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1. Abstract 
 

This project presents the design, construction, and testing of an autonomous ground vehicle 
developed for the Intelligent Ground Vehicle Competition (IGVC). The system integrates real-time 
perception, path planning, and autonomous navigation using a suite of sensors including LiDAR, 
GPS, IMU, and a camera. Emphasis was placed on modular hardware, ROS 2-based software 
architecture, and efficient debugging practices. Key challenges included sensor fusion, USB 
stability, and maintaining robust navigation in outdoor environments. Performance metrics such as 
obstacle detection range, waypoint accuracy, and battery life are evaluated and compared to 
predictions. Lessons learned in hardware reliability, safety design, and simulation testing informed 
improvements throughout the development cycle. 

 

2. CONDUCT OF DESIGN PROCESS 
 

2.1 Introduction 
 

Slow-Mho was developed as a multidisciplinary collaboration between Electrical and Mechanical 
Engineering students to design and prototype an autonomous mobility platform. The project 
required integrating hardware, embedded software, and mechanical systems, aligning with real-
world engineering challenges faced in autonomous vehicle development. 

 

2.2 Organization 
 

The project was carried out by one Electrical Engineering (EE) team and two Mechanical 
Engineering (ME) teams. The ME teams were both responsible for chassis development. One ME 
team pursued a short-term solution by adapting an existing wheelchair frame for early testing and 
development. The second ME team took on a longer-term goal, designing and constructing a 
custom chassis from the ground up for final integration. 

Name Major Fields 
Gabriel Gibson ME Mechanical 

Ian Cronin ME Mechanical 
Alan Arvidson ME Mechanical 

Keegan Adreon ME Mechanical 
Peyton Pope ME Mechanical 
Josiah Reese ME Mechanical 
Patrick Stulz ME Mechanical 
J. W. Beasley ME Mechanical 
Seth Eddins CS Software 



Mary Bickel EE Software, Electrical 
Evan Kvalvik EE Software, Electrical 

Sarah Boyce-Howard EE Electrical 
Christopher Sullivan EE Electrical 

 

Estimated Total Person-Hours: 
Over the course of two semesters, with seven active student contributors and ongoing weekly 
efforts (averaging 8–12 hours per week per student), we estimate approximately 1,200–1,500 total 
person-hours were dedicated to the project. 

 

2.3 Design Assumptions and Design Process 
 

Several assumptions guided our early design efforts: 

• The system must operate on uneven outdoor terrain (IGVC-style course), necessitating 
robust drive and control systems. 

• ROS 2 would be the primary software framework for middleware and autonomy features. 

• Power systems would be battery-operated, with runtime goals of at least one hour. 

• All components must be modular and easily replaceable to facilitate multiple chassis and 
iterative testing. 

• All IGVC requirements would be adhered to. 

The design process followed a hybrid V-model and Agile methodology. High-level functional 
requirements were defined early in the fall semester. Sub teams then performed individual 
subsystem research, feasibility analysis, and iterative prototyping. Regular sprint-style reviews 
helped synchronize efforts, track progress, and reallocate resources dynamically based on 
emerging challenges. 

Hardware and software integration was performed progressively, with multiple test phases 
culminating in a fully integrated outdoor test. Each phase included performance evaluation, bug 
fixes, and feature updates driven by team feedback and real-world constraints. 



 

FIGURE 2 THE EARLY STAGES OF THE CONCEPTUAL SOLUTION TO CREATING SLOW-MHO 

 
3. SYSTEM ARCHITECTURE & INNOVATION 
 

The Slow-Mho vehicle is built around a modular system architecture that integrates mechanical, 
electrical, and software components using a ROS 2-based framework. Mechanically, two chassis 
solutions were developed. One mechanical engineering team retrofitted an existing powered 
wheelchair to create a temporary platform for early testing, while the second team designed and 
fabricated a custom aluminum chassis tailored for long-term use. The final chassis was optimized 
for sensor placement, component mounting, and structural rigidity suited for outdoor autonomous 
navigation. 

The power system centers on a 51.2 V lithium-ion battery with an onboard battery management 
system. Power is distributed through a custom power distribution board (PDB) that regulates 
voltage and current to all components, including the motor controllers and computer hardware. 
For motion, the vehicle uses two MegaMoto Plus motor controllers driven by an Arduino Nano, 
which receives high-level velocity commands from the Jetson AGX Orin. An emergency stop switch 
is wired directly into the motor power lines, providing a fail-safe shutdown mechanism in case of 
unexpected behavior. 

The main computation unit is the NVIDIA Jetson AGX Orin, which runs ROS 2 Humble and all the 
high-level autonomy software. This includes real-time object detection using YOLOv8, 3D 
environment mapping with NVBlox, and motion planning through the Nav2 stack. The Orin receives 



perception data from the Intel RealSense depth camera and Leishen 2D LiDAR. A Pixhawk GPS 
module provides outdoor geolocation data, further supporting the navigation stack. Custom 
software nodes handle motor command generation, sensor fusion, and interprocess 
communication between all subsystems. 

 

1. FIGURE 3 NAVIGATING BROWN HALL WITH ROS2 NAVIGATION 

 

Subsystems are connected through ROS 2 topics and services. Sensor data flows into the Jetson, 
where it is processed and passed through the perception and navigation stacks. The resulting 
control commands are then sent to the Arduino Nano over serial. The Arduino interprets these 
commands and outputs the appropriate PWM signals to the motor controllers, enabling the robot 
to execute its planned motion. 

Several innovations were introduced over the course of development. One key innovation was the 
use of a dual-chassis approach. By deploying a temporary wheelchair-based chassis early in the 
project, the team was able to begin electrical integration and software testing months before the 
final mechanical frame was ready. This decoupling of the development timeline allowed parallel 
progress and helped mitigate project risk. Another innovation was the development of a modular 
motor control interface within ROS 2 that supported both manual and autonomous modes. This 
flexibility allowed for fast testing, simplified debugging, and safer transitions between development 
stages. Finally, the integration of NVBlox with the RealSense camera enabled 3D mapping 



capabilities that far exceeded the spatial awareness typically offered by 2D LiDAR alone. This 
decision was made after comparing mapping frameworks and recognizing NVBlox’s advantages for 
volumetric occupancy mapping in outdoor environments. 

These innovations emerged organically through iterative testing, team discussions, and strategic 
tradeoffs. As system bottlenecks and testing needs evolved, the team remained agile—adjusting 
designs and toolchains to stay aligned with project goals and performance requirements. 

 

4. DESCRIPTION OF MECHANICAL DESIGN 
 

The mechanical design of Slow-Mho was developed in two distinct phases to accommodate both 
short-term testing and long-term deployment. Initially, the team repurposed a motorized 
wheelchair as a temporary chassis. This ready-made platform provided a reliable drivetrain and 
basic frame structure, allowing the electrical and software teams to begin development and 
integration while the final chassis was still in progress. Although the wheelchair’s internal 
components were not modified, its frame was adapted with mounting plates and custom brackets 
to support onboard electronics and sensors. 

 

In parallel, a second mechanical engineering team worked on the design and fabrication of a 
custom long-term chassis. This process began with a detailed requirements analysis, followed by 
multiple design iterations in Computer-Aided Design (CAD) software. Autodesk Inventor was used 
to model the frame, estimate material stresses, and verify clearances for key components such as 
batteries, motor controllers, and compute units. The final design was constructed using aluminum 
square tubing for its strength-to-weight ratio, corrosion resistance, and ease of machining. 

Key structural decisions included isolating the electronics in a central compartment to protect 
them from mechanical vibrations and routing power and signal lines through protected channels 
along the frame. While the wheelchair platform featured built-in suspension elements, the custom 
chassis was rigid by design, as initial tests suggested minimal benefit from active suspension due 
to the vehicle’s relatively low speed and predictable course environment. Any minor vibration was 
mitigated through the use of rubber grommets and vibration-dampening pads beneath sensitive 
electronics. 

Weatherproofing was approached pragmatically. While Slow-Mho is not intended for use in heavy 
rain, several passive protection strategies were implemented. All critical electronics were mounted 
within sealed plastic enclosures or weather-resistant cases, with gaskets and cable glands to 
prevent moisture ingress. Ventilation holes were added only where necessary and positioned to 
reduce the likelihood of splash exposure. Exposed wiring was enclosed in split loom tubing and 
tied down to prevent movement during travel. 



Throughout the design process, the mechanical team worked closely with electrical and software 
sub teams to ensure all components could be securely and accessibly mounted. Mounting points 
for the camera, LiDAR, GPS, and E-Stop were all integrated into the CAD model and confirmed 
through physical mock-ups before final fabrication. The result was a robust and maintainable 
structure that could support field testing and future component upgrades. 

 

5. Electronics and Power  
 

The power subsystem for Slow-Mho was designed to provide reliable and regulated electrical 
energy to all components during operation. A key function of this subsystem is to ensure the 
vehicle can complete the competition track without power failure, which required selecting a 
battery with enough capacity and voltage headroom, as well as appropriate voltage converters to 
deliver clean power to each subsystem. To this end, the team selected a 51.2V, 25Ah LiFePO4 
battery, which offers over 1,280Wh of capacity—more than enough to support the system’s 
maximum estimated power draw of 540W for well over two hours. This battery was also chosen for 
its timely availability, relatively low weight (23.6 lbs), and compact form factor, making it suitable 
for integration within the mechanical constraints of the vehicle. 

 

FIGURE 4 POWER SUBSYSTEM CONFIGURATION 



The DC-DC power regulation system is built around two types of converters. The vehicle’s main 
compute and control units operate on 12V, so step-down converters were used to transform the 
51.2V battery voltage to 12V at both high and low current levels. Specifically, two 12V/20A 
converters power the motor controllers, while one 12V/10A converter supports the NVIDIA Jetson 
AGX Orin and its peripherals. The Arduino Nano is powered directly via the Jetson's USB port. The 
converters were chosen for their input voltage tolerance (up to 60V) and current capacity, ensuring 
headroom and stability under varying loads. Additionally, the subsystem includes a physical E-stop 
button and in-line fuses on the return paths from the motors to meet safety requirements. 

To ensure safe and efficient power delivery, wire gauges were carefully selected based on expected 
current. Team 4 utilized 6 AWG wiring for battery connections, 10 AWG for up to 20A circuits, 16 
AWG for circuits below 10A, and 20 AWG for signal-level connections, such as between the 
Arduino and motor drivers. All wires were insulated to provide protection from environmental 
exposure and unintentional shorting during handling. Terminal blocks, fuse holders, and fork 
terminals were used to securely connect all components and simplify assembly and 
troubleshooting. Together, the battery, converters, and wiring form a robust and modular power 
delivery system that interfaces cleanly with the mechanical and software subsystems, supporting 
stable and safe vehicle operation. 

  

6. Description of software system  
 

The software system for Slow-Mho was designed using a modular, ROS 2-based architecture 
running on the NVIDIA Jetson AGX Orin. Its core function is to perceive the environment, classify 
objects, plan safe trajectories, and execute those trajectories to complete the competition course. 
Sensor data is collected from multiple modalities: a RealSense depth camera, a 2D LiDAR, GPS via 
Pixhawk, and wheel encoders. These raw data streams are processed by specialized nodes for 
object detection, localization, and mapping. 

Sensor fusion is performed through synchronized timestamping and ROS 2 message filters, 
allowing the system to correlate depth data from the RealSense camera with 2D scans from the 
LiDAR and geolocation data from the GPS. This enables Slow-Mho to generate a more complete 
understanding of its surroundings—referred to as the current scene. The RealSense camera is 
also used to run a YOLOv8 object detection model in real time, which identifies cones and other 
IGVC-relevant obstacles. This classification data is incorporated into NVBlox, a volumetric 
mapping system that uses depth images and odometry to incrementally build a 3D map of the 
environment—effectively combining current and past scene data into a world model. This allows 
the robot to reason not only about what it sees now, but what it has seen before and avoid 
obstacles accordingly. 



 

FIGURE 5 IMAGE RECOGNITION WITH YOLOV8 

 

Navigation is handled through the ROS 2 Navigation Stack (Nav2), which ingests this world model, 
localizes the robot, and generates global and local paths using a hybrid approach of GPS waypoints 
and obstacle-aware path planning. When operating in GPS-following mode, the robot uses GPS 
coordinates as goals and fuses them with odometry to localize itself on a coarse map. In lane-
following mode, the system instead relies on visual cues—like cones or boundaries—detected by 
YOLOv8 to generate a trajectory through NVblox and Nav2. Mode switching is triggered based on 
mission state: GPS mode is used for long-range travel between course segments, while lane-
following activates when the system detects navigation boundaries, such as colored cones or 
white circle “pothole simulators.” 

The planned trajectory is followed by computing target velocities for the drive motors and 
publishing motion commands to a custom motor control node. This node translates the high-level 
trajectory into PWM commands sent via serial to an Arduino Nano, which drives the MegaMoto 
motor controllers. Feedback from encoders and system monitoring (e.g., watchdog timers, 
heartbeat messages) ensure that motion adheres to the plan and safety overrides can be triggered 
if necessary. 



 

FIGURE 6 ENCODER TEST DATA 

In addition to standard functionality, Slow-Mho incorporates creative design choices to improve 
robustness. For instance, a fallback manual mode allows for testing using keyboard inputs, and a 
modular control interface permits easy swapping of autonomy modules without changing the rest 
of the system. Overall, the software system combines state-of-the-art perception and control tools 
in a scalable, fault-tolerant framework suited for real-world autonomous navigation. 

 

7. Cyber Security Analysis using RMF  
 

To understand and mitigate cybersecurity risks for Slow-Mho, we applied the NIST Risk 
Management Framework (RMF), which outlines a structured, seven step approach: Prepare, 
Categorize, Select, Implement, Assess, Authorize, and Monitor. This framework ensures that 
cybersecurity is treated as a system-wide concern rather than a last-minute add-on. 

Threat modeling revealed the most significant risk as malicious actors—such as rival teams—
disrupting software via USB access or wireless interference while competing. Such attacks could 
involve overwriting configuration files, injecting false commands, or disabling safety systems. The 
impact could be catastrophic: loss of control, inability to start, or unpredictable behavior resulting 
in disqualification. 

To counter the mist likely threat, we selected the following cybersecurity controls: 

• Physical Access Controls: USB ports will be closely monitored. 

• User Authentication: Password-protected access on the Jetson Orin. 

• Coded Remote Cut-off: The remote cutoff trigger provides a basic level of security. 

• Lidar/GPS spoofing: While Lidar or GPS spoofing is possible, those threats are in their early 
stages of development. This team has no defense against such an attack, but the likelihood 
of that kind of attack has been deemed very unlikely. 

Future improvements include adopting secure ROS 2 DDS transport layers, intrusion detection 
agents, and prevention of spoofing. 



 

8. Analysis of Complete Vehicle  

 

Lessons Learned During Construction and System Integration 
 

One important lesson we learned is to never delete seemingly useless files, as they often turn out 
to be critical later. It's also wise to avoid troubleshooting hardware and software problems at the 
same time, since isolating issues is much easier when focusing on one domain. We found it's 
essential to record working configurations while everything is still functioning, so there's a 
reference point when things break. If you're stuck, chances are someone else has encountered the 
same problem—so do some research before reinventing the wheel. We also realized that one 
semester is not enough time to fully learn programming and robotics, especially when building a 
system from scratch. Finally, we learned the hard way that anything that happens in the container 
stays in the container—containerized environments can mask problems or changes unless 
carefully documented. 

 

Failures, Effects and Strategies of Mitigation 
 

The following is a table of some documented issues that arose either before or after getting a 
specific component to function and how the team overcame the failure. 

Failure Effect Mitigation Strategy 

CH340 USB serial 
disconnects 

Loss of motor control 
Switched to shielded cables, verified 
kernel module installation 

Power rail voltage 
drops 

System resets 
Added decoupling capacitors, 
switched to BECs with voltage 
regulation 

GPS loss or noise Navigation drift 
Implemented dead reckoning with 
IMU fallback and added watchdog for 
GPS health 

RealSense camera 
instability 

Loss of depth 
mapping 

Upgraded USB cables, ran diagnostics 
in RViz, added fallback logic 

 



Budget 
 

Component Quantity Cost to Team 
51.2V/25Ah Battery 1 $269.99 

Battery Charger 1 $35.00 
BSS Fuse Block 1 $31.55 

BSS Fuses 4 $13.64 
ANL Fuse Block 1 $19.99 

ANL Fuses 1 $4.99 
12V/20A Converters 2 $37.98 
12V/10A Converters 2 $24.66 
Wire to Power Jacks 1 $6.19 

Terminal Blocks 1 $11.49 
Wire Terminals 1 $13.59 

Nvidia Orin Jetson Nano 1 $0 
Nvidia SSD 1 $44.60 

Arduino Nano 1 $24.12 
Encoders 2 $0 

Encoder Cables 2 $21.00 
12V Motors 2 $99.50 

Motor Gearboxes 2 $242.00 
Motor Drivers 2 $159.54 

3D Camera 1 $295.42 
2D LiDAR 1 $0 

Physical E-stop 1 $32.00 
Wireless E-stop 2 $23.98 

Light 1 $12.23 
Wires of Various Gauges 4 $0 

Total  $1,423.46 
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