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1. INTRODUCTION

The Autonomous Robotic Vehicle team at the University of Michigan is a student-led project team with

a focus on building a competitive robot for the IGVC. We prioritize innovation and the development of our

members while contributing to the progress of the broader robotics community.

1.1. Team Organization

ARV is entirely student-run, led by an executive board that generally guides the team towards our mission

statement and oversees our five distinct subteams. Platform designs, builds, and maintains the vehicle chassis.

Computer Vision develops machine learning algorithms for obstacle detection and avoidance. Navigation and

Sensors directs vehicle motion based on path planning and sensor fusion. Embedded Systems controls vehicle

hardware and execution of software commands. Business secures funding and establishes relationships with

corporate sponsors.

1.2. Design Process and Assumptions

We follow a cycle of ideation, design, implementation, and testing throughout the duration of the year. The

driving forces behind this year’s vehicle were: 1) improve upon the reliability and performance of last year’s

design, 2) develop custom infrastructure for complex algorithms as part of our first entry into Self Drive,

and 3) implement robust testing and analysis mechanisms for hardware and software. We develop modularly

to allow for rapid prototyping and progressive integration. Our design is intended to operate in real-world

environments in complex driving scenarios, so we strive to avoid assumptions about ideal conditions and

seamless sim to real transitions.

2. SYSTEM ARCHITECTURE

2.1. Major Software Components

Figure 1. Major software components

Robot Sensors: The robot utilizes a suite of sensors, including 3D Lidar, Zed 2i stereo camera, GPS,

and wheel encoders, all interfaced via an NVIDIA Jetson AGX Orin and a Lenovo Legion Laptop for

distributed processing.

Perception: This module processes raw sensor data to understand the environment. Techniques like HSV

filtering, YOLO-based object and instance segmentation, and bird’s-eye transformation are applied to

camera data to generate an occupancy grid, while LiDAR data is filtered to the camera overlay for use

in No Man’s Land.
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Localization: GPS data is fused with encoder and IMU data and filtered to estimate the robot’s position.

Waypoint identification uses this localization to support path planning.

Planner: The planning module receives inputs from both the perception and localization modules. It

generates a cost map of the environment, selects goals, and computes paths using the A* algorithm.

Controller: The controller executes the planned path using a Pure Pursuit algorithm for motion tracking.

It handles teleoperation inputs, emergency stop controls (SDR E-stop), and sends commands to the

motor through the state and motor controllers.

2.2. Major Power & Electrical Components

As shown in 2, our electrical system is managed by a centralized computer, which sends velocity commands

to motor controllers and receives encoder feedback via USB. It communicates with the remote E-stop using

a software-defined radio and with the safety light over a serial connection. The motors are powered by a 26

V rail, an additional 12 V rail is provided by a voltage regulator.

Figure 2. Electronics and Power Diagram

2.3. Safety Devices

Safe operation of mARVin 2.0 is a key part of the design. The main power from the batteries is supplied

through a visible, accessible circuit breaker mounted on the outside of the robot. A 100 A fuse protects

the power rails and downstream devices from catastrophic errors. A fuse corresponding to the current

consumption of each peripheral device protects the 12 V power rail. To ensure that no safety issues arise

during a run, a remote software-defined E-stop is attached to the laptop, and a physical E-stop is connected

to the main power circuit on the robot.
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3. EFFECTIVE INNOVATIONS

3.1. Software Architecture

Our software architecture is focused on efficiency, modularity, adaptability, and performance. We accom-

plish this by building custom debugging tools and system-specific frameworks, developing self-supervised

machine learning pipelines to address data constraints, and making hardware decisions that directly support

our system while eliminating redundant computation.

3.2. Dashboard GUI

The dashboard allows for remote monitoring and control of the robot. The dashboard is split into 2 main

components: Controller Mode and Live Feed. The GUI status light lets the user know the robot is ready to

run. The controller mode has 4 options: Disabled, Autonomous, Teleop, and Start self drive. Teleop mode

is for the convenience of testing within the team. Autonomous mode would be used in Autonav to start the

code for GPS waypoint and laneline following. The start-self drive option launch sthe self-drive software.

The “EMERGENCY STOP” is a manual button to stop all action of the robot; this is an additional layer of

E-stop that is separate from on-robot E-stop and doesn’t interfere with the wireless E-stop. The Live Feed

component shows the real-time camera feed to the user and real time updated data such as IMU data (roll,

pitch, and yaw) and GPS location (longitude, latitude, altitude).

Figure 3. Side by Side of Two Dashboard Views

3.2.1. Custom Navigation Infrastructure

In prior years, the team’s navigation system was built upon Nav2, a common Robot Operating System

2 (ROS2) based navigation framework. However, Nav2’s rigid plugin based architecture prevented us from

integrating custom software that goes beyond the scope of the predefined-Nav2. For example, Nav2 does

not infrastructure for our custom goal selection software. Additionally, Nav2 is built upon SLAM-toolbox,

a localization package that only supports LaserScan based input (i.e., LiDAR) while our perception when

lane-following is entirely camera based. We have chosen to forgo Nav2 and build a custom navigation

interface called nav infrastructure, that provides a preformant and easily adaptable alternative to Nav2.

This software infrastructure allows us to process and send data throughout the software system with minimal

overhead and a high degree of flexibility.

3.2.2. Perception System

This year, our team moved to a modular perception system that combines advanced machine learning

algorithms with classical computer vision techniques. We choose to innovate our approach to introducing

state-of-the-art methods while considering input from known technologies. We use a custom trained You

Only Look Once (YOLO) machine learning segmentation model for both lane lines and cones. To add

redundancy we also use HSV filtering to gather a second set of masks for lane lines and potholes. Finally,

we constantly scan for inconsistencies in both HSV and YOLO lane line masks and choose to use one or

both, effectively adding a safety net for both models in their respective areas of struggle. The logic flow and

impact of this innovation can be found in 4a and 4b.

Mechanically, the Zed 2i camera mount is the highest vehicle element and facilitates the vision transforms

necessary to calculate obstacle distances. As such, the mount must allow for fine adjustments of camera
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angle before vehicle operation and stability during operation. A previous iteration of this mount involved a

3D printed planetary gearbox and a crank, pictured in 5a, which provided stability and adjustability, but

also created camera blind spots and many failure points due to complexity of the gearbox.

These issues were resolved through design and 3D printing of an innovative rack-and-pinion tilt mechanism,

pictured in 5b. This simpler mechanism uses a rack, a straight set of gear teeth controllable by a circular

pinion gear, to angle and then fix the camera holder using a pivot and movable shaft collars. This maintains

adjustability and stability of the camera while eliminating blind spots and greatly reducing failure points.

(a) Logic Flow for Object Perception

Method Accuracy Description

YOLO HSV Filtering

✓ 89% High accuracy, but can cre-
ate non-existent lane lines.

✓ 94% Lower accuracy but more ro-
bust, and reduces comupta-
tional complexity with sim-
ple classical approach.

✓ ✓ 98%+ Fusion improves accuracy
significantly.

(b) Comparison of YOLO and HSV Filtering Methods

Figure 4. Hybrid Perception Pipeline Performance

(a) Planetary Gearbox Mount (b) Rack-and-Pinion Mount

Figure 5. Old and New Zed 2i Camera Mount Tilt Mechanisms

3.3. Testing and Debugging

To understand vehicle performance, support integration efforts, and identify points of failure, we developed

robust methods to track and display various metrics in different operational modes.

3.3.1. Embedded Test Bench & Power Distribution Panel PCB

To streamline testing and prevent potential issues before implementing changes on the robot, we developed

a dedicated testbench for the robot. Our setup features an ODrive motor controller connected to a NEO

motor, which enables us to connect the ODrive to a computer for programming, testing, and debugging.

This setup has been vital for one of our biggest changes this year: removing the ODrives’ dependence on the

Nucleo STM32 MicroROS framework. Now, instead of running ODrives through the STM32, which then

communicates with the computer via USB and MicroROS, we control the ODrive directly over USB using a

ROS2 integrated Python script. This change allows us to take full advantage of the computer’s processing

power for handling ROS2 messages, allowing us to publish encoder readings at 50 Hz without noticeable

performance impact, whereas the STM32 MicroROS setup introduced latency in motor control when pub-

lishing at just over 10 Hz. It also avoids blocking other STM32 system functionalities, as running MicroROS

under Real-Time Operating System (RTOS) triggers constant interrupts, which previously impacted the
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(a) Excerpt from PCB Schematic

Color State

Flashing Blue Autonomous

Solid Blue Teleop

Red ODrive Error

Green Quals Mode

Cyan Ramp

Yellow Cones Area

Magenta No Man’s Land

(b) LED Color State Indicators

Figure 6. Embedded Stack Innovations

performance of other code on the STM32. Additionally, the Python API for the ODrive offers more features

and flexibility, and using USB provides more robust signals compared to running UART lines over distance.

To improve power reliability and diagnostics, we are currently developing a power distribution panel with

safety features, an integrated display, and permanent storage. This panel will be placed between the batteries

and the motor controllers, replacing the current 100 A fuse for the motor system. The PCB will implement

independent fuses for each motor system with associated fuse-blown indicators, a toggleable OLED display

to show a live plot of current and voltage measurements, and a MicroSD card to store these measurements.

An STM32L4 low-power microcontroller will control the measurement functions. An excerpt from the PCB

schematic is shown in 6a.

3.3.2. State Indication: LEDs

To help with debugging, we use an RGB LED strip with 30 individually addressable LEDs. We use

different colors to indicate different states of the robot and errors. The LED strip transitions from solid blue

to flashing blue when the robot enters autonomous mode. The other colors are helpful for troubleshooting

errors depending on the robot’s state. A summary of the colors and corresponding states can be found in

6b. The LED strip is connected to an Arduino MEGA, which contains a script that changes the color of the

LEDS based on the ROS message received.

4. MECHANICAL DESIGN

4.1. Design Overview

mARVin 2.0 was designed and manufactured by the Platform subteam. The vehicle measures 30.5 inches

in width, 44.5 inches in length, and 67 inches in height. The design process involved making a detailed CAD

in SolidWorks (see 7a), prototyping key mechanical systems, and fabricating components.

Drill presses, bandsaws, and waterjets were used to fabricate the aluminum square tubing, brackets, and

gearbox casings that make up the vehicle frame while 3D printers were used to print the camera mount and

weatherproofing parts. Major parts not manufactured by the team are the 8-inch wheels and gearbox gears.

4.2. Significant Mechanical Components

The drivetrain consists of two custom-designed single-motor gearboxes, seen in 7b, made from team-

fabricated aluminum housings and purchased gears. Each gearbox transmits a 98:3 torque increase from the

Neo brushless motors, a ratio determined based on the motor torque-speed curves and the calculated output

torque necessary to traverse the ramp. The output shaft of each gearbox connects below the vehicle frame to

8-inch concrete-specific wheels in order to provide the necessary height to drive over the peak of the ramp.

The other significant mechanical component is the Zed 2i rack-and-pinion camera mount, pictured in 7c.

Details for this component have been introduced as an innovation in Section 3.2.2.

4.3. Frame, Structure, and Suspension

The vehicle structure, pictured in 7a, has sections for electronics, loads, and laptop accessibility. The

back of the vehicle houses the batteries and payload to maintain the center of mass behind the wheels, thus
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(a) Full mARVin 2.0 CAD

(b) Gearbox CAD

(c) Camera Mount CAD

Figure 7. CAD Models of Major Mechanical Components

mitigating vehicle tipping. The payload is also secured behind the batteries for ease of access. The laptop is

placed on a shelf above the loads and at seating height for user convenience. The front of the vehicle is used

to house the embedded systems due to proximity to the batteries and two Neo brushless motors powering

the driving gearboxes. The roof of the front section is also sloped to avoid obscuring the Zed 2i camera’s

field-of-view. A suspension system was not necessary for mARVin 2.0 due to stability under low vehicle

speed and relative smoothness of the asphalt course.

4.4. Weather Proofing

The dry layer of weatherproofing consists of thin polyethylene sheets cut to fit the vehicle profile, preventing

large debris from entering the interior. 3D printed coverings were also designed to directly interface with the

bottoms of each gearbox to keep debris out of the gears, pictured in 8a. The wet layer of weatherproofing

is a clear vinyl covering, shown in 8b and 8c, that protects against light precipitation. This cover serves to

seal gaps in the polyethylene cover while also providing access to the power and manual stop.

(a) Gearbox Cover (b) Front Vinyl (c) Back Vinyl

Figure 8. Dry and Wet Vehicle Weatherproofing Measures

5. ELECTRONIC AND POWER DESIGN

5.1. Significant Power and Electronic Components

The electronic and power design was implemented by the Embedded Systems subteam. The team incor-

porated two Odrive S1s and a STM32 Nucleo board to control various parts of the robot. In this year’s

embedded system design, we focused on simplifying the previous year’s setup to enhance efficiency and reli-

ability. This stripped-down approach provided a solid foundation, and we are now incrementally rebuilding

with improvements, such as a custom PCB power distribution panel and the exploration of a new motor.
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5.2. Power Distribution System

The system is powered by two 13 V batteries connected in series, meeting the minimum 12 V requirement

for each ODrive S1 motor controller. Additionally, we implemented two separate power rails, one delivering

26 V and another 12 V for powering the LiDAR. Each ODrive S1 controller is wired to a NEO brushless

motor, which has built in Hall sensors for measuring odometry.

Empirical power consumption of the robot is around 30 W at idle and 120 W when operating under load.

From aforementioned observations, it is derived that the robot will have a battery life of around 10 hours.

The batteries will recharge to full within 2 hours.

5.3. Electronic Suite

A wide range of electronics are deployed on the vehicle, including computers, a GNSS, and motors. We

use the TP-Link AC1200 Wireless Gigabit Access Point to facilitate communication between the robot’s

ROS messages and an external computer. The access point is connected to the ethernet switch, which is

connected to the laptop on the robot, and allows an external device to receive the laptop’s ROS data. This

is essential for the self-drive qualification functional tests to view the robot’s camera feed from a separate

device.

5.4. Mechanical and Wireless E-Stop

A critical refinement in our wiring ensures that when either E-stop is pressed, only the ODrives shut off

while the software remains operational. This significantly reduces software recalibration time and improves

overall system efficiency. The mechanical E-stop directly cuts power to the motor system, while the wireless

software-defined radio (SDR) sends a 0 m/s velocity command to the motor controllers that overrides all

other velocity commands but does not power off the software components. Pressing the mechanical and

wireless E-stop buttons again will allow the robot to resume where it left off. The remote E-stop has a

measured operational range of 100 ft.

5.5. PID Tuning

To achieve the desired speed and acceleration while keeping the current draw within safe limits, we leverage

the ODrive’s PI control loop, which regulates torque based on a target speed. We use the ODrive GUI for

tuning these parameters, as it allows us to visualize both the target and actual rotational speeds (in RPS).

Tuning begins with a low proportional gain, which we gradually increase until we achieve a small steady-state

error. During this process, we carefully monitor current draw, since a higher proportional gain leads to a

faster initial response, and consequently, to a higher peak current. The GUI helps us track real-time current

consumption to ensure the ODrive draws less than 10 A, even during peak acceleration from a standstill

when given a direct velocity command corresponding to 4 mph on the wheels. To further safeguard against

excessive current draw, we configured both the soft and hard current limits on the ODrive. These parameters

ensure that the controller will shut off a motor if its current exceeds 40% of the main fuse’s rated capacity.

Once the proportional gain in our PI controller is tuned for safe operation and minimal steady-state error,

we incrementally increase the integral gain to eliminate steady-state error. Meanwhile, we aim to avoid any

overshoot or oscillation and maintain a smooth, non-aggressive initial response.

6. SOFTWARE SYSTEMS

6.1. Perception Pipeline

6.1.1. Multi-Sensor Perception Strategy

Our perception sensors include a ZED2i camera and a Veloydne VLP-16 LiDAR sensor. Due to the

sophistication of our Computer Vision algorithms and the range of environmental conditions we can expect

in the competition environment, we are able to accurately detect all necessary obstacles, lane lines, potholes,

and traffic cones with the camera alone. We suppress the LiDAR detections in environments segmented by

continuous lanes to prevent redundant computation. In cases with only sparse 3D obstacles (no-man’s land),

we use the LiDAR to directly produce an occupancy grid of the scene.
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6.1.2. Sensor Processing and Fusion

The data preprocessing and sensor fusion framework includes automation of the initialization and configu-

ration of the uBlox GPS, ZED camera, and LiDAR through launch scripts, ensuring proper setup for GNSS

fusion. When lane following, the GPS and ZED launch scripts uses ROS nodes to fuse GNSS data with

positional tracking information to obtain a precise robot position. Another node coverts latitude/longitude

to robot map coordinates. This is because the robot map coordinates given by the computer vision team

are locally based, this conversion transforms this data to a world coordinate frame. In No Man’s Land, a

LiDAR launch script retrieves PointCloud2 data from the LiDAR, contributing to obstacle detection and

environmental mapping for dense point clouds, which is then integrated with navigation for mapping and

path planning via an occupancy grid of the scene.

6.1.3. Lane and Drivable Area Detection

The perception flow begins with input from a ZED stereo camera. Based on the part of each competition the

robot is in, we select the correct combination of segmentation techniques to give us the best results (details in

Sections 9A and 9B). All computation for the computer vision stack runs onboard the NVIDIA Jetson Orin,

where we use TensorRT to accelerate inference of our ML models and ensure real-time performance. The

output from the segmentation models is then transformed using a Bird’s Eye View (BEV) transformation

matrix calculated from the camera’s intrinsics (optical center and focal length) and extrinsics (height and

angle). This creates a top-down occupancy grid where each pixel represents a fixed real-world distance (0.05

meters). The occupancy grid is then published using ROS, where it can be used for goal selection and path

planning on a separate onboard laptop (except with self-drive, more info 9B).

6.2. Goal Selection and World Representation

6.2.1. Transition away from SLAM

This year’s we avoid Simultaneous Localization and Mapping (SLAM) due to significant integration chal-

lenges and redundant computation. Our computer-vision is currently able to detect lane-lines, potholes, and

cones within a range of 2.5m (after transformations). Since the area outside of this range is undetectable

initial testing showed that all of the SLAM computation, as well as the path-planning computation, done

outside of the range of 10m was subsequently recalculated once the robot progressed and saw more obstacles.

Therefore, a significant amount of computation was wasted with this method.

Given these inefficiencies mARVin 2.0 switches to an entirely local world representation, where localization

and planning is done entirely within the cameras current frame. Using our odometry we transform the path

from the camera’s point of view to real world coordinates and use that for motion control. This transform

gives orientation relative to the given GPS goals, and the goal selection algorithm and planning is biased to

choosing goals/paths towards the goals. This approach significantly decreases the search space when path

planning, and eliminates computation outside the camera range.

Last year, we primarily implemented localization by using the IMU through Extended Kalman Filters

(EKF). Last year, we ran IMU EKF on the BNO055 sensor; however, the sensor resolution is at 0.488 mg,

whereas for the IMU sensor inside the ZED2i camera has a resolution of 0.244 mg. With Robot Localization

we would be able to fuse more precise sensors with the ZED2i leading to our decision to retrieve odometry

data via visual odometry.

6.2.2. Dynamic Waypoint Selection and Goal Adjustment

The dynamic goal selection algorithm provides intermediate goals between the given GPS waypoints be-

tween the lane lines and obstacles. The output of the goal selection algorithm is to choose an optimal point

within each frame of computer vision to guide the path plan.

First, an inflation layer is applied to the occupancy grid provided by CV to ensure a safe distance is

maintained from any obstacles. This also fills in any uncertain points that may exist in the CV output. To

save computation, this layer is used both to determine a goal and also in path planning.

The second component is the algorithm responsible for choosing the point to path plan towards. The

considerations are maximizing clearance of obstacles and maximizing progress towards the GPS waypoint

within the lanes.
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Figure 9. ARV A* Planner vs Nav2 Default Planner

Distance from the robot and distance from the edges are also considered to incentivize further distances

traveled. We run this algorithm on the points only within the drivable area detected from the lane lines and

obstacles. The best point calculated becomes the new goal and is forwarded to the path planner.

6.2.3. Operating Modes and Mode Switching

The robot’s operating modes are: Autonomous, Teleop, Ramp No Man’s Land. If the current mode is

Autonomous control input is from the path planner. In Ramp mode the path is straighted in order to stay

on the ramp. The states are changed when the robot’s GPS is within range of the competition’s given GPS

coordinates. If no GPS coordinate is given, the software will automatically switch to a lane-following mode,

where the goal that is selected is soley based on making progress through the drivable area. In teleop mode

control is taken from a human driver, this is triggered by a button on the controller.

6.2.4. Influence of Past Trajectories and Obstacles

As mentioned, our current design uses localized occupancy grid to increase computation speed. Past

trajectories are used for normalization in the current frame such that the planner knows what angle the

camera frame is relative to the starting position and GPS waypoints.

6.3. Path Planning

Using our custom navigation infrastructure, the custom A* path planning algorithm efficiently computes

the optimal trajectory (path) to the goal selected by the goal selection algorithm. The custom infrastructure

creates a pipeline for a portion of the data calculated by the goal selection algorithm (i.e obstacle inflation)
to be used by A* to save computation. The algorithm uses a custom A* implementation, using the euclidean

distance as a heuristic function (which in our testing had identical or faster execution times compared to

other common heuristics such as Manhattan distance). The custom navigataion infrastructure, excludes

unneeded path planning processes such as Nav2’s costmap layering. These strategies ensure both speed and

resource efficiency. We see about a 25% speed improvement over the default planner Nav2 provides in our

simulation testing.

6.4. Path Execution

6.4.1. Trajectory Execution and Control

An adaptive pure pursuit algorithm is used for trajectory execution. In this algorithm a close point on

the path is chosen, and the linear and angular velocities to reach that point (called the lookahead point)

is calculated. A spline smoothing algorithm is used to smooth the given trajectory. Linear interpolation

between the points on the path gives more precise lookahead. The range of points is limited to be a tunable

distance away. Additionally, points along the path that are too far back from the current lookahead point

are rejected. This results in a smooth path execution.
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6.4.2. Real-Time Replanning & Path Failure Handling

Error detection is done both in goal selection and in path planning to be certain of safe traversal. In goal

selection, if the cost of every cell within the current field of view is too high (detected no free space), the

system will wait a few seconds and retry with a new camera frame in case of a temporary camera error. Path

planning will do the same thing if a safe path is not found. If either algorithm fails a second time, the robot

will attempt to reverse a set amount of distance (0.25 m) and retry. The planner will also re-plan if the pure

pursuit algorithm fails in the middle of trajectory following, or if no lookahead points are found. The timing

of the system is tuned such that there is the minimum amount of time between path planning while also

allowing the computer vision system to be up to date. Logs are generated and separated by sub-systems for

easy debugging.

7. CYBERSECURITY ANALYSIS USING RMF

To address cybersecurity in the custom Remote E-stop system, we follow the NIST Risk Management

Framework (RMF) by first identifying and modeling potential threats. The top threats are signal spoof-

ing, which mimics a real signal, and jamming, which prevents a real signal from being identified. These

are assessed as high-impact threats due to the safety-critical nature of the E-stop, where a malicious or

missed signal could result in physical harm or equipment damage. Our current implementation enhances

cybersecurity by using an SDR dongle to receive wireless button press signals, which are processed through

a low-pass filter to reduce noise, followed by matched filtering and peak detection to reliably identify valid

transmissions. This multi-stage signal processing pipeline shown in 10 improves the robustness of signal

recognition and helps filter out random noise or unintentional interference, reducing the likelihood of false

activations.

In future iterations, we plan to significantly strengthen the E-stop security by implementing a custom

transmitter that sends digitally encoded messages using a proprietary modulation scheme. These messages

will include built-in error detection such as checksum to prevent spoofing and tampering. Additionally, we

will incorporate frequency hopping to mitigate the risk of signal jamming and eavesdropping by dynamically

changing the transmission frequency according to a shared hopping sequence. Together, these enhancements

will create multiple layers of protection that improve the system’s security by making it harder to intercept,

fake, or block signals. We’ll test these defenses thoroughly using simulated attacks to make sure the system

stays reliable and secure.

To secure our robot dashboard, we enabled HTTPS encryption, validated all HTTP and WebSocket

inputs, and required authentication tokens on Socket.IO connections to prevent unauthorized control and

data exposure.

Figure 10. SDR E-Stop Flowgraph in GNU Radio



12

8. COMPLETE VEHICLE ANALYSIS

8.1. Lessons Learned

One lesson learned during system integration is the importance of continuously deploying software onto

hardware. For example, while testing the local planner, we found its performance is heavily affected by real-

world factors such as friction, wheel resistance, and actuator response time. These factors required several

iterations of testing and adjustment to achieve reliable path-following.

8.2. Safety, Reliability, and Durability Considerations

To ensure system reliability and durability, we designed the electrical architecture to be highly modular.

Each subsystem, including safety light, E-stop and motor controller, can be replaced by a different imple-

mentation without modifying other parts of the system. This modularity simplifies repairs and upgrades

during development and competition. To ensure controller robustness, we tested the robot repeatedly on

different road surfaces. The E-stop was tested both indoor and outdoor under various conditions. One issue

we encountered was a delay in remote E-stop activation caused by GNU Radio processing speed. To resolve

this, we iterated on the embedded Python block within GNU Radio, optimizing the algorithm efficiency to

ensure fast and reliable response.

8.3. Key Hardware Failures and Strategies

Hardware failure points include exceeding user-specified current or voltage thresholds, which can trigger

ODrive S1 errors and shut down the motors. Blown fuses may cut power to peripheral electronics, and

accidental short circuits can damage electrical components. To mitigate these risks, the ODrive S1s are

tuned to operate within safe current limits, and brake resistors are configured to handle voltage fluctuations

that might otherwise cause errors. LED indicators on the power rails allow for quick identification of blown

fuses. To prevent short circuits, all wiring is separated, securely tied in place, and protected with heat shrink

tubing at terminal connections.

8.4. Predicted Performance

Speed: Combined PI tuning allows our robot to accelerate to over 1.5 mph in under 0.5 s while achieving

a top speed of 2 m/s (4.47 mph).

Ramp Climbing Ability: Uphill performance met expectations because of integral control. Downhill

speed was slightly aggressive and can be improved with software compensation.

Reaction Times: E-stop response times met expectations: physical E-stops reacted in under 100 ms and

remote E-stops in under 300 ms.

GPS for Waypoint Navigation and Localization: We expect the maximum total error possible for our

GPS to be 1.5 m, but in our testing, we see a maximum error of 0.5 m in about 95% of cases.

Battery Life: Battery is expected to last 10 hours; tests showed consistent operation for at least 8 hours

under load.

Distance at Which Obstacles are Detected: Obstacles are detected within the 120 degree wide angle

field of view of the camera. This leads to obstacles being detected anywhere from 0.3-20 m in front of

the vehicle. However, only the obstacles within the first 2.5 m are kept after the BEV transform and

used in navigation.

Vehicle Dealing With Complex Obstacles: We have built our architecture to allow for waypoints to

be defined both close and far away from the robot based on the situation the robot is in. Throughout

testing, this has shown to help the robot to move in tight spaces and gain different angles around close

obstacles.

Identifying and Addressing Failure Points and Modes: When testing in simulation, the navigation

system identified all cases where the given field was not traversal-able (i.e there was no viable path to
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goal). With multiple failure checks (in goal selection, path planing, path execution), at least one of

these checks was always triggered. In real world scenarios, tuning of the inflation and cost threshold

parameters will affect how well we identify failure points. In addressing failure modes, our recovery logic

mostly consists of backtracking and waiting, this would prove effective for errors such as temporary

vision blockages, but it may fail in more catastrophic scenarios.

Accuracy of Arrival at Navigation Waypoints: Navigation way-points are expected to be reached

about 90% of the time. Way points were only not reached in specific circumstances including: ob-

stacles in the blind spot of the robot right under the nose, less than 0.1 m of clearance between the

robot and the obstacles, significant error in GPS. When reaching a waypoint we expect to be less than

0.5 m from the actual waypoint.

8.5. Software Version Control and Testing

Effective testing and debugging are crucial for developing a reliable autonomous navigation system. Our

team employs a combination of simulation, hardware-in-the-loop testing, and specialized visualization tools

to analyze system performance and rapidly identify issues.

With all the changes we made to the computer vision stack this year, testing and verification became

a major focus as we wanted to make sure every design decision was backed by data. One of the most

significant updates was adding redundancy by combining HSV filtering and YOLO segmentation as two

independent ways to mask lane lines. To get started, we built a custom HSV Python library that allowed us

to tune parameters and visualize segmentation in real time. This made it easy to quickly adjust settings, run

tests, and directly compare HSV filtering against YOLO. We measured the accuracy of each approach using

recordings from our own test courses, which we set up in campus parking lots with white tape. To ensure

consistency in our evaluations, we designed a dedicated testing suite that was only ever used for validation.

The suite included footage from different cameras and a variety of weather and pavement conditions to test

robustness. Each frame was hand-labeled to serve as ground truth, and we used a simple pixel-to-pixel

accuracy metric to evaluate performance. Our results showed that combining the HSV and YOLO masks

led to a 4% increase in overall accuracy compared to using YOLO alone. That improvement validated our

decision to integrate both methods and confirmed the value of adding classical computer vision techniques

as a backup to ML-based segmentation.

Comprehensive edge test cases were developed to validate the robustness of the planning implementation

across various dynamic scenarios. Our implementation successfully passed all test cases with optimal paths.

Path visualization, using the tool provided by nav-visualization (see below), confirmed accurate navigation

and demonstrated real-time responsiveness of the planner in complex environments.

8.6. Simulation

A critical tool in the team’s testing and debugging workflow is the nav visualization package, developed

to provide graphical insights into the software stack. This suite allows developers to visually monitor and

validate the core components of the navigation system. Costmap Representation: The visualizer loads and

displays costmaps used by the planning algorithms. Grids can be from real world ROS data or from custom

grids drawn by developers using the interactive feature. It renders free space, obstacles (e.g., detected lane

lines, cones from the perception pipeline), and intermediate cost areas. This allows for immediate verification

and debugging.

Figure 11. Cost Heatmap for Simulated CV Output
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Path Planning Visualization: This component focuses on global planning. It interfaces with the nav

infrastructure and displays the calculated global path (e.g., the output from our A* planner) overlaid onto

the costmap. This enables developers to validate the planner’s logic and assess path optimality and feasibility

before execution. This also allows us to observe how the planner handles different environmental features

and constraints. This component also simulates and displays the real-time execution of the path. This is

done by subscribing to the path-execution code (e.g., Adapative Pure Pursuit) and simualting the robot’s

continuous motion (x, y, theta) by integrating velocity commands over small time steps. The robot’s current

position, orientation, and its historical trajectory are displayed directly on the costmap. This real-time

view is invaluable for diagnosing controller performance, identifying path-following errors (like oscillations

or deviations), and debugging obstacle-avoidance maneuvers.

Utility: The package also includes a custom interactive tools for quickly creating or modifying costmap

files, facilitating the setup of specific test scenarios.

Together, these visualization tools form an essential part of our development cycle, enabling rapid debug-

ging and testing against different environmental conditions. This software is designed to be quickly and

easily installed cross-platform, especially easy for noivce user. The image below shows an example output

from a simulation visualizing the path generated by the A* planner.

(a) Path (b) Local

Figure 12. Planner Visualizations

9. UNIQUE AUTONAV FEATURES

During the autonav competition we use both HSV filter and a YOLO model to mitigate the effects of

hallucinations (YOLO downfall) and shadows (HSV downfall) on the robot. Having found that our YOLO

model has much more consistent accuracy with the traffic barrels we are detecting those solely with YOLO.

A different strategy is used in ”No Man’s Land,” where ML inference is disabled entirely (given bad results

in the sparse detection environment), and the system relies solely on HSV filtering. Before the ramp comes

into view, the robot detects cones to guide itself forward. Once lane lines appear, the system artificially
projects them into the occupancy grid, aligning the robot properly with the ramp. Path planning and path

execution remain mostly the same, the main difference is our aforementioned goal selection algorithm is

done only in Autonav. In self drive we use a uniqnue technique to define waypoints. The dashboard also has

separate buttons to launch the Autonav or self-drive ROS nodes with their respective parameters.

Figure 13. Artificial Lanes for Ramp Alignment

10. UNIQUE SELF DRIVE FEATURES

By designing the software stack with modular publishers that perform one task at a time, the architecture

allows us to adjust the flow of information based on the competitions. The largest shift being that we first

define waypoints within the ZED camera frame to utilize the wide angle, partially helpful with intersection

maneuvers. Then the waypoints are transformed using the same perspective transform we apply to our

occupancy grid.
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We detect the yellow and white lane lines using HSV filtering and use a custom trained YOLO model for

stop signs and obstacle classes. Throughout the course we take full advantage of the yellow center dashed

lines to know which lane we are in as well as where to align the robot on a turn.

Figure 14. Artificial Lanes for Turns

Additionally, we combat fake stop signs by filtering and reading the text with a lightweight optical char-

acter recognition plugin to verify we are performing the correct actions throughout the course.

11. INITIAL PERFORMANCE ASSESSMENTS

Individual hardware components on the vehicle such as the motor controller, wheel encoders, GPS, IMU,

Camera, wireless and physical E-stops have been tested and work as expected. We utilized a tele-op controller

to test the motor control, and RViz to visualize the sensor data collected.

Software components have also been tested individually to ensure each produces the correct output. The

computer vision pipeline, which takes frames from the onboard camera and produces a 2-D occupancy grid

of obstacles, accurately identifies obstacles within 1 inch of error.

Figure 15. Path Planning and Execution Test

In a simulated course using our visualization software, with a final waypoint approximately 50 meters away

from the starting position we saw an average of 39.978 seconds completion time. After tuning, all simulated

runs reached the goal waypoint within 0.5 meters.

The navigation stack, including velocity controller, waypoint generation, and path planner, has been tested

in both simulation and real-world conditions using ROS bags and live sensor data. During real-world tests,

the controller can follow a given path with less than 10 cm of deviation at the largest deviation point, as

shown in 15. The path planner reliably generates feasible and efficient paths, with a goal reach success rate

above 84%.
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