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Conduct Of Design Process, Team Identification and 
Team Organization 

Introduction: 
Operation 313 proudly presents “Annie”, short for “Anomaly.” Annie was developed as a fully autonomous 
vehicle capable of following standard road laws at low-speed (3-5mph). It was designed to the specifications 
of the IGVC, with the intention to compete May 30 – June 2, 2025. 

Organization: 
The team was divided into sub-groups tasked with individual aspects of development. These sub-groups are 
Hardware, Navigation, Simulation, System Integration, and Vision and Sensing. 

Member Name Academic Department Assigned Sub-Groups Hours 
Contributed 
 

Evan Varga Electrical Engineering Vision and Sensing – Lead 
System Integration 

250 

Andres Diaz Navas Electrical Engineering Navigation – Lead 241 
Brandon Smith Robotics and 

Mechatronic Systems 
Engineering 

Navigation 
System Integration 
Vision and Sensing 

252 

Dalton Kanerva Robotics and 
Mechatronic Systems 
Engineering 

System Integration – Lead 
Hardware 
 

372 

Edrees Ahmed Electrical Engineering Hardware 
Navigation 
Simulation 

361 

John Gazdecki Electrical Engineering Hardware – Lead 
System Integration 

354 

Linu Hanna Electrical Engineering Navigation 
Vision and Sensing 

226 

Oriekaose Agholor Robotics and 
Mechatronic Systems 
Engineering 

Simulation – Lead 
System Integration 
Navigation 

380 

Simon Yeldo Electrical Engineering Navigation 299 
Sumaia Alghaiti Electrical Engineering Vision and Sensing 

Navigation 
320 

Labor Cost at $20/h: $61,100 
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Design Assumptions and Design Process: 
The design process started from scratch, and changes to IGVC requirements prompted the development of 
an entirely new robot platform, Annie. First, the IGVC requirements and functional tests were examined to 
determine general size and construction of the robot. Next, we looked at what information Annie must gather 
to behave in the desired way. With this foundation set, the hardware components and software algorithms 
were selected for gathering and processing environmental information, allowing for autonomous robot 
operation. From there, an iterative process was employed for prototyping and validation until final design 
choices were reached. 

Task assignments and updates were given at weekly meetings, and a scrum board was used to track progress 
and individual tasks. 

 

System Architecture of the Vehicle 

Mechanical, Power, and Electronic Components: 
Mechanical Component Quantity Total Cost 

BotWheel Explorer Kit 2 $598 

Battery Enclosure 1 $17.99 

LeMotech Electrical Box, IP67, 11.8”x7.7”x5.2” 1 $39.99 

Outdoor Electrical Junction Box, 18.1”x12.6”x6.3” 2 $139.98 

LeMotech Electrical Box, IP67, 4.7”x3.5”x2.7” 1 $14.99 

Makerele Cable Gland Assortment Kit 1 $26.49 

Makerele NPT ¾" Cable Glands 1 $9.05 

Rubber Mat for Waterproofing Measures 1 $11.65 

3D Printing PLA Filament 2 $36.00 
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NUC and Router Mounting  2 $37.98 

6061 Aluminum Bar 1/4" Thick x 12" Wide, 2 Feet Long 2 $116.20 

Flat-Surface Machine Bracket 6061 Aluminum, 60mm x 20mm 16 $92.16 

Medium-Strength Steel Serrated Flange Locknut Class 8 (100) 2 $13.32 

Cart-King Caster Swivel with 5" Diameter Red 2 $56.40 

6061 Aluminum Sheet 0.160" Thick, 6" x 48" 1 $59.61 

Class 10.9 Steel Hex Head, M6x 1 Thread, 40 mm Long (5) 8 $75.36 

Class 10.9 Steel Hex Head, M6x 1 Thread, 25 mm Long (5) 8 $65.92 

Threaded T-Slot Nut, M6 x 1 mm Thread, for 8 mm Wide Slot 16 $84.64 

6x1/2” Flat Head Screws 5 $15.79 

6x5/8” Flat Head Screws 1 $3.69 

6x3/4” Flat Head Screws 1 $3.69 

6x3/4” Pan Head Screws 1 $3.69 

4” Cable Ties 1 $6.44 

 

Power Component Quantity Total Cost 

12.8V 30Ah – LiFePO4 Battery 6 $479.94 

36/43.8V 10A LiFePO4 Charger 1 $42.99 

DC-DC Buck Converter 48V-24V 1 $35.14 

DC-DC Buck Converter 48V-12V 1 $29.99 

Fuse Block Panel with LED warning indicator 2 $35.18 

1A Automotive Fuses (25 pc.) 1 $5.79 

2A Automotive Fuses (20 pc.) 1 $4.99 

3A Automotive Fuses (20 pc.) 1 $4.99 

4A Automotive Fuses (20 pc.) 1 $4.99 

Shrink Tubing for Wire Connections 1 $11.97 

Copper wire Lugs 1 $15.88 

150A Circuit Breaker with Manual Reset 1 $24.99 

20A Circuit Breaker with Manual Reset 2 $31.90 

Set of Bus Bars 1 $23.99 

 

Electrical Component Quantity Total Cost 

NUC 1 $779.00 

TP-Link AXE 5400 Archer AXE75 1 $158.99 

Proscilla GT1290 1 $1395.26 

Proscilla GT1290 I/O cable 1 $71.28 

3.5mm/F2.0 Edmund Optics Lens 1 $606.00 

GPS-RTK-SMA ZED F9P Breakout 2 $519.90 

GNSS Multi-Band Helical Antenna 2 $239.90 

Ellipse Series Inertial Sensor (IMU) 1 $2000.00 
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OS1 Ouster LiDAR 1 $18000.00 

LED Strobe Light for Emergency Warning 1 $24.99 

Wireless e-Stop 2.4GHz Transmitter 1 $330.00 

Wireless e-Stop 2.4 GHz Receiver 1 $187.00 

90-Degree USB-C Adapters 3 $17.81 

90-Degree HDMI Adapters 1 $9.50 

USB-A 1 to 4 Extender 1 $10.27 

USB-C Cables 1 $7.41 

90-Degree Coaxial Cable Adapters 1 $8.03 

Total Architecture Cost: $26,645.60 

Total Development Cost (Labor + Hardware): $87,745.60 

Safety Devices 
Safety was at the forefront of our minds throughout the development of Annie. Annie is equipped with a 
mounted e-stop located in an accessible location at the back center of the vehicle. In addition, there is a 
blinking light that will indicate when the robot is in autonomous mode. Furthermore, a wireless e-stop is 
equipped that allows any user to shut down Annie remotely in the event of an emergency. 

In addition to shutdown features, all electrical components are fed through fuses, thus protecting against 
over-current in the event of a malfunction. Lastly, there are circuit-breakers for 12V components, 24V 
components, and the batteries themselves, allowing for the disconnection of hardware before it is handled 
by a person. 

Significant Software Modules 
The software modules are split into individual ROS2 nodes, allowing for specific tests to be run at any time. 
For example, during a static pedestrian detection test, it is unnecessary to run the lane detection and vehicle 
navigation code, as the robot does not need to move for this test. 

Modularizing software also allows for easy transitions between various states of operation. This provides 
value when Annie is in full autonomous mode, where it must transition between lane-keeping, lane-merging, 
intersection behavior, etc. 

Documentation of Integration: 

The platform and layout of the vehicle provide simple integration of hardware and software systems. 
Batteries are mounted over the wheels for balance and have short feeders going into electrical enclosures. 
The 12V enclosure houses the NUC and router, which are next to each other for packaging efficiency; 
furthermore, GPS units are close to the NUC for data and power plug in. All device cables are as discrete as 
possible while maintaining ease of access. The software and algorithms for controlling Annie exist on the 
onboard NUC. This makes Annie’s systems clean, simple, and primed for success. 
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Effective Innovations 
There are several innovations within the design of Annie. The power system and vehicle frame were designed 
to account for modifications and future additions. The 12V and 24V buck converters have spare capacity and 
multiple slots available in their respective fuse boxes. The vehicle frame is made from slotted aluminum that 
allows for easy changes to the location of mounted devices and mounting of additional components. There 
are provisions in place for including a RADAR on the vehicle, which will be a key addition, since the 
automotive industry uses RADAR in current production. Moreover, past vehicles from UDM have had 
electrical systems that are hard to access and difficult to modify. Annie utilizes weather-proof electrical 
boxes with strategic internal mounting schemes for easy access and modification. The slotted aluminum 
framing and open vehicle underside allow for efficient and discrete wiring. The vehicle framing and wiring 
have the space and capacity to support larger and higher voltage batteries in the future. 

Description of Mechanical Design 

There are several key components for Annie including motors, omni-wheels, IMU, 2D camera, LiDAR, NUC, 
router, Arduino Uno, emergency stops, lights, and antennas that were acquired as ready-made units. The full 
assembly was modeled in SOLIDWORKS to check fit and design mounting solutions before beginning 
physical assembly. 

The mechanical design started with determining space and dimensional requirements. It then continued with 
CAD layout iterations to improve clearances, access, and organization. The material selected for the chassis 
tower was 3030 aluminum T-slot extrusions, which offers excellent strength and mounting flexibility. The 
lower frame is composed of 6061 aluminum stock for its lightweight durability. The brackets and plates were 
custom-designed in SOLIDWORKS and plasma-cut or CNC machined in-house, which streamlined assembly 
and enhanced customization options. 

Instead of traditional suspension, the vehicle isolates sensitive parts like the IMU, which was mounted with a 
custom 3D-printed bracket dampened by rubber O-rings between the device and the robot base. Aluminum 
motor mounts were carefully designed to handle load without introducing stress points, which improved 
drive motor reliability. 

Sensitive electronics were installed on ABS plastic mounting plates inside enclosures for weather protection, 
clean wiring, mounting location flexibility, and easy servicing. The externally mounted sensors and devices 
with acceptable IP ratings used a mix of 3D-printed PLA and aluminum mounts, which kept the overall design 
lightweight and stable. 

For weatherproofing, Annie utilizes sealed electrical boxes with water-resistant inserts and outdoor-rated 
connectors. Elevating critical components on the vehicle, coupled with 3D-printed covers, protects against 
water damage without resorting to flexible coverings. Therefore, the vehicle is strong, modular, outdoor-
ready, and prepared for the IGVC competition and future adaptations to the vehicle. 
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Description of Electronic and Power Design 
In designing any mobile vehicle, it is crucial to have efficient and safe power systems to run sensors and 
electronics. The first step to design Annie’s power systems was analyzing the voltage and power 
requirements of motor controllers, sensors, and other electronics needed for vehicle operations. Batteries 
were then selected based on the voltage range of Annie’s motor controllers and total power demand. The 
design includes weatherproof enclosures meeting the minimum need of IP42 ratings to protect sensitive 
electronics and power equipment from light rain. Thus, all of Annie’s electrical systems are successfully 
powered from the safety of enclosures. 

The design utilizes two sets of three Lithium Iron Phosphate (LiFePO4) batteries (12.8V nominal) in series 
configurations. The vehicle run time is approximately three hours with the ability to quickly change battery 
sets for an additional three hours. A single 43.8V charger was purchased for the battery sets and has been 
tested for functionality after initially charging the batteries individually. The maximum charging time for the 
battery sets is three hours. There are 12V and 24V systems on the vehicle, so there are buck converters to 
step the main battery voltage down to fuse boxes that feed the devices on Annie. There are also DC circuit 
breakers to cut power to the buck converters and one for the main batteries. Additionally, there are positive 
and negative bus bars for connecting the vehicle systems to the main batteries with easy swapping.  

The vehicle has an NUC with an Intel CPU for onboard processing, a TP-Link router for Ethernet and WIFI 
capability, plus a Raspberry Pi connected to a CAN HAT for motor control communications. A LiDAR and 
Proscilla 2D camera are used for detecting lane lines, road signs, and obstacles. Embedded wheel encoders, 
an Inertial Measurement Unit (IMU), and GPS are used for vehicle odometry and subsequent software 
control. A mechanical e-stop is set up to stop the vehicle when pressed. Additionally, there is a wireless e-
stop receiver that will mechanically cut power to the propulsion when activated by the transmitter. Lastly, a 
light is connected to Arduino controls via relays. This light blinks when the vehicle is operating autonomously. 

Description of Software System 
The 2D camera used (Proscilla GT1290) was set to capture images at 12 frames per second. The raw image 
data was published on a ROS2 topic, since it would have to be processed in multiple ways. 

Blob detection is needed to identify pedestrians wearing orange construction vests. To meet this 
requirement, the RGB image is converted to HSV, and passed through a thresholding filter that sets all non-
orange pixels to black. The image is then converted back into RGB, matching the formatting of standard ROS2 
messages. The image containing only orange pixels is then published as the output of the ‘Pedestrian 
Detection’ algorithm. 

For lane detection, the raw camera data is cropped down to below the horizon line. This serves to eliminate 
unnecessary information, speeding up processing. First, the blob detection algorithm is adjusted to extract 
yellow pixels, since some lane lines will be yellow. The remaining yellow pixels are converted to white, which 
will be added back into the image later. From there, the original cropped image is converted to grayscale. 
Then, custom contrast-enhancement transforms are applied to accentuate the white lane lines. The 
binarized yellow is then added back to the image. Next, the image is convolved with a Sobel kernel to extract 
transitions from dark to light values. The output of this is put through another custom threshold such that 
only strong transitions remain, leaving white pixels only on the transitions from road to lane line. Next, the 
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Hough Transform is applied, which looks for white pixels along a linear line. The two lane lines are extracted 
through outputting the pixel coordinates at the top and bottom of each lane line. This is published for any 
navigation algorithm to use for calculating vehicle behavior. 

Object detection is done using an Ouster OS1 LiDAR. Data processing extracts object position and sends it 
through a ROS2 topic informing navigation algorithms of potential hazardous objects. 

Data processing of the LiDAR can be split into three sections: filtering, ground segmentation, and clustering. 
Filtering reduces information bandwidth reducing delays in object detection. Initially, the point cloud 
generated from the LiDAR is passed through a voxel, down sampling the points. Then, four different point 
clouds are created with each having their own filter specifications and dimensions best suitable for 
particular modes of operation. One point cloud is focused on the area in front of Annie to detect tires, 
barrels, and pedestrians. The second and third examine the left and right sides of Annie. The fourth views the 
front-right quadrant to detect the presence of stop signs. After each point cloud is established, the ground 
plane is identified using a [0 0 1] vector, and any point normal to that vector is segmented and removed. 
Lastly, clustering is done through similarities in points’ Euclidean distance, to characterize any points 
together and establish which points belong to what object. Once each cluster is established, the point in 
each cluster nearest to Annie is then sent to any algorithm that needs to know the object’s position. 

The lane lines of the course are defined through the combination of multiple image processing filters/masks, 
in which the Hough transform derives lines of appropriate angle. With lane lines derived, the process for lane 
following and centering involves tracing these lane lines to an intersection point on the image. The 
intersection’s pixel location on the X-axis of the image is compared to the value of half the horizontal 
resolution of the image. This difference in pixel value is proportional to the Cross Trek Error, and is input to a 
PID controller, whose output is the commanded angular velocity to the vehicle. This method works especially 
well for curves, as the intersection of the lane lines veers to the side of the screen that the curve is bending. 

For localization, the Extended Kalman Filter (EKF) is the chosen state estimation algorithm. Balancing the 
capacity of handling non-linearities with computational efficiency, it remains a relatively lightweight 
algorithm compared to other non-linear filters. The EKF also presents great flexibility, allowing the integration 
of sensors with different update frequencies and noise levels. It has been widely used in robotics, aerospace, 
automotive and navigation, thus providing users with an active and supportive community. 

The algorithm works in three stages: initialization, prediction and correction. In the initialization stage, the 
EKF starts with an initial state estimate (position, velocity, and acceleration), or an initial guess and its 
uncertainty. It then goes into the prediction stage by producing a prior estimate of the next state and a prior 
covariance matrix using a state-space model. Based on the prior state estimate, a measurement prediction 
is then produced. The first step in the correction stage is the calculation of the Kalman Gain, which weighs 
how much the model estimate should be corrected. The Kalman Gain is calculated using the measurement 
noise covariance matrix, which quantifies the level of “confidence” in sensor data. The state estimate and 
the covariance matrix are then updated, producing the posterior state estimate and the posterior covariance 
matrix. 

The vehicle is equipped with wheel encoders, an IMU and a GPS module. The wheel encoders use a 
localization method known as Odometry, which is the estimation of position from internal motion sensors. 
Odometry relies on dead reckoning, where position is calculated by quantifying wheel motion (ticks) over 
time. The IMU is composed of a gyroscope, accelerometer and magnetometer, and it provides an estimate of 
velocity and orientation. The GPS module is instrumental in determining the vehicle’s global position.  
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When integrated into the EKF, these sensors participate in the correction of model predictions. The 
introduction of redundancy through multiple sensors ensures a more robust localization against sources of 
inaccuracy, such as sensor malfunctions and measurement errors. 

In the waypoint following algorithm, the EKF output is used in an iterative commanding of angular and linear 
velocities according to errors in heading and position. This consistently changes angular velocity until a 
threshold is met for the desired position. This algorithm is used in merging, parallel parking, and left turn 
functions.  

 

Cyber Security Analysis using RMF 
Cybersecurity is an important consideration in the automotive industry, especially as the development of 
more autonomous cars continues. There are several ways to undermine the vehicle’s integrity, such as CAN 
bus attacks, exploitation of vision system vulnerabilities and ROS2 network dependencies. 

The CAN bus is a critical subsystem for vehicle control and should be categorized as a high-impact level 
under Risk Management Framework (RMF) guidelines. Disrupting the CAN bus can cause loss of steering and 
speed control. For example, the lowest CAN ID injection is a well-known cybersecurity threat that has caused 
many issues for the automotive industry. Some of the most recent incidents were the CAN bus attacks 
against Toyota's newer RAV4 models. There are various methods to mitigate the effect of possible attacks, 
such as implementing a whitelist of accepted CAN IDs, to ensure only approved ID lines reach the ECU.   

The vision systems of vehicles, including those for traffic sign detection, present easily exploitable 
vulnerabilities. Vision systems are considered high impact because any false positives could result in unsafe 
behavior, such as sudden stops. Issues of this type are common in Tesla vehicles because of camera 
dependency. Integrating object detection via LiDAR with static obstacle detection could improve robustness. 
At present, the vehicle detects static signs before carrying out image processing; however, improvements 
can be made for better text recognition. This would ensure that text imperfections will not be as problematic. 

Finally, the vehicle is highly dependent on ROS2 nodes. The network that these nodes are on provides a 
channel for the injection of malicious commands. If the ROS2 network is compromised, DDS security 
features such as topic encryption and high-security firewalls would prevent further damage. Also, network 
monitoring that records node connections and traffic activity can raise an alert if anything suspicious is 
detected. 

Analysis of Complete Vehicle 
Throughout this extensive project, many lessons and experiences were learned specific to each member and 
their tasks. However, as a group, the lessons learned together can be divided into two categories: hard skills 
and soft skills. The hard skills gained came from learning about vehicle autonomy and the different devices 
and systems that make it work. We also got experience coding algorithms, working with electrical 
components, and solving mechanical problems. On the soft skills side, teamwork was the most important 
thing we developed. This project relied heavily on working together, dividing up the workload, and helping 
each other through the challenges. Without teamwork, Annie wouldn’t have made it this far.  
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One of the biggest hardware failures we faced had to do with Annie’s wheels. During testing, we found that 
the added weight of the frame, hardware, and payload decreased the top speed to under 5mph. To fix this, 
we added a second wheel on each side and installed two more ODrive S1 speed controllers; however, this 
introduced CAN bus communication issues between the controllers. This caused the wheels to operate 
improperly. Currently, Annie can operate with one set of wheels but will not meet the speed requirements of 
the competition. We’re still working on solving this problem, but there’s a chance it will still be an issue  when 
competing. 

Even though Annie’s drive system is limited, other parts of the vehicle worked well. The IMU and GPS were 
tested separately and performed as expected. We used them to build our localization system, which 
combines GPS, IMU, and encoder data through an EKF. This system worked well in simulation, giving us 
accurate position estimates for waypoint navigation. 

For safety, Annie is equipped with a mechanical e-stop mounted on the back and a wireless e-stop that lets 
us shut her down remotely if needed. All electrical components are protected with fuses and circuit 
breakers, and the sensitive electronics are housed in weatherproof enclosures. The frame is made from T-
slot aluminum, which is strong and easy to modify. We also mounted the IMU on rubber dampers to protect it 
from vibrations. 

Going into the competition, we know that Annie’s drive system is our biggest risk. If the CAN communication 
between the motor controllers can’t be fixed, we will have to run her on one set of wheels, which means she 
won’t be able to reach the required speed. We have spare cables and controllers ready, and we’ll continue 
troubleshooting during the competition to see if we can get the second set of wheels working. 

As for predicted performance, here’s what we’ve seen so far: 

• Speed: We expected around 1.5 m/s with both sets of wheels, but we’re only getting about 0.6 m/s 
with one set. 

• Battery life: Annie can run for 2.5 to 3 hours on the current LiFePO4 battery setup. 

• LiDAR Distance: The distance seen in front of Annie ranges from 1-25 meters away. The left and right 
sides go to a maximum distance of 10 meters, and any stop signs within 10 meters are detectable 
through the LiDAR. 

• Localization accuracy: In simulation, waypoint accuracy is about ±0.2 meters, but in real-world GPS-
only tests, it’s closer to ±0.5 meters. We haven’t fully tested EKF localization on the actual robot yet 
because of the drive issues. 

• Obstacle detection: The LiDAR can detect obstacles up to 20 meters away, and the camera picks up 
lane lines and signs within 10 meters. 

• Handling complex obstacles like switchbacks, center islands, and dead ends was successful in 
simulation, but we haven’t been able to test these scenarios in the real world yet. 

For software testing, we used GitHub for version control and tracked bugs using GitHub issues. We tested 
individual algorithms and ran integration tests in simulation. Our main testing environment was Gazebo, 
where we tested lane following, obstacle avoidance, and intersection behaviors. 
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Physical testing has been limited because of the drive system problems. We’ve tested the IMU, GPS, LiDAR, 
and camera separately and confirmed they work. But the full system, combining sensors, localization, and 
navigation algorithms has only been tested in simulation so far. In the end, Annie’s software and sensors are 
ready, but the hardware issues with the drive system are holding her back. 

 

Unique Software, Sensors, and Controls for Self-Drive 

Obstacle Navigation  
The vehicle utilizes Lidar obstacle clustering to determine the position of obstacles with respect to the 
vehicle’s coordinate frame. The functionality of stopping at an obstacle lies in creating a threshold in the X 
direction. Once this threshold is passed, the vehicle will be commanded to stop.  

Navigation around an obstacle relies on a separate function called lane state detection. For the IGVC course 
our team developed two means of deriving these states: dashed line detection and yellow line detection. 
Dashed line detection finds the lane lines, and counts segmentation in either lines, if more segmentations 
are found in the left lane line, the vehicle knows the left lane line is dashed, therefore it’s in the right lane. The 
second method is yellow line detection, which applies a mask to the image and filters yellow pixels. The 
image is converted to a binary map where the occupancy of the left and right side of the screen is compared. 
The higher value of occupancy count indicates there is more yellow on that side of the screen, meaning that 
the centerline is located on that side of the screen. This tells Annie she is in the lane opposite the side of the 
detected yellow centerline. 

Once the vehicle has determined the lane state, it will generate a point a safe distance before the obstacle in 
the opposing lane, and use waypoint following to travel to that point, in which lane following will take over 
and recenter the vehicle in the other lane.  

Intersection Management 
We verify the presence of an intersection by detecting horizontal lines in the camera image. To accomplish 
this, we use the Hough Transform specifically tuned to detect lines with angles close to horizontal. By 
cropping the lower portion of the image and applying the Hough Transform with an appropriate angle filter, 
the vehicle can robustly identify stop lines that typically appear at intersections. When one or more strong 
horizontal lines are detected, the system transitions into intersection management mode. 

There are three possibilities for intersection management: right, left, or straight.  

Right Turn 
When turning right at an intersection, the vehicle is lane following by maintaining a set distance between the 
center pixel of the screen and the right lane line. This cross-trek error is plugged into a PID controller which 
controls the angular velocity toward and away from the right lane line.  
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Left Turn 
The lack of lane line presence is a major issue when turning left at an intersection. Our team navigated this by 
utilizing the fact that the IGVC course mimics dimensional road standards. An intersection of roads, both 
with lane lines 10’ in width, allows us to calculate the radius of curvature our vehicle will need to follow to 
end up in the correct lane after turning. When the vehicle encounters a left turn intersection, it calculates the 
path along this curve, interpolating points along the curve, and finally employing the waypoint following 
algorithm until either the curve is complete, or the lane lines are visible again. When the lane lines become 
visible, the vehicle will continue with standard lane following procedure. 

Straight 
When progressing straight through an intersection, the vehicle initially drives forward for a preset duration of 
time. This approach allows the robot to safely clear the intersection without requiring immediate lane 
detection, accounting for gaps where lane markings may be missing. During this period, the robot maintains 
a constant linear velocity with zero angular velocity to ensure it moves straight ahead. After the set time 
elapses, the system begins searching for lane lines again. Once two distinct lane lines are detected, 
standard lane-following behavior is resumed, using cross-track error and PID control to maintain the correct 
position between the lanes. 

 

Parking 

Pull in  

To do this an algebraic and cartesian solution was implemented. The center point of the parking spot is 
obtained by estimating the distance from the robot to each obstacle using LiDAR. Once that is obtained, the 
robot stops. It then rotates by about pi/2 radians using its odometry and localization. Finally, it moves 
forward into the parking spot until it is in line with the two barrels. 

Parallel 

To parallel park, the vehicle starts adjacent to the topmost barrel of the parking space. Because the vehicle 
only has one forward facing camera, the parallel parking procedure operates exclusively off lidar and EKF 
values. After pulling up adjacent to the front barrel, LIDAR clustering identifies the front and rear barrels 
position in reference to the vehicle. With these barrel locations, a binary occupancy map is generated, with 
the shape of a parallel parking space. It is parameterized according to the coordinate values of the barrels. 
The dimension of the parallel parking space is taken to be the common standard of 8’6” x 23’, however these 
values are easily changeable if the dimensions of the IGVC-provided space differ. Because the binary 
occupancy map cannot have negative array values, all coordinates are displaced by 500 and distances are 
magnified by 10 for a higher resolution. The location of the parallel parking space on the binary occupancy 
map is created where it would be with respect to the vehicle, whose location is always (500,500) due to the 
previously mentioned displacement. With the vehicle’s starting position specified, an A* path is generated 
using the vehicle’s position and orientation as the starting location, and the center of the parallel parking 
space as the final position. Using the waypoint following algorithm, the vehicle then follows the points on the 
path until parallel parking is completed. 
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Functionality integration 

The core functionalities of the vehicle are tied together using a state machine generated through MATLAB 
state-flow. The operating modes, such as obstacle navigation, lane following, and intersection handling 
operate according to circumstantial flags and a global intersection timer. The intersection timer is necessary 
for the vehicle to decide how to behave at each intersection. The vehicle’s default state is lane following. 
Algorithms that identify obstacles, potholes, and road signs cause transitions to other states. 

To enter these states, multiple sensor inputs are utilized. LiDAR data is processed to trigger the sign flag 
when a highly reflective object is detected. Annie then uses the camera’s stop sign reading algorithm to verify 
the stop sign’s authenticity. If obstacles are detected on the vehicle’s path, the lane state detection 
algorithm runs, so that the lane change algorithm knows which direction to merge.  

When encountering the final intersection, the value of the intersection counter enables the pull-in parking 
algorithm, completing the course. 

Stop Sign Read and Overlay 
When the LiDAR flags something that could be a stop sign, the sign validation algorithm starts. It reads the 
latest camera image and applies filters to extract red pixels coordinates through RGB thresholds. The 
resulting masked image is passed through median filters, and morphological processes to close any small 
gaps in the mask. This causes the text to appear much cleaner. .finds the strongest red region, crops around 
it, and inverts the colors to make the text easier for OCR to read. The column and row sum vectors are 
calculated to identify the indices of where the stop sign exists in the image. It uses these values to 
dynamically crop any camera image around the stop sign. With less information present, the Optical 
Character Recognition (OCR) algorithm provides more accurate results. If the read text does not say “STOP”, 
the HSV filtering described in the blob detection algorithm is used to filter for red pixels. The same processing 
used on the RGB image is applied to the HSV image. This redundancy gives greater confidence and 
robustness of stop sign validation. The resulting text is overlayed onto the original camera image and 
published as the final output of this algorithm. 

Simulation  

To speed up and reduce the cost of developing the vehicle, in addition to testing developed algorithms, a 
clearpath husky and TurtleBot robot was used. Sensors such as LiDAR and 2D camera were simulated, with 
their respective algorithms validated using ROS2 nodes. MATLAB and ROS2 on a Linux Ubuntu operating 
system was used to develop the algorithmic control of the vehicle. The clearpath husky was simulated first, 
as that was the machine we planned to use; however, due to malfunctions, the team decided to build our 
own vehicle with the BotWheel Explorer as a starting point. Due to odometry issues in simulating the husky, 
the turlebot3 robot was employed. It’s better odometry allowed for continued development of other 
algorithms in simulation. 

The algorithms were implemented in such a way that the simulation nodes of the virtual sensors could be 
replaced with the actual nodes of the physical sensors. This improves editability and compatibility between 
simulated and real-world algorithms. 
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Initial Performance Assessment 
Annie was built from the original BotWheel robot and most of our algorithms were developed from scratch. 
The following is the initial performance of the robot:  

• The chassis and hardware setup can withstand paved roads without coming apart 

•  The hardware enclosures and casings are IP42 rating, capable of withstanding light rain or splashes of 
water 

• The robot can move at a current max speed of 2.2 mph 

• The sensors are fully functional with readings within an acceptable margin of error 

• The robot lasts 3 hours on one battery pack and has another 3-hour set in reserve. 

 • The following algorithms work and have been tested in the real world 

- Orange blob detection for pedestrians 
- Stop sign detection 
- Lane following 

The rest work in simulation but have yet to be tested in the real world. 

•  The Localization waypoint accuracy is about ±0.2 meters for simulation; in real world GPS-only tests, it is 
about ±0.5 meters. 

• The LiDAR range is about 20 meters for object detection in front of Annie. Barrels on the left and right side 
are detectable at 10 meters, and stop signs are detectable at 10 meters in front of Annie. 

 


