
CRAB-E
Competitive Robot for Autonomous Barrier Evasion

Rocker Robotics Team President
Dustin Richards | dustin.richards@mines.sdsmt.edu

Rocker Robotics Team Advisor
Rohan Loveland | rohan.loveland@sdsmt.edu

Members

Autonomy & Controls Mechanical

Bennet Outland † - Sophomore, ME
Dakota Edens - Senior, CENG
Alexis Englund- Freshman, CENG
Landon Lamoreaux - Junior, CSC
Josiah Huntington - Junior, CENG
Trace Houser - Sophomore, CSC
Dustin Richards - Graduate, CENG/CSE*
Ashley Schnetzer - Junior, CENG

Kaylee Herndon † - Sophomore, ME
Daniel Block - Freshman, ME
Heath Buer - Junior, ME/EE
Tim Chandler - Freshman, ME
Jacob Decker - Freshman, ME
Steven Duong - Sophomore, ME
Rachel Lauer - Senior, ME
Derek Matthies - Freshman, ME
Ethan Miller- Freshman, ME
Sam Ryckman - Graduate, ME/CSC/CSE*
Zane Wilson - Freshman, ME

Electrical

Erick Eickhoff † - Senior, EE
Chase Reinertson - Senior, EE
Pratik Sinai Kunkolienker - Graduate, EE/EE*

† Team Lead

CENG: B.S. Computer Engineering | CSC: B.S. Computer Science | CSE*: M.S. Computer Science and Engineering | EE:
B.S. Electrical Engineering | EE*: M.S. Electrical Engineering | ME: B.S. Mechanical Engineering

List of member email addresses: bennet.outland@mines.sdsmt.edu, dakota.edens@mines.sdsmt.edu,
alexis.englund@mines.sdsmt.edu, landon.lamoreaux@mines.sdsmt.edu, josiah.huntington@mines.sdsmt.edu,
trace.houser@mines.sdsmt.edu, dustin.richards@mines.sdsmt.edu, ashley.schnetzer@mines.sdsmt.edu,
kaylee.herndon@mines.sdsmt.edu, daniel.block@mines.sdsmt.edu, heath.buer@mines.sdsmt.edu,
timothy.chandler@mines.sdsmt.edu, jacob.decker@mines.sdsmt.edu, steven.duong@mines.sdsmt.edu,
rachel.lauer@mines.sdsmt.edu, derek.matthies@mines.sdsmt.edu, ethan.miller@mines.sdsmt.edu,
samuel.ryckman@mines.sdsmt.edu, zane.wilson@mines.sdsmt.edu, erick.eickhoff@mines.sdsmt.edu,
chase.reinertson@mines.sdsmt.edu, pratik.sinaikunkolienker@mines.sdsmt.edu

I, Rohan Loveland, certify that the design and engineering of this vehicle by the current student
team has been significant and equivalent to what might be awarded credit in a senior design
course.

Signature: ________________________________ Date: ________________________________

Rocker Robotics – CRAB-E

Contents

Team Introduction 1

Summary 1

Acknowledgements 1

Design Assumptions and Process 2
Mechanical 2

Autonomy and Controls 2

Electrical 2

Innovations 2

Mechanical 3
Overview 3

Frame 3

Steering 4

Outer Shell 4

Electrical 5
Computers 5

Sensors 5

Motors 5

Power Connections 6

Autonomy and Controls 7
Paradigm 7

LIDAR 7

Obstacle Detection & Map Generation 8

State Estimation 8

Path Planning 9

Robot Control 10

Simulation 11

Potential Failure Points 11

Predicted Performance 12

Cost Breakdown 12

References 13

Rocker Robotics – CRAB-E

Team Introduction

Rocker Robotics is an extracurricular robotics team from the South Dakota School of
Mines and Technology. The goal of the team is to teach robotics concepts to its members,
bring robotics and STEM outreach to our community, and compete in a robotics
competition each year. Its members have a range of robotics experience, majors, and
backgrounds. Dustin Richards is the president. Bennet Outland is the autonomy and
controls team lead. Kaylee Herndon is the mechanical team lead, and Erick Eickhoff is the
electrical team lead.

Summary

Our robot is named CRAB-E (Competitive Robot for Autonomous Barrier Evasion). It has
a four-wheel steer drive system. Across all members of the team, we spent
approximately 5600 person hours on this project. We are using computer vision to
identify the white lane lines and potholes. LIDAR and ultrasonic sensors are used to
identify 3D barriers in our path, and a Global Positioning System (GPS) to estimate our
location on the course. We create a map of obstacles that we see in the world, and then
use the A* (A-star) [1] path planning algorithm to create a path that avoids all these
obstacles.

The processing is split between an Nvidia Jetson Nano, Raspberry Pi, and STM32F411
microcontroller. The computers communicate with each other over an ethernet
connection, while the sensors are connected to the STM32F411 via a custom printed
circuit board (PCB). The E-stop is an isolated board that controls the state of a relay that
can interrupt the power connection to our motor controllers. This relay can be actuated
either by the E-stop button on the robot or the button on either remote using a wireless
connection. The robot is capable of four-wheel drive using four NEO 550 brushless DC
motors and uses two brushed motors for steering. A four-wheel steer design which is
similar to the standard Ackmerman steering found in cars is used, with the added
functionality of the front and rear steering systems being able to turn independently of
each other. This system allows a significantly tighter turning radius than a standard
Ackermann drive system. The design also included the development of a frame to
support the steering mechanism, and the outer shell of the robot.

Acknowledgements

We would like to thank Dr. Rohan Loveland, our advisor, for all his help throughout this
year. We would also like to thank South Dakota School of Mines and Technology and the
Electrical Engineering, Computer Engineering, and Computer Science (EECS)
Department for providing us funding and lab space in which to design, build, and test our
robot. Additionally we thank the team’s umbrella organization, South Dakota Mines
CAMP, for helping us with leadership training and team administration. For assisting in
design reviews, we would like to thank Dr. Rohan Loveland, Dr. Mohammadreza
Mehrabian, Dr. Jason Ash, Dr. Ryan Koontz, and Mr. Lowell Kolb.

1

Rocker Robotics - CRAB-E

Design Assumptions and Process

Design assumptions for this robot began with its size. The robot must fit within the
constraints set by the competition rules [1]. Past this, we targeted a few major design
features: the robot should be car-like, have a turn radius significantly tighter than the
tightest turn described in the rules, be relatively robust, and not be so tightly integrated
that it’s difficult to build and maintain. The team placed a large emphasis on working
around materials already available in their lab. Notable parts of the robot that are in line
with this include the LIDAR, most of the frame, and the wheels and tires.

Mechanical
At the beginning of the school year, our decision making was guided by decision
matrices. After working through multiple group discussions based on these decision
matrices, we settled on the final architecture for the robot: a rigid chassis,
dual-Ackerman steering, independently driven wheels, and a body in the style of a
compact pickup truck. We then started work on a wooden prototype chassis and later
designed a final chassis based on aluminum T-slot extrusion, making use of the lessons
learned from the prototype chassis.

Autonomy and Controls
As for sensors, computers, and software stacks, much of the decision making was based
on what the members of the Autonomy and Controls subteam were already comfortable
with. This led to us using an Nvidia Jetson Nano and Raspberry Pi, both running ROS [2]
on Ubuntu Linux, and the Arduino framework on our STM32F411 microcontroller.
Sensor choices were guided by considering what a typical autonomous car might have,
leading us to use a combination of a LIDAR, stereo cameras, a GPS, and ultrasonic
distance sensors.

Electrical
The primary goal for the electrical team was to integrate most of the required electronics
onto printed circuit boards and perfboards, using keyed connectors and SMD/THT
components available in our parts selection whenever possible. Another key design
feature we focused on is the ability to hot-swap the robot’s primary battery while
keeping the computers running via a backup battery.

Innovations

As a team, we innovated in the areas of computer science, electrical engineering, and
mechanical engineering. Some of the software innovations presented from this project
include sensor processing methods and a novel waypointing method. We created a novel
algorithm for detecting lane lines and converting them into an obstacle point cloud in
three dimensions. The line-obstacle data is then used to generate a valid driving region
for the robot. From this point, a ray is cast through the objects and the optimal target
waypoint is determined after filtering. Both of these methods will be further explained in
the Autonomy and Controls section of the report.

In terms of electrical engineering, we designed a printed circuit board to handle the
interface between sensors and our computers. Additionally, we developed our own
E-stop board and software, so we can safely stop the robot from a distance according to

2

Rocker Robotics – CRAB-E

the competition rules. The E-stop board allows us to disconnect the motors from the
battery power while always keeping power to the other electronics to avoid potential
filesystem corruption if our computers were to lose power. The E-stop board is
electrically isolated from the power of the rest of the robot. It uses 915 MHz radio
modules that allow for two-way communication with multiple remotes to allow for
multiple ways to turn the robot off if needed.

On the mechanical side of things, the steering architecture chosen is a four-wheel steer
system, specifically a dual-Ackermann drive. The main benefit of this drive system is that
the robot is able to execute tight turns compared to other systems [3]. Through this
system, the robot is also able to execute a kind of steering informally known as
“crab-steer.” This allows both the front and back wheels to be turned in a way that allows
the vehicle to move in a diagonal direction while the overall orientation of the chassis is
still straight. The steering is powered by two motors, front and back, that move curved
linkages along a linear rail. These linkages, rather than straight ones, assist in decreasing
the overall turning radius. The steering and drive systems are attached to an aluminum
frame, which helps to support all mechanical and electrical components used within this
design. To provide both water-resistance to electronic components and aesthetic appeal,
a 3D printed shell was created to rest on top of the chassis.

Mechanical

Overview
For this project the mechanical subteam was responsible for the prototyping, designing,
and manufacturing of the chassis and related components; including several subsystems
such as the frame, drivetrain, and outer shell. The key idea we applied to our decisions
was simplicity; we created a list of the features we wanted to include and brainstormed
ways to achieve these features without adding unnecessary complication to our designs.
The desire for simplicity became a driving factor in all of our decision making processes.

Frame
The backbone of the frame consists of a spine of 3” x 1 ½” T-slot with a 1 ½” x 1 ½”
aluminum T-slot mounted perpendicular to the spine at each end of this center beam as
can be seen in Figure (1). This creates a proper support structure for all electronic
components and the payload, and adds attachment points for drivetrain components.
Aluminum plates and brackets are used throughout the frame to strengthen and increase
rigidity in the chassis, as these create cross braces within the frame. These components
are also used to aid in mounting the drivetrain systems and shell. The T-slot material was
chosen as there was an abundance readily accessible to our team. Along with this, the
material provides strength to the frame without adding an excessive amount of weight to
the chassis.

3

Rocker Robotics - CRAB-E

Figure 1: CAD Model of Chassis

Steering
The most unique part of our robot is the steering system. Overall, we chose a setup very
similar to a dual-Ackermann drivetrain involving two pairs of steered wheels. During the
process of choosing a drivetrain style, we worked through multiple options looking for
the best mix of benefits and costs. The process led to the decision to use an Ackerman
style drive. The weight of the robot and the ability to minimize our turning radius led to
us adopting this style of steering. As shown in Figure (2), each wheel is independently
powered but steered in tandem by a steering motor connected via curved linkages.
Curving our drive linkages provides our system with the four-wheel drive and crab-style
steering options we want, whilst drastically minimizing our turning radius. Currently, we
have lowered our radius to two feet, thanks to our implementation of curved linkages.
These linkages allow our wheels to pivot further around their axis than straight linkages
would, all while keeping the simplicity we desire. While we considered how rough the
terrain of the course will be, we decided to forgo a suspension system and instead rely on
heavy duty off-road tires to reduce the overall complexity.

Figure 2: Steering Assembly

Outer Shell
The shell serves a variety of functions, including providing aesthetic appeal. Additional
functions include providing additional mounting points for the camera and LIDAR
systems, acting as a basic weatherproofing step, and providing a secure place for the

4

Rocker Robotics – CRAB-E

payload to be stored. The design of the shell is based on Japanese Kei Trucks, which was
chosen due to the relative simplicity of the shell design. The shell was manufactured in
multiple pieces in order to make use of multiple large-bed 3D printers, reducing print
time. Included within the shell subsystem is weatherproofing, which is done by a using
commercially available waterproof container which will protect the computers, batteries,
and other components.

(a) (b)

Figure 3: (a) Example of a Japanese Kei Truck that the design was based off of [4]. (b)
“Cab” of the robot, along with other shell components.

Electrical

Computers
The intensive processing is split between a Nvidia Jetson and a Raspberry Pi. Specifically,
the Nvidia Jetson Nano is being used as the main processing unit, this includes image
processing and path planning calculations. The Raspberry Pi, on the other hand, will
mainly deal with LIDAR data ingesting and sending commands to the STM32F411.
Additional processing for less intensive systems, such as the Inertial Measurement Unit
(IMU) or GPS, is done by the STM32F411.

Sensors
Primary object detection is performed by a Hokuyo UTM-30LX LIDAR sensor. This unit
has a field of view of 270 degrees with a detection range of 0.1m to 30m. Line and
pothole detection is performed by a pair of Intel RealSense Depth Camera D435s. These
will be used to identify and locate the lines and potholes of the track. Additional location
information will be obtained from an Adafruit Ultimate GPS. A BNO055 inertial
measurement unit (IMU) will be used to determine the orientation of the vehicle.
Ultrasonic sensors will be placed at the front of the robot to serve as emergency obstacle
avoidance sensors in case the robot gets too close to an object that was missed by the
LIDAR. Additionally, a suite of six ultrasonic sensors will be used as a safety measure to
catch any obstacle collisions if not detected by the other sensors.

Motors
We are using 4 Neo 550 brushless DC motors as the main drive system. These motors
were chosen in part because they are very powerful for their price. There is a Spark Max
motor controller for each of the motors. The Spark Max motor controllers have built-in
voltage regulation for the motors, as well as compatibility with CAN for easy

5

Rocker Robotics - CRAB-E

communication. CRAB-E’s steering is achieved using two brushed motors we had on
hand. These motors are each controlled with a separate Talon SRX motor controller,
which boasts similar specifications as the Spark Max’s, but for brushed motors. Both
types of motor controllers are rated for continuous currents of 60A, which is a much
higher current than we expect to see.

Power Connections
Our robot uses a 4-cell, 20Ah LiPo battery to provide power to the system, which runs at
approximately 14.8V at full charge. The batteries will have direct connections to our
LIDAR, beacons, 5V power supply, and motor controllers. The beacon state is controlled
by the STM32 to account for the current state of the robot. The motor controller
connection is split with a power distribution board to get 14.8V to each of our six motor
controllers, and can be interrupted by a relay for the emergency stop system, as detailed
in the E-Stop subsection. We are using an off-the-shelf 5V, 50W DC-DC converter to
provide 5V from our 14.8V battery. There is an additional 3-cell battery protected with a
diode that will continue to provide the sensitive electronics with 5V when the main
battery is disconnected. This 5V connection is routed through a bus bar to both of our
computers and to our 5V logic board. The logic board is a custom PCB designed to route
power to our remaining sensors and provide communication connections to the
electronics not directly connected to our more powerful computers. This board contains
an integrated controller area network (CAN) module to connect to our motor controllers.
The logic board PCB also holds the STM32 which will connect to the other computers
through its USB connection.

Figure 6: Electrical System Diagram
E-Stop

As required by the rules for this competition, we have designed an emergency stop
system into the robot. This system is an isolated circuit from the rest of the electronics. It
is based on a dual purpose custom PCB that, depending on configuration, can be used
either as a transmitter or receiver. The receiver configuration will be located on the robot

6

Rocker Robotics – CRAB-E

itself, and will be controlling the state of a relay that connects our motors and motor
controllers to the battery. This battery connection is separate from the battery
connection to our main computers and sensors, allowing us to kill power to all of the
drive systems while keeping power to the electronics that may be more sensitive to
sudden power loss. The receiver board will open the relay contacts if either the E-stop
button onboard the robot is pressed, or it receives a command from the remote E-stop.
The remote E-stop board uses the same PCB in the transmit configuration, which will
communicate with the receiver board using RFM69HCW packet radio modules. Pressing
the E-stop button on the remote sends a status update to the receiver board which will
then open the relay contacts the same way that the E-stop button on the robot does.

Figure 7: E-Stop Board

Autonomy and Controls

Paradigm
The approach we took towards controlling our robot autonomously is based on the
concept of treating all course obstacles (lines, barrels, potholes, etc) identically. By doing
so, we are able to have a robust and general framework for navigating through the
course. In the case where there are not any lines, the obstacles will still be considered
with the GPS coordinates acting as waypoints for the robot to follow. Through this
approach, we construct our avoidance and planning paradigm to standardize the
outputs from all obstacle related sensors. All of the sensor interfacing and
communication will be done through ROS [2].

LIDAR

Using a 2D LIDAR unit, we are able to detect the location of the barrels throughout the
course. Note that the LIDAR is positioned to not detect the ramp in the region where we
are to navigate using the GPS waypoints. Through the remainder of the course, we are
able to determine any reported distances to various obstacles. This is a valid assumption
since everything of the height of the barrels is an obstacle in the course or something we
still do not want to collide with, such as someone wandering onto the course. The LIDAR
sends these obstacle locations to the map generation algorithm as described below.

7

Rocker Robotics - CRAB-E

Obstacle Detection &Map Generation

The robot uses two Intel Realsense D435 cameras for lane following and pothole
avoidance. Each of these cameras provides an RGB stream and a depth stream. Both
streams are read in and an alignment operation is performed on the depth stream to
align it to the color stream. Figure 3 shows the algorithm used to convert the color image
into a point cloud that can be used by the path planning algorithm. The color image is
converted into a grayscale image and then adaptive thresholding is used to find where
any white lines are by looking at each pixel and its neighbors to see if they are
significantly different, if they are, it is probably a white line and is kept in the image. The
image is then eroded to remove any noise and the top half is masked out to reduce the
sample complexity since the ground is where the obstacles are. The resulting image just
has the lane lines and any potholes. Combining this with the depth image allows us to
create a point cloud of all the points that need to be avoided. This algorithm is repeated
for the second camera. The two point clouds are then transformed to be in the global
coordinate frame. These point clouds are combined with the point cloud from the LIDAR
to create one point cloud of all the obstacles. All these points are mapped to an image to
create a picture of everything around the robot. The path planning algorithm uses this
point cloud to navigate around the course.

Figure 4: This is a visualization of each of the image manipulation stages discussed. The depth
image here only contains the points from the eroded masked image.

State Estimation

An important aspect of many of these sub-algorithms is knowing the location of the
robot. In order to accomplish this we are using an Extended Kalman Filter (EKF) for
state sensor fusion. An EKF is derived from the optimal, Gaussian, linear state filter, a
Kalman filter, where the linear filter is used to approximate nonlinear behavior for small
timesteps [5]. Given estimations of the state and the expected error of the sensors used,
a robust approximation of the actual state can be determined.

For the location of the robot, we are using a combination of a GPS using the Wide Area
Augmentation System (WAAS) and a 9-axis IMU. We are using a Bosch Sensortec
BNO055 IMU, which nicely calculates an absolute orientation estimate. With the data

8

Rocker Robotics – CRAB-E

from these sensors, we are able to get accurate estimates of the actual position and
heading of the robot.

Path Planning

Due to the algorithm mentioned in the last section we are able to determine where the
obstacles are in relation to the robot. We can then start determining what path the robot
will need to take to traverse the course. In order to determine the optimal path, three
different elements must be determined. First, the sub-state must be found that describes
where the robot can and cannot be. Second, the target waypoint that the robot travels
towards is set. Lastly, the path to move between the current robot state and the target
waypoint is determined. Each of these can be considered individually.

In order to determine where the robot is allowed to drive, we can look at the local state
and find all obstacles that are a fixed distance from the robot. This is done so that we
may focus only on the obstacles that will have a relevant impact on the direction of the
robot. From this point we take the local state that has been created and compress it to a
smaller state represented by an gridspace to save on computational expense. With𝑛 × 𝑛
this gridspace defined, we have a loose collection of obstacles spread throughout as seen
in Figure (5a). Issues can arise with the invariability of sensor noise, resulting in
obstacles not being detected or spuriously detected. To counter this, we can apply a
dilation kernel to fill in any gaps where obstacles should have been detected. If there
were any small areas of spuriously identified obstacles, an erosion kernel can remove the
extraneous obstacles. Ultimately, we are then left with a cleaned region with the dilated
obstacles being returned to their original size. The results of applying the two kernels
can be seen in Figure (5b). Under the assumption that the robot is currently between the
lines, we apply a flood fill algorithm to define the region between the lines where the
robot is allowed to traverse. This can be seen in Figure (5c). This was accomplished
using the OpenCV library [6].

(a) (b) (c)

Figure 5: Different steps in the processing of the algorithm to determine the driveable
region. (a) Raw obstacle data from sensors. (b) Obstacle representation after dilation

and erosion. (c) Drivable region determined post-floodfill.

Given that a traversable region is defined, we can start locating a waypoint for the robot
to navigate towards. To accomplish this, we use a “T-beam” with a fixed width web and
flange where the size of the flange is much greater than the size of the web. This is done
through the following:

9

Rocker Robotics - CRAB-E

● Let F be the set of points from some (-l, 0) to (l, 0) varying the x component
● Collect the current orientation of the robot, θ
● Rotate flange by θ + π

2
● Shift the central point in the flange to the robot through additive broadcasting
● Calculate the location of the end of the web using the given distance and the

current orientation of the robot
● Shift the central point in F to the tip of the web through additive broadcasting

From this point, we want to determine a target point that is not near obstacles and
would not result in needing to take sharp turns unnecessarily. To do this, we apply a
Gaussian filter to the grid elements along the flange to smoothen the discontinuous steps
between obstacle and non-obstacle regions. This results in a set of hills and valleys
where the hills represent the favorable drivable regions since they are devoid of
obstacles while adding a buffering region near the obstacles. To mitigate sharp turning, a
bandpass-like filter is applied that increases the favorability of smaller turns and outside
the central region is subjected to a decrementing linear trend. A linear search algorithm
is then used for determining the maximum along the now filtered flange elements.
Through this process, we are able to extract a better target point by taking into account
the local obstacles and the turning angle.

With a target point defined, we can define the starting position to be the currently
estimated state of the robot. To plan a path between the starting and target waypoint, we
use A* due to its superior performance in terms of its percent optimal performance per
calculation time [7]. We create the grid space so that the driveable areas have minimal
weights to move between nodes while non-traversable areas have high node weights. We
extract a path from the A* algorithm created for the smaller gridspace. The path is𝑛 × 𝑛
now transformed from the compressed gridspace to the local region. While this does
cause some discretization error the error is negligible due to the small regions
considered versus the size of the compressed grid. As we step through the path, we can
determine the steering angles needed.

Robot Control

Ultimately, we can break up the control of our robot into three main categories: steering,
desired velocity, and stopping. In order to steer the robot, we need to ensure the wheels
are oriented in the correct direction and stay in that direction over the duration. First, we
need to read the target angle from the path planning algorithm. From this point, we have
tuned the motors to certain easily identifiable angles and interpolate between to achieve
the correct angle. To ensure that the wheels stay at the correct angle a PID loop has been
tuned for the forward and rear wheels. Another problem to approach is the speed of the
robot. To dynamically adjust the speed, we are correlating the speed of the robot with
the obstacle density of the local region. We take a baseline of the starting point to be the
least dense in terms of obstacle density and scale the target speed down as the number
of obstacles increase. A maximum of 4.75 mph has been set in software to avoid
exceeding the maximum speed of 5.00 mph. We also explored different methodologies
for developing a remote E-stop. We are currently using a RFM69_HCW and Raspberry Pi
Pico for sending and receiving E-stop commands.

10

Rocker Robotics – CRAB-E

Simulation

We used both physical and software simulation environments to validate our algorithms.
Specifically, in the cases of the GPS, orientation sensors, and the depth cameras, physical
simulation environments were created for real-world validation. In the case of path
planning and state estimation, we used an in-house simulator that was developed to be
lightweight and versatile. A sample output can be seen in Figure (6). Through both of
these environments, we were able to test and validate the algorithms created for this
project.

Figure 6: Example figure from the simulator used demonstrating the robot consistently
traversing the course by the placement of internal waypoints. These waypoints have
been connected to demonstrate the path, but the A* generated path will ultimately be

used. Note that the blue dots are simulated GPS waypoints.

Potential Failure Points

There is a potential of failure points in the autonomy, electrical, and mechanical systems.
In terms of autonomy, the computer vision system may identify the lines improperly.
Changing lighting conditions throughout the run and shadows over the line could cause
our robot to not see some of the lines. Autotuning to the lighting conditions has been
implemented, but rapid changes may cause a momentary loss of obstacle data from the
camera.

In the electrical system, the main two points of failure are from vibrations and water
ingress. Due to the lack of a suspension and the slightly bumpy terrain, frequent
vibrations are expected. Vibration of the wires over a long period of time may slowly
disconnect various connectors. To combat this, electrical connections are all either
soldered in place or attached by snug connectors. As for water ingress, the robot is not
designed to be waterproof, but rather simply water resistant. An excessive amount of
water on the robot may cause some water ingress and might cause shorts. This has been
mitigated against, but cannot be guaranteed to be perfect. Should either of these cases
occur, spare components and connections will be brought along to the competition. Tape

11

Rocker Robotics - CRAB-E

may also be used to provide additional temporary sealing for problem areas. Further, as
the intention was to keep each sub component as cheap, the PCBs lack electrostatic
discharge protection and reverse polarity protection. To mitigate these issues, care will
be taken when handling sensitive electronic components like the Jetson and key’d
connectors will be used to prevent incorrect connections.

In the mechanical subsystem, there are a few points of failure that could occur. One
possible failure point for the chassis is at the wheels and axles. As the entire weight of
the robot rests on the two components, there is a chance that either of them could break
if the robot is overloaded, or the shafts for the wheel assemblies could bend. To work
around this, we used aluminum and 3D printed parts to help reduce the overall weight of
the chassis and distributed weight thoughtfully throughout the chassis, allowing each
wheel to receive less of the load. Repeated sharp steering angles will increase the stress
through the steering mechanism that may cause failure if used for long periods of time.
We resolve this issue through our control of the system by disincentivizing sharp
steering angles when the path that the robot takes is planned. Another concern is
vibrations in the robot loosening bolts, to prevent this a thread locking compound and
lock nuts were used to keep bolts tight and in place. Design reviews were also conducted
with advice from faculty to ensure a robust design in the more critical sections of the
robot.

Predicted Performance

We predict to be able to perform adequately for a newcoming team. However, we do not
expect optimal performance and will need to improve through additional iterations. Our
robot is predicted to be able to identify obstacles reasonably well, and be able to create a
path that avoids all of the identified obstacles. In simulation, the robot has been able to
successfully traverse the course. Based on worst-case power consumption, we expect
the robot’s battery life to be at least two hours. Based on how far geared down the drive
motors are, this robot should be able to climb the ramp with no issues. Lane lines will be
detected five to ten feet ahead of the robot. Obstacles detected by the LIDAR will be seen
at 20 to 30 feet away from the robot.

Cost Breakdown

Product Name Unit Cost Quantity Used

Hokuyo UTM-30LX LIDAR* $4,675 1

Intel Realsense D435 $314 2

Nvidia Jetson Nano* $149 1

Turnigy 20000mAh Battery* $142 1

Rev Robotics Spark Max $90 4

Vex Robotics Talon SRX $90 2

Grantury Junction Box $63.49 1

6061 Aluminum U Channel - 3ft $42.64 1

12

Rocker Robotics – CRAB-E

Rev Robotics Ultra 90° Gearbox $42 4

McMaster-Carr Metal Gear Rack $41.61 2

Raspberry Pi 3 Model B* $35 1

Rev Robotics NEO 550 $28 4

MGN12H 300mm Linear Rail $28 2

1kg 3D Printed Material $25 4

Rev Robotics 5mm Hex Shaft, 400mm length $21.50 2

3 JSN-SR04T Ultrasonic Distance Sensor $20 2

QCQIANG E-Stop Button $18.29 1

McMaster-Carr Metal Gear 20° angle $13.68 2

Rev Robotics UltraPlanetary Cartridge 4:1 $11.50 12

10” Pneumatic Tire and Wheel* $8.49 4

Rev Robotics 5mm Hex Bearing Block $4 4

1.5” x 3” T-Slot Extrusion - Cost is Per Inch* $1.02 33

1.5” x 1.5” T-Slot Extrusion - Cost is Per Inch* $0.57 96

Total Cost: $7199.34

* Denotes items the team had on-hand and did not need to purchase

References

[1] IGVC. (2022, October). The 30th Annual Intelligent Ground Vehicle Competition
(IGVC) Self-Drive.

[2] Stanford Artificial Intelligence Laboratory et al. (2018). Robotic Operating System.
Retrieved from https://www.ros.org

[3] DY5W-sport. (2013). Wikipedia. Retrieved May 15, 2023, from
https://upload.wikimedia.org/wikipedia/commons/thumb/4/4e/TOYOTA%E3%8
3%BBPIXIS-TRUCK_211U_0164.JPG/788px-TOYOTA%E3%83%BBPIXIS-TRUCK_211
U_0164.JPG?20130509084247.

[4] McGough, J. (2022). Introduction to Robotics (2.3.0).

[5] Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic Robotics. The MIT Press.

[6] Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools.

[7] Fareh, R., Baziyad, M., Rahman, M., Rabie, T., & Bettayeb, M. (2020). Investigating
Reduced Path Planning Strategy for Differential Wheeled Mobile Robot. Robotica,
38(2), 235-255. doi:10.1017/S0263574719000572

13

