
TENNESSEE TECH UNIVERSITY
 Team: Slow-Mho 5/16/2025

Team Leader

• Evan Kvalvik — ekvalvik42@tntech.edu

Faculty Advisors / CC

• Mr. Rentschler – memrentschler@tntech.edu
• Dr. HyungJin Yoon — hyoon@tntech.edu
• Dr. Byron Pardue — bpardue@tntech.edu
• Dr. Van Neste – cvanneste@tntech.edu

Team Members

• Keegan Adreon — kcadreon42@tntech.edu
• Ian Cronin — imcronin42@tntech.edu
• Alan Arvidson — aparvidson42@tntech.edu
• Patrick Stultz — pnstultz42@tntech.edu
• Christopher Sullivan — cwsullivan43@tntech.edu
• Mary Bickel – mgbickel42@tntech.edu
• Sarah Boyce – srboyce42@tntech.edu
• Seth Eddins – steddis42@tntech.edu

Statement of Integrity

I certify that the design and engineering of Slow-Mho – the autonomous vehicle - has been
undertaken by the team listed above and that the efforts have met the demands of a senior level
design course.

Signature: _____________________________ 5/16/2025

Signature: _____________________________ 5/16/2025

FIGURE 1: SLOW-MHO – AN AUTONOMOUS VEHICLE

Table of Contents

Contents
Table of Contents ... 2

1 Abstract .. 3

2. CONDUCT OF DESIGN PROCESS ... 3

2.1 Introduction .. 3

2.2 Organization .. 3

2.3 Design Assumptions and Design Process .. 4

3. SYSTEM ARCHITECTURE & INNOVATION .. 5

4. DESCRIPTION OF MECHANICAL DESIGN .. 7

5. Electronics and Power ... 8

6. Description of software system .. 9

7. Cyber Security Analysis using RMF ... 11

8. Analysis of the Complete Vehicle ... 12

Lessons Learned During Construction and System Integration ... 12

Failures, Effects and Strategies of Mitigation ... 12

Budget ... 13

References ... 13

1. Abstract

This project presents the design, construction, and testing of an autonomous ground vehicle
developed for the Intelligent Ground Vehicle Competition (IGVC). The system integrates real-time
perception, path planning, and autonomous navigation using a suite of sensors including LiDAR,
GPS, IMU, and a camera. Emphasis was placed on modular hardware, ROS 2-based software
architecture, and efficient debugging practices. Key challenges included sensor fusion, USB
stability, and maintaining robust navigation in outdoor environments. Performance metrics such as
obstacle detection range, waypoint accuracy, and battery life are evaluated and compared to
predictions. Lessons learned in hardware reliability, safety design, and simulation testing informed
improvements throughout the development cycle.

2. CONDUCT OF DESIGN PROCESS

2.1 Introduction

Slow-Mho was developed as a multidisciplinary collaboration between Electrical and Mechanical
Engineering students to design and prototype an autonomous mobility platform. The project
required integrating hardware, embedded software, and mechanical systems, aligning with real-
world engineering challenges faced in autonomous vehicle development.

2.2 Organization

The project was carried out by one Electrical Engineering (EE) team and two Mechanical
Engineering (ME) teams. The ME teams were both responsible for chassis development. One ME
team pursued a short-term solution by adapting an existing wheelchair frame for early testing and
development. The second ME team took on a longer-term goal, designing and constructing a
custom chassis from the ground up for final integration.

Name Major Fields
Gabriel Gibson ME Mechanical

Ian Cronin ME Mechanical
Alan Arvidson ME Mechanical

Keegan Adreon ME Mechanical
Peyton Pope ME Mechanical
Josiah Reese ME Mechanical
Patrick Stulz ME Mechanical
J. W. Beasley ME Mechanical
Seth Eddins CS Software

Mary Bickel EE Software, Electrical
Evan Kvalvik EE Software, Electrical

Sarah Boyce-Howard EE Electrical
Christopher Sullivan EE Electrical

Estimated Total Person-Hours:
Over the course of two semesters, with seven active student contributors and ongoing weekly
efforts (averaging 8–12 hours per week per student), we estimate approximately 1,200–1,500 total
person-hours were dedicated to the project.

2.3 Design Assumptions and Design Process

Several assumptions guided our early design efforts:

• The system must operate on uneven outdoor terrain (IGVC-style course), necessitating
robust drive and control systems.

• ROS 2 would be the primary software framework for middleware and autonomy features.

• Power systems would be battery-operated, with runtime goals of at least one hour.

• All components must be modular and easily replaceable to facilitate multiple chassis and
iterative testing.

• All IGVC requirements would be adhered to.

The design process followed a hybrid V-model and Agile methodology. High-level functional
requirements were defined early in the fall semester. Sub teams then performed individual
subsystem research, feasibility analysis, and iterative prototyping. Regular sprint-style reviews
helped synchronize efforts, track progress, and reallocate resources dynamically based on
emerging challenges.

Hardware and software integration was performed progressively, with multiple test phases
culminating in a fully integrated outdoor test. Each phase included performance evaluation, bug
fixes, and feature updates driven by team feedback and real-world constraints.

FIGURE 2 THE EARLY STAGES OF THE CONCEPTUAL SOLUTION TO CREATING SLOW-MHO

3. SYSTEM ARCHITECTURE & INNOVATION

The Slow-Mho vehicle is built around a modular system architecture that integrates mechanical,
electrical, and software components using a ROS 2-based framework. Mechanically, two chassis
solutions were developed. One mechanical engineering team retrofitted an existing powered
wheelchair to create a temporary platform for early testing, while the second team designed and
fabricated a custom aluminum chassis tailored for long-term use. The final chassis was optimized
for sensor placement, component mounting, and structural rigidity suited for outdoor autonomous
navigation.

The power system centers on a 51.2 V lithium-ion battery with an onboard battery management
system. Power is distributed through a custom power distribution board (PDB) that regulates
voltage and current to all components, including the motor controllers and computer hardware.
For motion, the vehicle uses two MegaMoto Plus motor controllers driven by an Arduino Nano,
which receives high-level velocity commands from the Jetson AGX Orin. An emergency stop switch
is wired directly into the motor power lines, providing a fail-safe shutdown mechanism in case of
unexpected behavior.

The main computation unit is the NVIDIA Jetson AGX Orin, which runs ROS 2 Humble and all the
high-level autonomy software. This includes real-time object detection using YOLOv8, 3D
environment mapping with NVBlox, and motion planning through the Nav2 stack. The Orin receives

perception data from the Intel RealSense depth camera and Leishen 2D LiDAR. A Pixhawk GPS
module provides outdoor geolocation data, further supporting the navigation stack. Custom
software nodes handle motor command generation, sensor fusion, and interprocess
communication between all subsystems.

1. FIGURE 3 NAVIGATING BROWN HALL WITH ROS2 NAVIGATION

Subsystems are connected through ROS 2 topics and services. Sensor data flows into the Jetson,
where it is processed and passed through the perception and navigation stacks. The resulting
control commands are then sent to the Arduino Nano over serial. The Arduino interprets these
commands and outputs the appropriate PWM signals to the motor controllers, enabling the robot
to execute its planned motion.

Several innovations were introduced over the course of development. One key innovation was the
use of a dual-chassis approach. By deploying a temporary wheelchair-based chassis early in the
project, the team was able to begin electrical integration and software testing months before the
final mechanical frame was ready. This decoupling of the development timeline allowed parallel
progress and helped mitigate project risk. Another innovation was the development of a modular
motor control interface within ROS 2 that supported both manual and autonomous modes. This
flexibility allowed for fast testing, simplified debugging, and safer transitions between development
stages. Finally, the integration of NVBlox with the RealSense camera enabled 3D mapping

capabilities that far exceeded the spatial awareness typically offered by 2D LiDAR alone. This
decision was made after comparing mapping frameworks and recognizing NVBlox’s advantages for
volumetric occupancy mapping in outdoor environments.

These innovations emerged organically through iterative testing, team discussions, and strategic
tradeoffs. As system bottlenecks and testing needs evolved, the team remained agile—adjusting
designs and toolchains to stay aligned with project goals and performance requirements.

4. DESCRIPTION OF MECHANICAL DESIGN

The mechanical design of Slow-Mho was developed in two distinct phases to accommodate both
short-term testing and long-term deployment. Initially, the team repurposed a motorized
wheelchair as a temporary chassis. This ready-made platform provided a reliable drivetrain and
basic frame structure, allowing the electrical and software teams to begin development and
integration while the final chassis was still in progress. Although the wheelchair’s internal
components were not modified, its frame was adapted with mounting plates and custom brackets
to support onboard electronics and sensors.

In parallel, a second mechanical engineering team worked on the design and fabrication of a
custom long-term chassis. This process began with a detailed requirements analysis, followed by
multiple design iterations in Computer-Aided Design (CAD) software. Autodesk Inventor was used
to model the frame, estimate material stresses, and verify clearances for key components such as
batteries, motor controllers, and compute units. The final design was constructed using aluminum
square tubing for its strength-to-weight ratio, corrosion resistance, and ease of machining.

Key structural decisions included isolating the electronics in a central compartment to protect
them from mechanical vibrations and routing power and signal lines through protected channels
along the frame. While the wheelchair platform featured built-in suspension elements, the custom
chassis was rigid by design, as initial tests suggested minimal benefit from active suspension due
to the vehicle’s relatively low speed and predictable course environment. Any minor vibration was
mitigated through the use of rubber grommets and vibration-dampening pads beneath sensitive
electronics.

Weatherproofing was approached pragmatically. While Slow-Mho is not intended for use in heavy
rain, several passive protection strategies were implemented. All critical electronics were mounted
within sealed plastic enclosures or weather-resistant cases, with gaskets and cable glands to
prevent moisture ingress. Ventilation holes were added only where necessary and positioned to
reduce the likelihood of splash exposure. Exposed wiring was enclosed in split loom tubing and
tied down to prevent movement during travel.

Throughout the design process, the mechanical team worked closely with electrical and software
sub teams to ensure all components could be securely and accessibly mounted. Mounting points
for the camera, LiDAR, GPS, and E-Stop were all integrated into the CAD model and confirmed
through physical mock-ups before final fabrication. The result was a robust and maintainable
structure that could support field testing and future component upgrades.

5. Electronics and Power

The power subsystem for Slow-Mho was designed to provide reliable and regulated electrical
energy to all components during operation. A key function of this subsystem is to ensure the
vehicle can complete the competition track without power failure, which required selecting a
battery with enough capacity and voltage headroom, as well as appropriate voltage converters to
deliver clean power to each subsystem. To this end, the team selected a 51.2V, 25Ah LiFePO4
battery, which offers over 1,280Wh of capacity—more than enough to support the system’s
maximum estimated power draw of 540W for well over two hours. This battery was also chosen for
its timely availability, relatively low weight (23.6 lbs), and compact form factor, making it suitable
for integration within the mechanical constraints of the vehicle.

FIGURE 4 POWER SUBSYSTEM CONFIGURATION

The DC-DC power regulation system is built around two types of converters. The vehicle’s main
compute and control units operate on 12V, so step-down converters were used to transform the
51.2V battery voltage to 12V at both high and low current levels. Specifically, two 12V/20A
converters power the motor controllers, while one 12V/10A converter supports the NVIDIA Jetson
AGX Orin and its peripherals. The Arduino Nano is powered directly via the Jetson's USB port. The
converters were chosen for their input voltage tolerance (up to 60V) and current capacity, ensuring
headroom and stability under varying loads. Additionally, the subsystem includes a physical E-stop
button and in-line fuses on the return paths from the motors to meet safety requirements.

To ensure safe and efficient power delivery, wire gauges were carefully selected based on expected
current. Team 4 utilized 6 AWG wiring for battery connections, 10 AWG for up to 20A circuits, 16
AWG for circuits below 10A, and 20 AWG for signal-level connections, such as between the
Arduino and motor drivers. All wires were insulated to provide protection from environmental
exposure and unintentional shorting during handling. Terminal blocks, fuse holders, and fork
terminals were used to securely connect all components and simplify assembly and
troubleshooting. Together, the battery, converters, and wiring form a robust and modular power
delivery system that interfaces cleanly with the mechanical and software subsystems, supporting
stable and safe vehicle operation.

6. Description of software system

The software system for Slow-Mho was designed using a modular, ROS 2-based architecture
running on the NVIDIA Jetson AGX Orin. Its core function is to perceive the environment, classify
objects, plan safe trajectories, and execute those trajectories to complete the competition course.
Sensor data is collected from multiple modalities: a RealSense depth camera, a 2D LiDAR, GPS via
Pixhawk, and wheel encoders. These raw data streams are processed by specialized nodes for
object detection, localization, and mapping.

Sensor fusion is performed through synchronized timestamping and ROS 2 message filters,
allowing the system to correlate depth data from the RealSense camera with 2D scans from the
LiDAR and geolocation data from the GPS. This enables Slow-Mho to generate a more complete
understanding of its surroundings—referred to as the current scene. The RealSense camera is
also used to run a YOLOv8 object detection model in real time, which identifies cones and other
IGVC-relevant obstacles. This classification data is incorporated into NVBlox, a volumetric
mapping system that uses depth images and odometry to incrementally build a 3D map of the
environment—effectively combining current and past scene data into a world model. This allows
the robot to reason not only about what it sees now, but what it has seen before and avoid
obstacles accordingly.

FIGURE 5 IMAGE RECOGNITION WITH YOLOV8

Navigation is handled through the ROS 2 Navigation Stack (Nav2), which ingests this world model,
localizes the robot, and generates global and local paths using a hybrid approach of GPS waypoints
and obstacle-aware path planning. When operating in GPS-following mode, the robot uses GPS
coordinates as goals and fuses them with odometry to localize itself on a coarse map. In lane-
following mode, the system instead relies on visual cues—like cones or boundaries—detected by
YOLOv8 to generate a trajectory through NVblox and Nav2. Mode switching is triggered based on
mission state: GPS mode is used for long-range travel between course segments, while lane-
following activates when the system detects navigation boundaries, such as colored cones or
white circle “pothole simulators.”

The planned trajectory is followed by computing target velocities for the drive motors and
publishing motion commands to a custom motor control node. This node translates the high-level
trajectory into PWM commands sent via serial to an Arduino Nano, which drives the MegaMoto
motor controllers. Feedback from encoders and system monitoring (e.g., watchdog timers,
heartbeat messages) ensure that motion adheres to the plan and safety overrides can be triggered
if necessary.

FIGURE 6 ENCODER TEST DATA

In addition to standard functionality, Slow-Mho incorporates creative design choices to improve
robustness. For instance, a fallback manual mode allows for testing using keyboard inputs, and a
modular control interface permits easy swapping of autonomy modules without changing the rest
of the system. Overall, the software system combines state-of-the-art perception and control tools
in a scalable, fault-tolerant framework suited for real-world autonomous navigation.

7. Cyber Security Analysis using RMF

To understand and mitigate cybersecurity risks for Slow-Mho, we applied the NIST Risk
Management Framework (RMF), which outlines a structured, seven step approach: Prepare,
Categorize, Select, Implement, Assess, Authorize, and Monitor. This framework ensures that
cybersecurity is treated as a system-wide concern rather than a last-minute add-on.

Threat modeling revealed the most significant risk as malicious actors—such as rival teams—
disrupting software via USB access or wireless interference while competing. Such attacks could
involve overwriting configuration files, injecting false commands, or disabling safety systems. The
impact could be catastrophic: loss of control, inability to start, or unpredictable behavior resulting
in disqualification.

To counter the mist likely threat, we selected the following cybersecurity controls:

• Physical Access Controls: USB ports will be closely monitored.

• User Authentication: Password-protected access on the Jetson Orin.

• Coded Remote Cut-off: The remote cutoff trigger provides a basic level of security.

• Lidar/GPS spoofing: While Lidar or GPS spoofing is possible, those threats are in their early
stages of development. This team has no defense against such an attack, but the likelihood
of that kind of attack has been deemed very unlikely.

Future improvements include adopting secure ROS 2 DDS transport layers, intrusion detection
agents, and prevention of spoofing.

8. Analysis of Complete Vehicle

Lessons Learned During Construction and System Integration

One important lesson we learned is to never delete seemingly useless files, as they often turn out
to be critical later. It's also wise to avoid troubleshooting hardware and software problems at the
same time, since isolating issues is much easier when focusing on one domain. We found it's
essential to record working configurations while everything is still functioning, so there's a
reference point when things break. If you're stuck, chances are someone else has encountered the
same problem—so do some research before reinventing the wheel. We also realized that one
semester is not enough time to fully learn programming and robotics, especially when building a
system from scratch. Finally, we learned the hard way that anything that happens in the container
stays in the container—containerized environments can mask problems or changes unless
carefully documented.

Failures, Effects and Strategies of Mitigation

The following is a table of some documented issues that arose either before or after getting a
specific component to function and how the team overcame the failure.

Failure Effect Mitigation Strategy

CH340 USB serial
disconnects

Loss of motor control
Switched to shielded cables, verified
kernel module installation

Power rail voltage
drops

System resets
Added decoupling capacitors,
switched to BECs with voltage
regulation

GPS loss or noise Navigation drift
Implemented dead reckoning with
IMU fallback and added watchdog for
GPS health

RealSense camera
instability

Loss of depth
mapping

Upgraded USB cables, ran diagnostics
in RViz, added fallback logic

Budget

Component Quantity Cost to Team
51.2V/25Ah Battery 1 $269.99

Battery Charger 1 $35.00
BSS Fuse Block 1 $31.55

BSS Fuses 4 $13.64
ANL Fuse Block 1 $19.99

ANL Fuses 1 $4.99
12V/20A Converters 2 $37.98
12V/10A Converters 2 $24.66
Wire to Power Jacks 1 $6.19

Terminal Blocks 1 $11.49
Wire Terminals 1 $13.59

Nvidia Orin Jetson Nano 1 $0
Nvidia SSD 1 $44.60

Arduino Nano 1 $24.12
Encoders 2 $0

Encoder Cables 2 $21.00
12V Motors 2 $99.50

Motor Gearboxes 2 $242.00
Motor Drivers 2 $159.54

3D Camera 1 $295.42
2D LiDAR 1 $0

Physical E-stop 1 $32.00
Wireless E-stop 2 $23.98

Light 1 $12.23
Wires of Various Gauges 4 $0

Total $1,423.46

References

[1] A. Tantos, “H-Bridge Secrets,” Modular Circuits. [Online]. Available:
https://www.modularcircuits.com/blog/articles/h-bridge-secrets/h-bridge_drivers/
[2] Jameco Electronics, “Product Datasheet: 2204023MAN,” Jameco Electronics. [Online]. Available:
https://www.jameco.com/Jameco/Products/ProdDS/2204023MAN.pdf
[3] Dayton, “DC Gearmotor, RPM 150, 24VDC, 5LAG5,” Zoro. [Online]. Available: https://www.zoro.com/dayton-dc-
gearmotor-rpm-150-24vdc-5lag5/i/G0897757/
[4] Tutorials Point, “Rolling Friction and Rolling Resistance,” Tutorials Point. [Online]. Available:
https://www.tutorialspoint.com/rolling-friction-and-rolling-resistance
[5] Unitree Robotics, “Official Website,” Unitree Robotics. [Online]. Available: https://www.unitree.com/
[6] Robotics Backend, “Raspberry Pi (master) Arduino Uno (slave) SPI communication with WiringPi,” Robotics Backend.
[Online]. Available: https://roboticsbackend.com/raspberry-pi-master-arduino-uno-slave-spi-communication-with-
wiringpi/
[7] Newbiely, “Raspberry Pi - DC Motor,” Newbiely Tutorials for Beginners. [Online]. Available:
https://newbiely.com/tutorials/raspberry-pi/raspberry-pi-dc-motor

https://www.modularcircuits.com/blog/articles/h-bridge-secrets/h-bridge_drivers/
https://www.jameco.com/Jameco/Products/ProdDS/2204023MAN.pdf
https://www.zoro.com/dayton-dc-gearmotor-rpm-150-24vdc-5lag5/i/G0897757/
https://www.zoro.com/dayton-dc-gearmotor-rpm-150-24vdc-5lag5/i/G0897757/
https://www.unitree.com/
https://roboticsbackend.com/raspberry-pi-master-arduino-uno-slave-spi-communication-with-wiringpi/
https://roboticsbackend.com/raspberry-pi-master-arduino-uno-slave-spi-communication-with-wiringpi/
https://newbiely.com/tutorials/raspberry-pi/raspberry-pi-dc-motor

[8] Arduino Stack Exchange, “Arduino Nano use SPI pins as I/O pins? and still be able to do ISP?,” Arduino Stack
Exchange. [Online]. Available: https://arduino.stackexchange.com/questions/73433/arduino-nano-use-spi-pins-as-i-o-
pins-and-still-be-able-to-do-isp
[9] Hackatronic, “Raspberry Pi 5 Pinout, Specifications, Pricing: A Complete Guide,” Hackatronic. [Online]. Available:
https://www.hackatronic.com/raspberry-pi-5-pinout-specifications-pricing-a-complete-guide/
[10] ThingsDAQ, “Encoder with Raspberry Pi,” ThingsDAQ. [Online]. Available:
https://thingsdaq.org/2022/03/09/encoder-with-raspberry-pi/
[11] Jameco Electronics, “Official Website,” Jameco Electronics. [Online]. Available: https://www.jameco.com/
[12] Dynapar, “Quadrature Encoders - The Ultimate Guide,” Dynapar. [Online]. Available:
https://www.dynapar.com/technology/encoder_basics/quadrature_encoder/
[13] Total Phase, “I2C vs SPI Protocol: Differences and Similarities,” Total Phase Blog, Jul. 2021. [Online]. Available:
https://www.totalphase.com/blog/2021/07/i2c-vs-spi-protocol-analyzers-differences-and-similarities/
[14] Same Sky Devices, “AMT10 Series Modular Incremental Encoders,” Same Sky Devices. [Online]. Available:
https://www.sameskydevices.com/product/motion-and-control/rotary-encoders/incremental/modular/amt10-series
[15] F. Anwar, “Comparison of the Scalability and Performance of ROS1 and ROS2 Systems,” LinkedIn, Jan. 2023.
[Online]. Available: https://www.linkedin.com/pulse/comparison-scalability-performance-ros1-ros2-systems-fouad-
anwar/
[16] ROS 2 Design, “Design Changes from ROS 1 to ROS 2,” ROS 2 Design. [Online]. Available:
https://design.ros2.org/articles/changes.html
[17] DDS Foundation, “What is DDS?,” DDS Foundation. [Online]. Available: https://www.dds-foundation.org/what-is-
dds-3
[18] University of Michigan Robotics, “ROB599-F19: Class 18,” University of Michigan Robotics. [Online]. Available:
https://robotics.umich.edu/academics/courses/online-courses/rob599-f19/class18
[19] ROS 2 Design, “ROS with ZeroMQ,” ROS 2 Design. [Online]. Available:
https://design.ros2.org/articles/ros_with_zeromq.html
[20] IGVC, “2025 Official Rules,” Intelligent Ground Vehicle Competition. [Online]. Available:
https://igvc.secs.oakland.edu/2025rules.pdf
[21] IGVC, “Reports Archive,” Intelligent Ground Vehicle Competition. [Online]. Available:
https://igvc.secs.oakland.edu/reports.htm
[22] Raspberry Pi Forums, “Topic: 361746,” Raspberry Pi Forums. [Online]. Available:
https://forums.raspberrypi.com/viewtopic.php?t=361746
[23] ROS 2 Documentation, “Understanding ROS2 Topics,” ROS 2 Documentation. [Online]. Available:
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-
Topics.html
[24] ROS 2 Documentation, “Sync vs Async,” ROS 2 Documentation. [Online]. Available:
https://docs.ros.org/en/foxy/How-To-Guides/Sync-Vs-Async.html
[25] PowerStream, “Wire Size Calculator,” PowerStream. [Online]. Available:
https://www.powerstream.com/Wire_Size.htm
[26] Mean Well, “SCWN06 Series Datasheet,” Mean Well. [Online]. Available: https://www.meanwell-
web.com/content/files/pdfs/productPdfs/MW/SCWN06/SCWN06,DCWN06-spec.pdf
[27] OSHA, “Standard Interpretations: 2013-06-04,” Occupational Safety and Health Administration. [Online]. Available:
https://www.osha.gov/laws-regs/standardinterpretations/2013-06-04-0
[28] Adafruit, “Product 4517,” Adafruit. [Online]. Available: https://www.adafruit.com/product/4517
[29] Raspberry Pi, “Raspberry Pi M.2 HAT Plus Schematics,” Raspberry Pi. [Online]. Available:
https://datasheets.raspberrypi.com/m2-hat-plus/raspberry-pi-m2-hat-plus-schematics.pdf
[30] Arduino, “Arduino Nano,” Arduino. [Online]. Available: https://store.arduino.cc/products/arduino-nano
[31] Cerrowire, “Applications Charts,” Cerrowire. [Online]. Available:
https://www.cerrowire.com/products/resources/tables-calculators/applications-charts/
[32] AltE Store, “Wire Sizing Chart for 12V, 24V, and 48V DC Systems,” AltE Store. [Online]. Available:
https://www.altestore.com/pages/wire-sizing-chart-for-12v-24v-and-48v-dc-systems
[33] East Coast Overland Adventures, “VES Distribution,” East Coast Overland Adventures. [Online]. Available:
https://eastcoastoverlandadventures.com/2022/05/ves-distribution.html
[34] Enerdrive, “Select a Fuse and Fuse Holder for Your DC Product Installation,” Enerdrive. [Online]. Available:
https://enerdrive.com.au/2018/02/06/select-a-fuse-and-fuse-holder-for-your-dc-product-installation/

https://arduino.stackexchange.com/questions/73433/arduino-nano-use-spi-pins-as-i-o-pins-and-still-be-able-to-do-isp
https://arduino.stackexchange.com/questions/73433/arduino-nano-use-spi-pins-as-i-o-pins-and-still-be-able-to-do-isp
https://www.hackatronic.com/raspberry-pi-5-pinout-specifications-pricing-a-complete-guide/
https://thingsdaq.org/2022/03/09/encoder-with-raspberry-pi/
https://www.jameco.com/
https://www.dynapar.com/technology/encoder_basics/quadrature_encoder/
https://www.totalphase.com/blog/2021/07/i2c-vs-spi-protocol-analyzers-differences-and-similarities/
https://www.sameskydevices.com/product/motion-and-control/rotary-encoders/incremental/modular/amt10-series
https://www.linkedin.com/pulse/comparison-scalability-performance-ros1-ros2-systems-fouad-anwar/
https://www.linkedin.com/pulse/comparison-scalability-performance-ros1-ros2-systems-fouad-anwar/
https://design.ros2.org/articles/changes.html
https://www.dds-foundation.org/what-is-dds-3
https://www.dds-foundation.org/what-is-dds-3
https://robotics.umich.edu/academics/courses/online-courses/rob599-f19/class18
https://design.ros2.org/articles/ros_with_zeromq.html
https://igvc.secs.oakland.edu/2025rules.pdf
https://igvc.secs.oakland.edu/reports.htm
https://forums.raspberrypi.com/viewtopic.php?t=361746
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html
https://docs.ros.org/en/foxy/How-To-Guides/Sync-Vs-Async.html
https://www.powerstream.com/Wire_Size.htm
https://www.meanwell-web.com/content/files/pdfs/productPdfs/MW/SCWN06/SCWN06,DCWN06-spec.pdf
https://www.meanwell-web.com/content/files/pdfs/productPdfs/MW/SCWN06/SCWN06,DCWN06-spec.pdf
https://www.osha.gov/laws-regs/standardinterpretations/2013-06-04-0
https://www.adafruit.com/product/4517
https://datasheets.raspberrypi.com/m2-hat-plus/raspberry-pi-m2-hat-plus-schematics.pdf
https://store.arduino.cc/products/arduino-nano
https://www.cerrowire.com/products/resources/tables-calculators/applications-charts/
https://www.altestore.com/pages/wire-sizing-chart-for-12v-24v-and-48v-dc-systems
https://eastcoastoverlandadventures.com/2022/05/ves-distribution.html
https://enerdrive.com.au/2018/02/06/select-a-fuse-and-fuse-holder-for-your-dc-product-installation/

