
University of Bridgeport IGVC 2025

1

Faculty Advisor: Dr. Ahmed El Sayed

Team Captain: Jun Zhang (zhangjun@bridgeport.edu)

Date Submitted: May 15, 2025

STATEMENT OF INTEGRITY:

 I certify that the design and engineering of TrUBot by the current listed student team has been
significant and equivalent to what would be awarded credit in an independent study course at

the University of Bridgeport.

Team Members:

 Andrew Iorio (aiorio@my.bridgeport.edu)

 Scott Goodman (scgoodma@my.bridgeport.edu)

 Anass Saoudi (asaoudi@my.bridgeport.edu)

 Ali Hamadeen (alihamad@my.bridgeport.edu)

Rudra Mitra (rmitra@my.bridgeport.edu)

 Lee Donovan (donovanl@student.goodwin.edu)

Ahmed ElSayed

University of Bridgeport IGVC 2025

 2

 Table of Contents

1. Introduction .. 3

2. Organization ... 3

4. Hardware .. 5

5. Electrical... 6

5.1 Power Supply Overview ... 6

5.2 ACEMAGIC Computer Power .. 6

5.3 Motor Power and Control .. 7

5.4 Safety Devices and Integration ... 7

5.5 Mechanical Emergency Stop Button ... 7

6. Software ... 8

6.1 Lane following ... 8

6.2 Mapping and localization .. 9

6.3 Object Detection ... 9

7. Simulation .. 10

7.1 Overview .. 10

7.2 Webots Simulation .. 10

7.2.1 Webots Features .. 10

7.2.2 Course & Robot Customization .. 11

8. Autonomous Navigation Task ... 12

9. Cybersecurity Analysis ... 13

10. Performance Assessment .. 15

University of Bridgeport IGVC 2025

 3

1. Introduction
TrUBot is an autonomous ground vehicle designed and developed to compete in the Intelligent Ground Vehicle
Competition (IGVC). The robot embodies a robust fusion of real-time perception, decision-making, and motion
control systems, engineered to navigate complex outdoor environments with high reliability and adaptability.

This marks the first time researchers from the LACASA (Laboratory of Advanced Control, Autonomous Systems,
and Automation) at the University of Bridgeport will participate in the IGVC. TrUBot represents the lab’s
commitment to advancing research in intelligent robotics and real-world autonomous mobility. The project
serves both as a technical milestone and a platform for applying state-of-the-art algorithms and systems
integration in a competitive, outdoor robotics environment.

2. Organization

The TruBot team at the University of
Bridgeport is composed of students
from a variety of academic disciplines.
Despite the team’s small size,
comprising only six members, they
initiated the project in early February.
The TruBot team encompasses
mechanical engineers, software
engineers, electrical engineers,

security engineers, and simulation engineers. Given the constrained timeline, each member collaborated across
disciplines to provide support to other teams in a peer-review capacity, thereby ensuring that each component of
the design was completed to the highest standard. This systematic approach guaranteed that at least one individual
reviewed each phase of the system life cycle for implementation, with an additional reviewer or tester involved in
the process. Consequently, the team successfully ensured that all project aspects were completed within a three-
month timeframe.

Figure 1 Organization

University of Bridgeport IGVC 2025

 4

3. Design Process

Figure 2. Design Process Workflow

3. 1 Autonomous Robotic Body Design
The initial design plan has not changed much but the addition of other humans joining the fabrication team refined
every detail of the building. The pointed front of the X Y axis of the chassis was intended for a very quick obstacle
avoidance maneuver. The two wheel design with the wheels as far back as would allow and the payload and
batteries centrally located also remained from the original design. Staying away from multiple moving or combined
parts was achieved by c and c design for the base of the robot. Once the single piece of steel was laser cut, the work
of the build really began. The original design of the wheels was to have the axle supported on both sides like a wheel
barrel to keep the weight of the vehicle off the axle. We achieved this goal by placing a pillow block with ball bearings
and a bore hole equal in diameter to the axle and the wheels bore holes. The pillow blocks are placed on either side
of each wheel and bolted to the chassis. After attempting several different width and diameter wheels we ended up
with a seven-inch diameter by a one- and three-quarter inch wide plastic wheels. The difficulty of finding a wheel
with an eight-millimeter bore hole to match the diameter of the motor axle. It was very difficult to find the correct
wheels without a ball bearing surrounding the bore hole. This difficulty was overcome by plugging the half inch bore
hole of the wheel that worked and re drilling the center at eight millimeters.

The very first obstacle that was presented was the connection between the motor and the encoder as well as the
wheel. The idea the team was working with initially was to connect the motor and encoder by chain. This proved
extremely problematic, and as a result a gear box was considered and planned. After much deliberation and
redrafting this also was rejected in favor of a through design by using a motor that has an embedded encoder with
the wheel connected directly to the shaft of the motor/encoder. Payload delivery is the mission and without dropping
it as a priority a fully enclosed storage compartment was the original design. One team member took this concept
to the next level by building a steel mesh cage that is bolted closed. The floor of the chassis is covered in non-
conductive material that will protect the possibility of shorts.

Motor covers were designed and built as well as a steel arch to house the stop button and the operation lights. A
cage was constructed to represent the body that will be filled out by plastic coverings.

University of Bridgeport IGVC 2025

 5

4. Hardware
TrUBot is built on a robust and modular hardware platform designed for reliable operation in outdoor environments,
meeting the performance and safety requirements of IGVC 2025. The hardware architecture balances powerful
computation, precise motor control, and real-time sensing in a compact footprint. Below is a detailed description
of the main hardware components:

4.1 Drive System
• Motors: Two 12V high-torque brushed DC motors (100 kg/cm torque) with embedded quadrature encoders

are used for differential drive control.

• Motor Controller: A SmartDrive Duo dual-channel motor driver manages motor power and direction using
PWM and direction signals from the microcontroller. It supports feedback from the motor encoders for
speed estimation.

4.2 Sensing and Perception
• LiDAR: The robot is equipped with an RPLiDAR A1 360° laser scanner to detect obstacles and perform real-

time environment mapping.

• Depth Camera: An Intel RealSense D435i depth camera provides RGB-D perception and includes an
integrated IMU (accelerometer and gyroscope), which is used for orientation estimation and sensor fusion.

• IMU: The embedded IMU from the D435i is fused with encoder feedback on the ROS 2 side for improved
localization and odometry.

• GPS Module: A high-precision GNSS receiver is used to determine global position. The GPS data is fused
with other localization inputs and plays a critical role in mission-level planning, such as defining and tracking
global goal coordinates during the Navigation Challenge of the IGVC.

4.3 Computation and Control
• Microcontroller: An Arduino Portenta H7 mounted on its official Portenta Breakout Board handles low-

level control, including:

o Motor speed control.

o Encoder feedback processing.

o Light tower control via relay.

o RC receiver input.

o Publishing velocity and encoder data via micro-ROS.

• Onboard Computer: An Acemagic M2A mini-PC runs ROS 2 (Humble), managing high-level perception,
planning, and decision-making. It connects to the Portenta H7 over USB using micro-ROS serial
communication.

4.4 Power Distribution
• Batteries: Two 12V sealed lead-acid batteries provide power for motors and electronics. Each subsystem is

protected and powered through a central Power Distribution Board.

University of Bridgeport IGVC 2025

 6

• DC-DC Converters:

o A 12V to 5V step-down converter powers the Portenta H7.

o A 12V to 19V boost converter supplies regulated power to the onboard computer.

4.5 User Interface and Safety
• Start Button: A physical push button is mounted on the chassis to manually activate the robot.

• Remote Kill Switch: A Flysky FS-i6S radio transmitter and receiver allow operators to remotely stop the
robot during testing or competition runs.

• Emergency Stop: A large emergency stop button disconnects the motor power in critical situations.

• Status Indicator: A multi-color light tower controlled by the Portenta via a relay module indicates system
status:

o Green: Autonomous Mode.

o Red: Emergency Stop.

o Yellow: Remote Control Mode.

5. Electrical
5.1 Power Supply Overview
The robot’s electronic and power system is designed to ensure reliable and isolated operation of both
computational and actuation subsystems. The architecture employs two independent 12V batteries, each
dedicated to a specific subsystem:

• Battery 1: Supplies power to the onboard computer.
• Battery 2: Supplies power to the drive motors via a dual-channel motor controller.

This separation provides both power isolation and electrical noise reduction, improving system stability and
reliability during high-load operation.

5.2 ACEMAGIC Computer Power
The onboard computer responsible for high-level processing, perception, and control tasks is the ACEMAGIC mini
PC, which requires a 19V input for operation. To adapt the 12V battery output to this requirement, a DC-DC boost
converter (12V to 19V) is used.

• Input: 12V from Battery 1.
• Output: 19V regulated to power ACEMAGIC.
• Purpose: Ensures stable operation of the computational unit regardless of battery voltage drops during

runtime.

This design isolates the computing unit from motor-induced voltage spikes, common in mobile robotic platforms.

University of Bridgeport IGVC 2025

 7

5.3 Motor Power and Control
The robot uses two 12V DC motors for differential drive locomotion. These motors are directly powered by Battery
2 and are controlled using a SmartDriveDuo-30 motor controller, which supports bidirectional speed and direction
control.

• Input Power: 12V from Battery 2.
• Control Signals: Serial or PWM commands from the ACEMAGIC mini PC.
• Motor Driver: SmartDriveDuo-30 (supports 30 amp per channel).

The motor controller receives desired velocity commands from the ACEMAGIC via a microcontroller (e.g.,
Arduino Portenta or Due running micro-ROS). These commands are typically based on /cmd_vel messages
published from the robot’s ROS 2 control stack. The controller then drives the motors with appropriate PWM
signals to match the desired speed.

5.4 Safety Devices and Integration
To ensure safe operation during development, testing, and autonomous missions, the robot incorporates multiple
safety mechanisms, both electronic and mechanical. These systems are designed to provide clear operational
status feedback and allow for immediate intervention in case of emergencies.

Safety Light Tower

A multi-color safety light tower is installed on the robot to indicate its operational state visually:

• Green Light (Solid): The robot is powered on and in manual or standby mode.
• Yellow Light (Flashing): The robot is actively running in autonomous mode.
• Red Light (Flashing): Indicates a fault, emergency stop, or manual intervention required.

This real-time visual feedback allows nearby operators to quickly assess the robot's current mode and respond
accordingly.

5.5 Mechanical Emergency Stop Button
In addition to the remote E-Stop, the robot is equipped with a physical emergency stop button mounted on its
chassis. Pressing this button:

• Instantly cuts off power to the motor controller or disables motor output.
• It is designed to be easily accessible and robust, even with gloves.
• Redundant with the RC stop for enhanced safety.

E-Stop via RC (Remote Emergency Stop)

A wireless emergency stop (E-Stop) is implemented using an RC (radio control) system. If the operator detects
unsafe behavior or an imminent collision, they can immediately cut off the motor commands via RC.

• Mechanism: Interrupts command signals sent from the PC to the motor controller.
• Range: The FlySky FS i6S has an impressive range, offering up to 1 kilometer (0.62 miles) in optimal

conditions.

This provides reliable and remote safety overriding during the competition or in uncontrolled environments.

University of Bridgeport IGVC 2025

 8

 Figure 3. Schematic Layout

6. Software

6.1 Lane following
Lane following was implemented using the raw RGB camera image. The detection logic resides in the detect_lane()
function within the Fusion-2.py script. This function accepts the image as a required input and includes eight
optional hyperparameters that can be tuned for different environments. The lane detection process begins by
thresholding the image in the HSV color space to isolate white and yellow lane markings. The resulting binary mask
undergoes morphological operations and Gaussian blurring to reduce noise and close small gaps. Canny edge
detection is then applied to extract lane edges, followed by the Hough Line Transform (cv2.HoughLinesP) to detect
continuous lane segments.

This custom pipeline was chosen over the YOLOP (You Only Look Once for Panoptic Driving Perception) based
approach due to its improved performance in preserving lane continuity, especially around curves and intersections.
YOLOP tended to leave gaps in the lane mask, whereas this method produced more consistent and reliable line
detection in the team's Webots simulation environment.

(The green lines indicate the lanes highlighted below for the lane following.)

University of Bridgeport IGVC 2025

 9

 Figure 4. Lanes and Path Planning

6.2 Mapping and localization
The mapping consists of four sensors and three key components. The four sensors include an IMU (Inertial
measurement unit) for position and orientation, a GPS (Global Positioning System) for waypoint location, a LiDAR
(Light Detection and Ranging) for local object detection, and a camera for lane, object, and cost detection. The three
components are localization of the current x, y, and theta of the vehicle, goal point detection, and mapping, which
utilizes RRT* to create the waypoints in the map.

Localization forms the core logic within a class named RobotLocalization. The code combines several references
taken from https://www. youtube. com/watch? v = J 77 kNrfYKoE and https://medium. com/@ zillur- rahman/how-
to- use- the- ros- robot- localization- package- 534 fe04014d3. This class utilizes the left and right motors, as well
as the IMU, to estimate the autonomous car's position using differential drive and encoder readings. For each loop,
the message is provided on the Fusion node; however, it can also be implemented on the Odometry node if desired.
The sample for the team's Webots simulation is "X: 478.93 Y: 719.24 heading: 0.83”. From the perspective of the
camera, this corresponds to pixel positions 478 and 719, with a heading at an angle along the x- axis of 1 degree.
The localization will publish the x, y, and theta, representing the direction the car is heading.

The second and subsequent key component of map generation is goal generation. The objective of goal generation
is to identify a point, either near or distant, that the mapping should strive to achieve. Within the Fusion-2.py code,
a method named get_next_goal_with_lane is referred to. It can utilize server key components from the lane, LiDAR,
and camera maps. As depicted in the image below, which illustrates object detection (object detection will be
further discussed in Section 6.3) and lane detection, the lane detection algorithm was able to identify lanes using
the Hough lines P to detect the yellow and white lines, allowing for the detection of lanes around corners and “S”
curves. The LiDAR is used to help navigate obstacles near the vehicle, such as cones and barriers.

The final component is path planning using the Rapid-exploring Random Tree Start (RRT *). The planning logic
implement code is implemented in the RRT _ Star. py, which was adapted
https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/RRTStar/rrt_star.py. RRT* was
selected due to its unique adaptability and ability to handle both static and dynamic obstacles. However, during
testing, the code was modified and improved to enhance its performance. During testing, the map from the
Webots simulation is shown below.

This is a sample taken from the starting point to the goal point, as a green polyline connecting the robot’s start and
goal points in figure 4 above.

6.3 Object Detection

It’s extremely light design and real-time inference capability on embedded systems led us to choose YOLO11-Nano
(YOLO11n), which is perfect for the traffic cones detection. Our main goal was to add traffic cones—objects missing
from its original COCO-trained model—to YOLO11n's perceptual repertoire so that our robot could consistently
identify cones. We therefore obtained a committed traffic-cone dataset from Roboflow consisting of more than
2,000 YOLO-formatted images with normalized bounding-box annotations. At the same time, we put together a
YOLO-formatted COCO128 subset, including the original 80 COCO classes. All cone annotations (originally marked
as class 0) were remapped to class index 80 before merging, and our class list was expanded to 81 entries; file
names were prefixed with "coco_" or "cone_" to prevent conflicts. Then we created a YAML configuration file defining
train, validation, Number of classes 81, and the full class names by combining image and label directories into single
training and validation folders. Using transfer learning, we retrained YOLO11n on this combined dataset for 100
epochs at 640×640 with 16 batch size. The retrained model detected traffic-cone class. Figure 1 shows the traffic-
cone sample distribution per training batch; Figure 2 shows qualitative inference findings on IGVC course video
validating effective cone detection.

University of Bridgeport IGVC 2025

 10

Figure 5. Traffic cone Training Batch Figure 6. Traffic cone detection

7. Simulation

7.1 Overview
this chapter represents the process of constructing a high‑fidelity virtual environment in Webots simulation for the
IGVC 2025 competition held in Parking Lot 37 as we can see it in figure.

Figure 7. IGVC 25 Auto-Nav Course

7.2 Webots Simulation
Webots is an open source and multi-platform desktop application used to simulate robots. It provides a complete
development environment to model, program and simulate robots.

7.2.1 Webots Features
We used Webots R2025a because it has the following features :

Direct interaction with OpenStreetMap allows genuine geographic locations to be converted into 3D map,
therefore preserving accurate topology and layout. As we can see in the following figure, we used OpenStreetMap
to take the real map for the competition. After cropping the area, the saved OSM file that can convert into Webots
world using World Generation.

python importer.py --input=IGVC.osm --output=IGVC.wbt

to produce IGVC.wbt, representing Oakland parking lot 37.

University of Bridgeport IGVC 2025

 11

 Figure 8. OpenStreetMap (parking lot 37)

The Flexible Scene Graph provides a node-based architecture (PROTO and Solid nodes) for adding, removing,
and modifying scene components including lanes, cones, obstacles, and ramps without starting over from
scratch.

Figure 9. IGVC course on webots simulation

High fidelity integrated physics engine (ODE) and a strong sensor library (camera, LIDAR, IMU, GPS) provide
realistic interactions and data collecting.

This 3D simulation was very helpful for testing the object detection and lane following models before testing it in
the real world course.

We can utilize standard ROS 2 topics, services, and transforms directly within the simulator thanks to its smooth
integration with ROS 2. utilizing the webots_ros2 library.

7.2.2 Course & Robot Customization
To make our simulation the same as the real competition course with our robot, we add the

following :

Figure 10. Simulation workflow

University of Bridgeport IGVC 2025

 12

Ramp

Lane

Traffic Cones

Traffic Barrier

 Table 1. Added Parts of Simulation

8. Autonomous Navigation Task

The vehicle's autonomous navigation system, based on
the Robot Operating System (ROS2), is regulated by the
Fusion Controller node, which oversees data
integration from various sources, including localization,
LiDAR, cameras, GPS, path planning, and control
velocity. The localization system, as detailed in Section
6.2, acquires the x and y coordinates, as well as the
angle at which the vehicle is heading, through
information obtained from the motors and the Inertial
Measurement Unit (IMU). Subsequently, the process
node determines, based on established thresholds,
whether to utilize the camera or LiDAR system. The
camera is employed in scenarios where lanes are
present, and only a single obstacle is detected;
conversely, LiDAR is utilized when an obstacle is

identified within a range of four to five meters.
Based on the camera input and the established
thresholds, the system assesses the

availability of lanes and ascertains whether waypoints or obstacles necessitate navigation. These inputs identify the goal
points, after which the start and goal points are provided to the RRT* algorithm for the establishment of the optimal path.
Ultimately, the speed commands are generated by the control velocity controller, which determines the appropriate speed
(ranging from one to five miles per hour) to dispatch to each motor. Each motor operates independently; therefore, the
control velocity must account for the differential slip of each tire for every command issued.

Figure 11. Navigation Flow

University of Bridgeport IGVC 2025

 13

9. Cybersecurity Analysis
In autonomous racing, ensuring the security and reliability of robots is crucial. The risk of software disruption by rival
teams is a significant concern. To address this, a risk management framework is applied to identify vulnerabilities,
model potential threats, and assess their impact. Thus, a comprehensive approach is taken via applying the NIST
Risk Management Framework (RMF) and NIST AI Risk Management Framework (AI RMF), threat modeling with
STRIDE, a model of threats that used to help reason and find threats to a system, and selecting controls aligned to
high-impact risks. Rigorous implementation and penetration testing in the pit area will ensure that even a
determined rival team cannot compromise safety or performance.

9.1 Attack Surface & Vulnerability Assessment

• FlySky FS i6S RC (2405.5–2475.0 MHz, according to https://fcc.report/FCC-
ID/N4ZFLYSKYI6S/2911062.pdf): RF jamming, replay, spoofing of E-Stop or control channels. Potential to
loss of emergency control or malicious robot commands.

• micro-ROS: Open ROS topics over Wi-Fi / 5 GHz backhaul, unauthenticated message injection, MITM.
• ROS Nodes & YOLO11-Nano: Unpatched libraries, insecure ROS parameter server, buffer overflows.

Potential to Code execution, sensor-data manipulation.
• Motor Controller Interface (SmartDriveDuo-30): Insecure serial/UART commands, lack of authentication
• GPS: Spoofing or jamming, resulting in incorrect waypoint data.
• LiDAR & Camera (YOLOP): Sensor spoofing (laser reflectors), adversarial images (camouflage cones)
• USB / JTAG on Arduino Portenta/Due: Unlocked bootloader, firmware reflashing
• Onboard PC (ACEMAGIC M2A): OS vulnerabilities, exposed SSH/RDP, missing disk encryption

9.2 Risk Management and Threat Modeling

The NIST Risk Management Framework (RMF) is a set of guidelines that helps organizations manage and reduce risks
to their information systems and data. The process involves seven key steps: prepare, categorize, select, implement,
assess, authorize, and monitor. These steps provide a structured approach to identifying and mitigating risks,
ensuring the security and integrity of information systems and data.

Threat STRIDE Category Likelihood Impact Risk Level

RF Jamming / Spoofing of RC/E-Stop Tampering, Denial Medium High High

Unauthorized ROS Command
Injection

Spoofing, Elevation Medium High High

GPS Spoofing Repudiation, Tamper Low–Med Medium Medium

Firmware Reflash via USB/JTAG Tampering Low High High

Adversarial Camera Input (YOLOP) Elevation, Tamper Low Medium Medium

Table 2. Threat Modeling

The NIST AI RMF helps AI risk governance across four core functions—Govern, Map, Measure, and Manage—to
ensure trustworthy, robust, and secure unmanned or autonomous vehicles.

To mitigate cybersecurity risks of robots, several control measures can be implemented. For RF link protection,
encrypted RC and E-stop signals can be used, such as integrating AES-256 radio modules or utilizing FlySky firmware
with rolling codes. Additionally, RF-jamming detection can be enabled through a spectrum sensor that triggers a
fallback to a manual kill switch. Secure ROS communications can be achieved by enabling SROS2, which encrypts
topics and enforces node certificates, as well as implementing namespace segmentation to restrict critical motor

https://fcc.report/FCC-ID/N4ZFLYSKYI6S/2911062.pdf
https://fcc.report/FCC-ID/N4ZFLYSKYI6S/2911062.pdf

University of Bridgeport IGVC 2025

 14

commands to authenticated nodes. Host hardening measures include secure boot and firmware signing, disk
encryption, and host firewalls. Physical port controls can be implemented by disabling unused ports and logging
any connections. Furthermore, sensor integrity can be ensured through GPS anti-spoofing using multi-constellation
GNSS with signal authentication, and camera/LiDAR filtering can be validated with sanity checks to prevent false
detections. Furthermore, by layering AI RMF on the top of conventional RMF, which can ensure the computing stack
not only resists traditional cyber-attacks but also remains reliable and safe under adversarial AI/ML threats.

9.3 RF Penetration Test

Target: Autonomous Racing Robot (FlySky FS i6S RC link @ 2405.5–2475 MHz & micro-ROS Wi-Fi)

Scope & Objectives: Assess security of the 2.4 GHz RC/E-Stop link and robot’s Wi-Fi-based micro-ROS
communications. Identify vulnerabilities to jamming, replay, spoofing, and unauthorized command injection.
Validate detection and mitigation mechanisms under real-world pit-area conditions. DOI:
10.14722/vehiclesec.2023.23037

Figure 12. GNU Radio Companion Diagrams used with HackRF One

Environment & Tools:

• HackRF One: Wideband TX/RX SDR for jamming, spectrum analysis, packet capture as shown in Figure 12
• DragonOS: Kali-based preconfigured SDR distro with spectrum-analysis and decoding utilities
• GNU Radio Companion: Custom flowgraphs for real-time modulation/demodulation and signal injection

Expectations & Findings:

• Reconnaissance: Passively monitored the robot’s RF emissions in the pit area over 30 MHz–10 GHz using
HackRF One + GNU Radio. Identified control channel center frequency (~2439 MHz), bandwidth (~2 MHz),
and typical packet timing.

• Sweep Jamming: Generated continuous-wave and swept-tone jamming signals across 2425–2455 MHz.
Measured operational degradation: control latency, packet loss rate, and range reduction.

• Packet Replay: Recorded valid RC packets with HackRF One. Replayed at varied power levels and timing
offsets to test acceptance by motor controller. Crafted modified command sequences to attempt
unauthorized steering/braking signals.

University of Bridgeport IGVC 2025

 15

• Protocol Injection: Reverse-engineered packet structure in GNU Radio—frame delimiters, parity, rolling-
code fields. Attempted live injection of malformed/unauthenticated frames to observe robot behavior and
error handling.

The RF penetration test using HackRF One, DragonOS, and GNU Radio revealed critical vulnerabilities to jam and
replay attacks on the FS i6S link. By adopting encrypted/rolling-code radios, jamming detection, and FHSS, the
robot’s wireless safety and control channels can be significantly hardened against adversarial interference.

10. Performance Assessment
TrUBot has undergone a series of performance validation tests to ensure its readiness for the IGVC 2025
competition. These tests focused on evaluating speed, maneuverability, operational endurance, and system
reliability under realistic operating conditions.

During mobility trials, TrUBot successfully exceeded the IGVC 2025 minimum speed requirement of 1 mph,
demonstrating smooth and stable motion across various terrain types. The robot maintained consistent control at
low speeds, a critical requirement for precise navigation during lane following and obstacle avoidance tasks.
Although the exact maximum speed is yet to be determined, initial results indicate that the platform can operate
well beyond the minimum threshold.

Battery endurance was tested with a full payload of 20 pounds, simulating competition-level mission conditions.
TrUBot sustained uninterrupted operation for approximately 40 minutes, which comfortably satisfies the expected
task durations within the IGVC environment. This performance highlights the effectiveness of its power distribution
strategy and overall energy efficiency.

Further testing confirmed the robot's ability to maintain stable localization, accurate command following from
/cmd_vel, and consistent sensor data publishing (IMU, LiDAR, and wheel encoders), validating the robustness of
the integrated ROS 2 and micro-ROS systems.

Overall, TrUBot has demonstrated reliable performance in both autonomous control and teleoperation modes,
laying a strong foundation for real-time decision-making and long-duration field deployment during the
competition.

	1. Introduction
	2. Organization
	3. Design Process
	3. 1 Autonomous Robotic Body Design

	4. Hardware
	4.1 Drive System
	4.2 Sensing and Perception
	4.3 Computation and Control
	4.4 Power Distribution
	4.5 User Interface and Safety

	5. Electrical
	5.1 Power Supply Overview
	5.2 ACEMAGIC Computer Power
	5.3 Motor Power and Control
	5.4 Safety Devices and Integration
	5.5 Mechanical Emergency Stop Button

	6. Software
	6.1 Lane following
	6.2 Mapping and localization
	6.3 Object Detection

	7. Simulation
	7.1 Overview
	7.2 Webots Simulation
	7.2.1 Webots Features
	7.2.2 Course & Robot Customization

	8. Autonomous Navigation Task
	9. Cybersecurity Analysis
	10. Performance Assessment

