Daniel dericdd@umich.edu
 Eric Qiao ericqiao@umich.edu Chancellor Day dchance@umich.edu

 Aaryan Chandola aaryanc@umich.edu Kari Naga knga@umich.edu

 * Lead, ** Assistant Lead

 Introduction
 After a year-long development process, our team is delighted to introduce University of Michigan - Ann Arbor’s
 Autonomous Robotic Vehicle Team’s (ARV) new robot – mARVin for the 2023 Intelligent Ground Vehicle
 Competition. ARV is supported by both campus and corporate sponsors. The team is supported by the University
 of Michigan Robotics Institute. Our corporate sponsors include Ford, Bose, Ann Arbor SPARK, Aptiv, Siemens,
 Northrop Grumman, and Raytheon.

 Team Organization
 Our team is organized into six subteams: Business, Computer Vision, Navigation, Embedded Systems, Platform,
 and Sensors. The Business subteam handles sponsor relations, as well as the media/marketing side of the team.
 The Computer Vision (CV) subteam develops the lane and pothole detection system using CV techniques. The
 Navigation subteam develops the path planning, control systems, and simulation systems. The Embedded Systems

 2

 subteam develops the electrical system for the robot; this includes motor control, safety features, the status
 indicator light, and the power delivery on the robot. The Platform subteam designs and builds the robot chassis to
 fit within the given design requirements. The Sensors subteam configures the robot’s sensors to compute
 odometry and Simultaneous Localization and Mapping (SLAM) to produce a map of the surrounding
 environment.
 The leadership team consists of the Team Lead, Operations Director, Engineering Director, as well as leads for
 each subteam. The Team Lead, Operations Director, and Engineering Director provide the general direction and
 strategy for the team, and the subteam leads focus on the technical development of their respective subsystems.

 Design Process and Assumptions
 The design process for the robot was split up and assigned to the aforementioned subteams. Throughout the fall
 semester, the platform team consulted with the other subteams to develop a CAD plan for the robot, while the
 other subteams primarily used the time for onboarding and simulation. We also held monthly design review
 meetings with our mentors to discuss our design choices and implementation plan. In the winter semester, we
 finished building the robot platform in two months, and the software subteams consequently tested and debugged
 the vehicle code. Figure 1 shows how different aspects of our season contributed to the design process.

 Fig. 1: The ARV Design Process

 There were several key assumptions and design choices that all subteams agreed upon before the chassis was
 designed. They are listed below:

 ● The design must facilitate debugging. This meant allowing the laptop to be easily accessible and have a
 dedicated space on the robot itself.

 ● Wheel slippage is negligible. Both the embedded systems and navigation subteams have error correction
 built into their software design.

 ● The design must be modular. Each subteam must be able to easily add, access, and remove components.
 ● The robot should withstand light rain and other debris; the robot is both splash- and water-proof.

 3

 Vehicle Design Innovations
 Two two main innovations in our robot for this year include a rack-railing concept as well as improved
 weatherproofing. These innovations were necessary to increase the efficiency of hardware and software
 development as well as improve environmental protection of the robot, specifically from rain.

 Innovative Concept from Other Teams’ Vehicles: Rack-Railing Concept
 One innovative concept integrated into our new vehicle is the railing system. Last year, the team had difficulty
 debugging the vehicle’s code because there was a lack of space for a laptop. Also, the difficult access to the
 components in the system made the identification of hardware problems worse. The railing system was designed
 so that during the testing process, different systems could be checked and tested individually, without having to
 disconnect wirings to systems other than the one of interest. Figure 2 shows the three movable shelves, one for the
 electrical system, one for the laptop, and one for the Jetson and sensor systems, along with the rack-railing
 mechanism that facilitates guided motion. Each shelf could be slid out because the wirings are long enough to not
 disconnect from the components. With the increased ease in accessibility, the testing process became quicker and
 allowed the design cycle to move much smoother.

 Fig. 2 : Complete shelving stack and view of the rack-railing mechanism

 Innovative Technology Applied to our Vehicle
 To improve our robot’s weatherproofing ability, we also decided to use shower curtains to make a raincoat for the
 robot. We will discuss this in depth in the later sections.

 Description of Mechanical Design

 The objective of the mechanical system is to provide the chassis, payload support, and a maneuvering method for
 our robot, mARVin. The team used Solidworks for designing the platform and various machines for
 manufacturing including a waterjet, drill press, horizontal bandsaw, and laser cutter. CAD was used to create
 models for different parts of the chassis and to assemble all the parts with bolt placement in consideration. Figure
 3 shows the CAD model of mARVin in Solidworks.

 Decision on Frame Structure, Housing, Structure Design
 Designed with portability, serviceability, and longevity in mind, the chassis is constructed from 1-inch square
 aluminum tubing to minimize overall system weight and maintain rigidity. The dimensions are within the
 competition requirements at 35 inches wide by 47 inches long and well below the height limit. of six feet. The
 chassis is secured by custom-made mending plates and attachment brackets and secured with one common 1/4
 inch thread hex bolt and nut to improve serviceability. The brackets and mending plates can be easily
 manufactured and the hex bolt prevents stripping. Having a common bolt and nut type makes the entire system
 easier to service. The robot features a two-wheel drivetrain with a third free caster wheel to provide a balance

 4

 between power, stability, and maneuverability. Inside the main chassis of the robot, there are two gearboxes with
 motors, encoders, a battery, and shelves for the embedded system, Jetson, and a laptop. The batteries are placed in
 the interior of the robot, behind the drivetrain to act as a counterweight against the payload. This allows the
 chassis to be balanced even on a fifteen percent incline. Corner guards were 3D-printed to hold the batteries firm
 against the chassis. At the rear of the robot, there is a physical emergency switch with LED safety light and a
 power switch of the entire system, as stipulated by the rules requirement.

 Fig. 3: Front and back isometric views of mARVin as designed in Solidworks

 Weatherproofing
 The white main structure is built from metal frames with plastic coverings on all six sides to protect from debris.
 A covering made from a sewed polyester shower curtain was placed over the vehicle to protect the primary and
 secondary computers from rain. Figure 4 demonstrates the functionality of the covering as it allows for ease of
 access to vehicle electronics without sacrificing protection when needed. The LiDAR and stereo camera
 attachments are waterproof, with the LiDAR having additional protection from the rain in the form of a curved 3D
 printed covering. The safety stop, the stereo camera, and the payload holder are placed outside the main metal
 frame because they would not be damaged by weather conditions.

 Fig. 4: A demonstration of the raincoat protecting the electronics stack while not limiting function

 5

 Suspension
 mARVin lacks suspension in its structure as it would create unnecessary weight on the vehicle. We determined
 that suspension would not be needed as the robot would be driven on asphalt, which is relatively flat and smooth.
 Although there would be slopes and inclines on the course, the shock would not be too large on the robot as the
 change in slope is not immediate.

 Electronic and Power Design
 The electronic and power design was implemented by the Embedded Systems subteam. The team updated the
 vehicle with O-Drive motor controllers with onboard PID tuning and new DC brushless motors. Fig. 7 shows a
 diagram of the electrical and power system.

 Power Distribution System
 The power distribution system consists of a single nominal 12V 50 A-hr LiFePO 4 battery, two power rails, several
 step-down buck converters, and decoupling capacitors. The battery is connected to a main power rail that roughly
 maintains a 13V difference. This then feeds into a 12V high-power buck converter that is connected to a
 secondary 12V rail. This rail then feeds into a 9V buck converter that powers the Arduino Mega. Another 5V
 buck converter exists to step down the signal from the remote E-Stop before being sent to the GPIO pin on the
 Arduino Mega. Almost all other components that are not powered by their respective computers or
 microcontrollers are powered by the 12V rail. The exception is the ODrive and the motors, which are powered
 directly from the 13V rail. To ensure power integrity, twelve 4700 µF capacitors are connected in parallel between
 power and ground. This mitigates changes in the rail’s voltage upon sudden current draw changes from the
 various components.

 Electronics Suite Description
 We use a wide range of electronics on the vehicle, including computers, GPSs, and motors. These are described
 further below.

 NVIDIA Jetson Orin
 The NVIDIA Jetson provides a high-speed discrete GPU suitable for real-time
 image processing and pairs particularly well with the ZED camera, as Stereolabs
 maintains an SDK specifically for the Jetson. The Jetson provides exceptional
 performance considering its power consumption, form factor, and price. In addition,
 the included development board has integrated HDMI, Ethernet, USB, USB-C and
 WiFi to speed up development.

 Razer Blade 15
 The Razer Blade 15 has an Intel i7 CPU paired with Nvidia RTX 3060 mobile GPU.
 This combination of hardware enabled the ability to perform point cloud processing,
 localization & mapping, path planning, and computer vision tasks simultaneously.
 The laptop form factor is convenient to work with and allows for hours of testing
 without the need to be powered as shown in figure 5. Fig. 5: Laptop on the top shelf

 Velodyne VLP-16
 The Velodyne VLP-16 outputs a 360 degree 3D point cloud with a refresh rate of 10 Hz. The Velodyne has
 significantly increased range, accuracy, and weatherproofing over the RP-LiDAR we used for the previous years
 and has become an integral part of our sensor systems.

 6

 Adafruit BNO055 Absolute Orientation Sensor
 The BNO055 IMU provides absolute orientation, angular velocity, acceleration, magnetic field strength, and
 temperature data. This sensor was chosen because of its high refresh rate, low noise data, and the well
 documented libraries and packages.

 Stereolabs ZED 2i Camera
 The primary draw of the ZED camera (shown in figure 6) is its low cost and high
 depth-sensing range. Compared to other RGBD solutions, the ZED camera offers
 much higher depth cloud resolution through software processing of the stereo
 images. The Stereolabs development team has provided a rich SDK with ROS
 integration included, speeding up deployment cycles by reducing hardware and
 embedded development time. Fig. 6: Mounted ZED camera

 Garmin GPS 18x USB
 The Garmin 18x GPS offers < 3 meters of accuracy with a 95% typical through a developer friendly USB
 interface. The 18x is designed for automotive applications and as such comes weatherproofed, a significant factor
 in our decision to keep using the same model.

 ODrive Motor Controller
 The ODrive motor controller offers tight integration with velocity commands, having built-in PID position and
 velocity control. In addition, a wide variety of customization and diagnostic options provide a significant
 quality-of-life boost while interfacing with hardware. Examples include monitoring system voltage and current
 usage for each of the motors and specifying performance characteristics to match user-specified operating
 parameters. ODrives are also able to add velocity and current limits via software, creating another level of safety
 for the vehicle.

 Neo Brushless Motors
 The Neo motors were chosen to drive the vehicle due to their onboard hall effect encoders and their torque at the
 desired RPM which gives around 5 mph with the gear ratios. It was necessary to change to brushless motors since
 the ODrive motor controllers are only compatible with brushless motors. This gave the opportunity to upgrade the
 motors and include the encoders into the motors instead of having to attach them ourselves. This reduced
 complexity and a point of failure of the vehicle.

 Phidgets Optical Rotary Encoder ISC3004
 The Phidgets Encoder is mounted on the gear box. With the calculated gear ratio, and the 360 CPR, 80 kHz data,
 we are able to interpolate the position and velocity of the robot. These encoders also add physical support to the
 wheel axles themselves.

 Arduino Mega
 A simple hardware/software layer was required to interface between our ROS layer and the serial interface of the
 ODrive motor controllers. Using an Arduino Mega allows us to process ROS messages on a lower-level device,
 allowing the maximum abstraction of the drivetrain to the ROS stack. The ODrive’s manufacturer also provides
 and maintains an Arduino library to interface with the velocity controls of many motor controllers connected over
 serial, speeding up development and reducing testing time.

 The robot currently uses two Arduino Megas: one to receive velocity commands, transmit them to the ODrive,
 and set the light, and another one to solely read the Phidget encoders and transmit them for sensor fusion and

 7

 odometry. The extra Mega was introduced to reduce the workload of a single microcontroller and better fine-tune
 data publishing rates.

 Fig. 7: Electronics and Power diagram

 Safety Devices and Integration
 Being able to operate our robot safely is a key part of the competition. When enabling the robot, main power from
 the batteries is enabled by flipping a circuit breaker mounted on the outside of the bot, easily seen and accessible
 by anyone. When the robot is turned on, power is supplied to a status light, showing its current state. In an effort
 to make the robot more modular, the Platform subteam designed 3-D printed mounts for the batteries that can be
 easily attached and removed.

 To ensure that no safety issues arise during a run, a physical E-Stop, remote E-Stop, and speed limiters are
 integrated into the robot using the Arduino microcontroller and ODrive. The physical E-Stop is a large red button
 connected directly to the ODrive, which upon being pressed, will immediately interrupt the ODrive and cut power
 to both motors. The remote E-Stop has a range of 250 feet and is operated by a small remote. Pressing the “A”
 button will send a signal to a GPIO pin on the Arduino, interrupting the processor and forcing a 0 mph command
 to be transmitted via software and override any other velocity commands. Pressing the button again will allow the
 robot to resume where it left off. The ODrives also have a 5 mph limit and 30A current draw limit per motor set as
 part of its configuration. Upon exceeding this threshold, the ODrive will immediately halt the motor in violation.

 8

 Software Strategy and Mapping Techniques

 All of the robot’s software is powered by the Robot Operating System (ROS) running on a base Ubuntu 20.04
 installation. In line with our modular design philosophy, ROS was selected as the robot’s operating system due to
 its extensive modularity, community support, and power features. ROS is a distributed networking and
 communications library allowing multiple devices to work together. A ROS computation graph is divided into
 discrete nodes that can publish and subscribe messages. Nodes communicate with each other over TCP, allowing
 them to connect to nodes on other computers through our Ethernet switch. This system facilitates the
 communication between different processes and enables the team to work on independent tasks; each software
 subteam can develop nodes entirely separately from the others.

 The goal of the robot is to navigate through a series of waypoints while avoiding obstacles identified with data
 from the onboard sensors. Figure 8 shows the connections between the sensors and navigation subteams. The
 sensors team creates an occupancy grid using a variety of different tools, which is then passed to the navigation
 subteam to path plan to the next GPS waypoint. This process is explained in more detail below.

 Fig. 8: Software architecture diagram of mARVin

 Obstacle Detection and Avoidance
 We use the Velodyne VLP-16 for identifying obstacles above the ground level. It has a 100-meter range, and 360°
 field of view, which is perfect for detecting cones and other roadblocks. We use the ZED camera for detecting
 ground level obstacles such as lanes and potholes. We take the raw camera feed and the depth image as the input.
 First, we run our lane and pothole detection algorithm, which consists of a white color thresholding, Gaussian
 blur, and other image manipulation techniques. After running our lane and pothole detection, we output the depth
 values of the lanes and potholes in a point cloud format.

 Finally, the point clouds from the LiDAR and the Depth camera are fed into Google Cartographer SLAM. Using
 the occupancy grid that Cartographer outputs, the vehicle navigates around obstacles in real time. The navigation
 stack is consistently sent updated maps, and the global planner and local planner work together to create a path to
 the next waypoint while making sure not to move too close to any obstacles detected. Our custom A* node is
 explained in more detail in the Software Strategy and Path Planning section, but allows us to quickly change our
 pathing to avoid obstacles that we may discover or encounter while moving.

 9

 Fig. 9: Different steps of the lane detection algorithm

 Map Generation
 We utilize a sophisticated pose-graph Simultaneous Localization and Mapping (SLAM) solution called Google
 Cartographer. Cartographer offers a robust and highly configurable solution that permits us high confidence in the
 quality of generated maps, especially in noisy environments.

 Cartographer integrates into ROS and provides an occupancy grid containing the obstacles identified in the point
 cloud data from the LiDAR and camera. At the same time, we utilize data from encoders and the IMU in an
 Extended Kalman filter, as well as LiDAR point cloud matching to estimate the location of the robot in the map.

 Software Strategy and Path Planning
 Sensor fusion between the IMU and wheel encoders is accomplished through an Unscented Kalman Filter, which
 is more forgiving than an Extended Kalman Filter when it comes to calibrating the sensor odometry. The GPS was
 chosen to be left out of odometric sensor fusion due to its non-continuous nature, which testing revealed
 significantly reduced the accuracy of pose estimates.

 Fig. 10: Picture of the Map

 10

 The final costmap from lane/pothole detection and SLAM is continuously provided to our global planner, which
 uses a custom A* node. Our A* node implementation takes advantage of the efficiencies found in D*Lite, leading
 to our algorithm only recalculating a path only when there are new obstacles that would directly interfere with the
 current path of the robot. We created a MoveBase plugin that uses our custom A* code to replace the base global
 planner provided in MoveBase by default, which uses repeated A*.

 Goal Selection and Path Generation
 The GPS waypoints are transformed into the robot’s world frame to simplify path planning. Given a global
 costmap, a local target is found to move the robot toward the nearest GPS waypoint. To calculate this local target,
 the goal was to find a straight line to the GPS waypoint and use the intersection point between that line and the
 border of the cost map as a target position. In the end, we will receive a cost map from move_base, perform our
 search algorithm to find a path, and send a set of nodes back to move_base for the command velocities to be
 performed.

 Fig. 11: Software architecture of the navigation stack

 Software Vehicle Failure Modes
 If the vehicle becomes stuck or is unable to find any possible paths to the goal, the vehicle will enter a recovery
 behavior state. The vehicle will start by slowly rotating in place to re-localize itself on the created map. Once the
 vehicle has remapped the surrounding area, and finds a path to the provided goal, it will resume normal navigation
 behaviors. In the extreme case that the robot is fully stuck in place, it will increase the power provided to the
 motors to forcibly remove itself from an obstacle.

 In case of SLAM scan matching algorithm failure, the newest odometry information is used to estimate the
 current pose of the robot. SLAM nodes are updated using forward projection according to the optimal solution for
 the pose graph.

 Hardware Vehicle Failure Points
 Mechanically, the robot could potentially fail from the velcros and the plastic frames getting loose. Furthermore,
 the bolt attachments could potentially get loose. Electrically, the robot could violate user-specified thresholds
 (speed, current, etc.), tripping errors on the ODrive and motors. This in turn could potentially shut off the motors.

 11

 Failure Prevention Strategy
 The general troubleshooting process for hardware and software failures is as follows:

 1. Check that the status lights are lit and indicate nominal operation.
 2. Check that connector cables are securely attached.
 3. Verify that software nodes are running and messages are being transmitted.
 4. Run ROS troubleshooting like roswtf , rqt_graph , and view_frames to verify that the node and

 message graphs are properly set up.

 Mechanical
 To prevent the aforementioned mechanical failure points, the robot has been designed with an aluminum frame,
 deferring most of the potential stress on the velcros to the subsystems themselves. In case this is not sufficient, the
 team will keep a surplus of extra velcros to replace any loose velcro connections. The bolt attachments have been
 designed so that there are no shear forces acting on the bolt during robot operation, mitigating this failure point.

 Electrical
 To prevent the aforementioned electrical failure point, the primary Arduino Mega will periodically monitor the
 error flags the ODrive sets for each of the motors. Upon detecting any error, the Mega will temporarily halt the
 robot, ignore all navigation commands, reset the ODrive error flags, and recalibrate the motors that are in
 violation before resuming normal navigation.

 Software
 On the software side, there are many safeguards put in place to prevent unwanted behavior of the vehicle. First,
 the robot will not map and move to locations that are in completely unknown space, outside the range of the
 global costmap. This prevents the robot from moving too far away from the emergency stop range during testing.
 Additionally, real time SLAM and path planning allows for dynamic obstacle avoidance, so the vehicle should
 avoid any spontaneously appearing objects on its path.

 The sensors team utilizes sensor fusion concepts to minimize the effect of a sensor failure. The data from the IMU
 and the encoders are combined to form odometry data. When either sensor fails during an operation, the robot
 position can still be estimated using the other sensor, though with less precision. We have also added redundancy
 and modularity in our sensor systems. The encoder readings can also be provided by the Odrive motor controller.
 Thus, in a case of critical encoder failure, it is possible to read data directly from the Odrive by simply subscribing
 to another topic in ROS.

 Testing

 Navigation
 To test the navigation systems, we took advantage of buildings on campus. We successfully planned paths through
 hallways and large rooms that contain many obstacles such as tables, chairs, and pedestrians. Waypoints were
 added during testing by directly adding a 2D navigation goal through RViz on the onboard laptop. To test GPS
 functionality, we collected multiple rosbags of GPS data while moving through the city of Ann Arbor. This GPS
 data was then tested with the GPS node code separately. The main difficulty we faced during testing of the
 navigation stack was that the sensors stack would often detect the people setting up the vehicle as obstacles
 directly behind itself.

 12

 Lane Detection
 White tape was placed on a parking lot in the shape of lane lines, and the robot was pushed through the course to
 observe what the point cloud output was. By comparing this to the real world we were able to determine whether
 or not the computer vision algorithm was working. When testing, we found that the depth map we received from
 the ZED camera did not always have the depth values on the lane lines as shown in figure 12 below.

 Fig. 12: Absence of depth values on lane lines

 The left image is the raw camera image, and the right image is the depth map generated by the ZED camera. Since
 the white lanes are so uniform, the depth map has trouble generating depth values on those lane lines which
 greatly disrupts our lane detection pipeline. Our solution is to dilate the depth map, which allows us to find the
 maximum value nearby the lane lines, which is close enough to the correct depth that the output will still be
 correct.

 Sensors
 Testing the sensor system involves testing individual sensors separately and integration testing with a
 combination of different sensors. To test the encoders, we have pushed the robot on the ground, ensuring no wheel
 slippage. We then verified the various distances pushed with the number of rotations recorded by the encoder
 multiplied by the corresponding gear ratio and wheel radius. To test the IMU sensor, we were able to visualize the
 data collected by the data in RViz and ROS. We have observed an accurate gyro but a significant drift in the
 acceleration data. To combat inaccurate readings, we wrote a custom python calibration script that offsets the
 acceleration readings to achieve better results. To test the GPS sensor, we walked different movement
 configurations in the parking lot, then plotted the collected coordinates. The figure 13 below shows the received
 coordinates for walking in a straight line along the parking lane.

 The sensor integration testing started with simulation. We have implemented a version of Extended Kalman Filter
 (EKF) for robot state estimation, and compared the estimated odometry data with the exact odometry vectors
 that’s provided in simulation. We also deployed all the sensors to the robot and published the collected data to
 Google Cartographer SLAM. We tuned the configuration file with an iterative approach and was able to make the
 map building efficient and accurate.

 13

 Fig. 13: GPS coordinates from walking in a straight line

 Vehicle Safety Design Concepts
 In addition to both E-stops and software limits, both failure prevention strategies and testing implement several
 safety design concepts. For the software and mechanical prevention strategies, a soft bumper, made using a pool
 noodle, was included in the robot to minimize any damage from potential collisions. For the electrical prevention
 strategy, the robot is halted to prevent any undefined behavior. For testing, one person is assigned to solely
 operate the remote E-stop, ensuring that someone can immediately stop the robot when necessary.

 Simulations in Virtual Environment
 The robot and its sensors are simulated in Gazebo, and the various types of data visualized in RViz. These
 software were chosen because of their well documented integration with ROS. We have built the robot simulation
 model from scratch, with simulated sensors such as the IMU, depth camera, LiDAR. The Navigation Stack and
 Google Cartographer SLAM subscribes to the sensor data, generating the map the the planned path in the process.
 The environment map was based on the Auto-Nav course illustrated in the competition rules. We have made some
 custom models such as ramps and lane lines using Blender and imported them into Gazebo.

 Fig. 14: The simulated camera and LiDAR visualized with RViz

 Theoretical Concepts in Simulations
 We were able to simulate and debug the SLAM and autonomous navigation inside simulation. To start with, we
 modeled the robot and its sensors using the URDF format and Gazebo sensor plugins. We wrote custom launch
 files to spawn and tele-op the robot into the competition world that we built last year. We were able to set up

 14

 Google Cartographer inside simulation, subscribing to the LiDAR and IMU nodes. We tuned the LUA
 configuration files to improve the map generation speed and quality.

 One important theoretical concept that we implemented in simulation was the ground filter. The VLP-16’s 3D
 scan will reach the ground and make that into an obstacle. The ground filter can then be used to delete points
 below a desired height to achieve clean maps for navigation.

 Fig. 15: SLAM algorithm with/without the Ground Filter

 Performance Testing To Date

 Component Testing
 Individual components on the vehicle such as the motor controller, wheel encoders, LiDAR, GPS, IMU, Depth
 Camera, wireless and physical e-stops have been tested. We utilized a tele-op controller to test the motor control,
 and RViz to visualize the sensor data collected.

 Integration Testing
 Combining the separate components into a combined vehicle was a challenging task. While many of our systems
 had problems at first, we were able to solve these during our testing procedure. While we were able to fully
 combine the embedded, sensors, and navigation stacks correctly, we still have trouble with the fusion of the
 computer vision and lidar point clouds. Additionally, the computer vision system that detects lane lines and
 provides them to Google Cartographer as a depth map is not fully functional.

 Initial Performance Assessments

 Metric Test Result

 Max Speed 3.4 m/s
 Acceleration 0.4 m/s 2

 Ramp Climbing 20 degrees
 Laptop Battery Life 1 hour
 Robot Battery Life 50 hours standby

 1 hour running with motors

 15

 Appendix A: Torque and Efficiency Curves for the Neo Brushless Motors

 16

 Appendix B: ROS Graph for the Software Stack

 17

