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1. Introduction 

Intelligent Systems have become increasingly prominent in our daily lives.  Innovations in autonomous 

systems such as robotic lawnmowers, vacuums, space exploratory vehicles, and military vehicles have an 

important role in advancing technology. 

 

The IGVC competition fosters original ideas in intelligent systems.  This year LTU presents Think-Tank, 

a unique entry in the 2005 IGVC competition.  The robot is built with solid engineering principles and 

maximizes portability and scalability through hardware and software design.  The robot uses the Java 

programming language as its core intelligence building block, and was built from scratch to fulfill the 

requirements of the competition.  This paper describes the Think-Tank design, considerations, and 

improvements over previous submissions, and core functionality.   

 

2. Design Process 

2.1 Project Planning Process 

The Think-Tank team examined the requirements of the customer; in this case, the judges of the 

competition.  Official IGVC competition rules provided the baseline requirements document necessary to 

began the design planning process.  A design process was selected after careful review of the 

requirements document and team capabilities. 

 

The selection of a design process for this project was guided by the traditional three constraints of time, 

budget, and quality.  Based on these constraints and the desire to deliver a functional system as soon as 

possible, an agile design philosophy was 

selected.  

Figure 1 illustrates our agile cycle of 1. 

speculation, 2. collaboration, 3. learning, and 4. 

eventual release of a system increment.  

 

The agile philosophy is characterized by small 

self-organizing, self-managing teams, rapid 

delivery of incremental work products, an iterative  
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Figure 1 Agile Design Cycle



development cycle, and working products as the primary measure of success. Agile methods stress 

product delivery over analysis and design, with design and construction occurring concurrently. 

 

2.2 Project Development Process 

Development of the Think-Tank autonomous vehicle consisted of iterative development of software and 

hardware prototype increments. We built a fully functional vehicle prototype to use for software 

development and vehicle design evaluation. From this prototype we discovered drive train motor 

mounting and alignment problems. These issues were reviewed and corrective action was taken by 

mounting the motors vertically and moving them back four inches to improve handling. These changes 

were implemented on the prototype vehicle and incorporated into the final competition vehicle. 

2.3 Project tracking and Quality Metrics 

Both hardware and software metrics were tracked to improve quality. Software quality metrics were 

further broken down into product, process, and project metrics.  Process and product metrics focused on 

improving the defect removal rate and the response to fixing software defects.  Project metrics (number of 

developers, skill levels, schedule, etc.) were more difficult to track.  

Hardware was also measured by conformance to requirements and performance parameters.  

2.4 Collaborative Team Organization 

The 2005 Think-Tank team organization can be found below in Figure 2. Each functional block 

represents a self-organizing and managing unit responsible for the three competition events. Thus far, 

approximately 1,595 total work hours were contributed to the project by all members of the team. 

 

Figure 2 Team Organization 
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2.5 Vehicle Conceptual Design 

Think-Tank is designed to fulfill the dimension, safety, and vehicle performance requirements as 

specified in the 2005 IGVC rules. Additional input came from reviews of previous LTU IGVC vehicle 

hardware designs from the 2003 and 2004 competitions. The review of previous vehicles revealed the 

following problems in our previous IGVC designs: poor traction, inaccurate control, lack of all-weather 

performance, and excessive workload on the camera sensor. The review also revealed successful features 

that the new vehicle should inherit from previous designs such as the use of lightweight, low cost 

materials and a simple mechanical design that is easily constructed using basic fabrication processes such 

as drilling, cutting, and nut and bolt fasteners. 

     

Think-Tank’s conceptual design is based on extensive use of CAD models using SolidWorks CAD 

software. Two essential design decisions were made before modeling the vehicle in CAD: 

• A semi-monocoque vehicle frame utilizing only flat panels to form the vehicle shell  

• A two piece vehicle shell with a lower drive train chassis platform and a removable command and 

control upper platform to house all of the control equipment and components 

The CAD model allowed us to analyze the dimensions and placement of motors, wheels, laptop computer, 

and camera sensor and to check for interference between components while maintaining the dimension 

constraints imposed by the IGVC rules. After several iterations of the CAD model, a satisfactory design 

was obtained and is shown in Figure 3.  Blueprints were created from the solid model to begin 

construction of the prototype vehicle. 

 

 

Figure 3. CAD Models of Vehicle Structure 
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3. Hardware Design 

3.1 Robot Structure 

The three wheel base configuration with tank-style differential steering and rear caster wheel was 

inherited from previous 2003 and 2004 designs.  It has proven to be an effective configuration that 

provides zero-turn radius maneuverability and simple vehicle control dynamics.  

3.2 Drive Train 

Design reviews of the 2003 and 2004 LTU IGVC vehicles revealed that our ability to win the autonomous 

challenge and navigation challenges were severely limited by a lack of traction and precise motion 

control. Both of these problems were solved by using two high performance 12 volt DC 40 amp electric 

motors with 21:1 worm gear ratio and .25 horsepower at 150 RPM. 

  

The addition of 400 CPR incremental optical encoders to the output shaft of each motor of the 2005 LTU 

vehicle allows precise feedback speed and position control not available in previous vehicles. The 

encoders solve the traction problem encountered in previous vehicles by allowing our vehicle to maintain 

the same vehicle speed regardless of the terrain or grade of the incline. Think-Tank does not have the loss 

of control traveling down inclines that plagued the 2004 vehicles. The poise of the robot can be precisely 

controlled to navigate through and around obstacles. 

 

3.3 Actuators 

Think-Tank has vastly improved motion control capabilities compared to vehicles from previous years. Its 

motors are driven by the AX3500 two channel motor controller by Roboteq.  

 

The new motor controller for the 2005 vehicle adds the capability to precisely control speed or position 

using feedback motion control with optical encoders. It also has key safety features such as independent 

power source inputs for the controller electronics and motor outputs, which allow us to turn off power to 

the motors for an emergency stop. 
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4. Electrical System 

4.1 Power System 

There are currently 3 independent power sources available in Think-Tank’s power system.  An 

independent 12-volt DC battery power source is dedicated to powering the motors to eliminate voltage 

and current fluctuations during motor operation in other circuits. Each electric motor circuit is protected 

by a 30-amp circuit breaker that resets itself after current levels return to normal conditions. A second 12-

volt battery provides electrical power for the Ax3500 motor controller board, Novatel ProPack-LB DGPS 

unit, camera, camera image converter, and a laptop computer. Two 12-volt DC batteries are connected in 

series to provide a 24-volt power bus for the laser scanner. Batteries are changed when a low battery 

voltage warning is displayed in our main control software based on voltage information monitored by the 

Ax3500 motor controller. The power and communications control system schematic for Think-Tank 

vehicle is shown in Figure 4.  

 

Figure 4 Power and Communications Control System Schematic 

4.2 Computer Hardware 

Think-Tank’s computer hardware consists of a MPC TransPort T3000 laptop. The MPC T3000 is a 1.6 

GHz, x86 Pentium processor, with 512MB memory, and Windows XP operating system. Additionally, it 

has all the required data ports necessary to interface to Think-Tanks other components. 
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4.3 Sensors 
Think-Tank has increased sensor capability and updated the software architecture to promote a “plug-and-

play” paradigm.  Additional sensors include incremental optical wheel encoders, a sub-meter accuracy 

differential NovaTel Propack LB DGPS unit, a laser range finder (Ladar), and a digital 

compass/inclinometer. Table 1 summarizes the variety of sensors used in the Think-Tank vehicle. 

 

Sensor Component Function 

Incremental optical wheel encoders Controls motor speed within .1 mph and 2” distance  

NovaTel ProPack-LB DGPS unit Capable of .8 sub-meter accuracy with OmniSTAR 

Digital Compass/Inclinometer Provides heading, roll, and pitch information 

High Dynamic Range DV Camera Detects course lines and potholes in a 92 degree field of view 

Pixelink PL-A544 Video Converter Compresses a raw 640x480 video image stream to 160x120  

Sick Laser Scanner Creates a 180-degree 2D map of obstacles and safe corridors 

Table 1 Vehicle Sensor Summary 

5. Software Design 

5.1 Software Strategy 

The Think-Tank software team applied a layered design process which focused on code reuse, scalability, 

and portability.  For these reasons a true object-oriented language, Java, was selected to receive input, 

manipulate data, and control the robot.   

 

All robot code has been written in Java for maximum portability.  As is the case in the “real world,” many 

times hardware becomes obsolete and developers are left with laborious, expensive integration efforts to 

port code from one hardware platform to another.  By using Java, Think-Tank is more suited to adapting 

as hardware and customer requirements change. 

 

To satisfy our goal of highly reusable code, our architecture was structured so modules such as Median 

Filter, Hough Transform, Black and White filter, Sobel transform, etc. could be plugged in or pulled out 

very quickly and easily.  The notion of Java interfaces was exploited to make cose reusability and systems 

integration easy to implement. 

 

Multi-threaded code can often lead to improved performance and scalability.  This fact persuaded the 

software team to make each input to the system run in its own thread.  The threads are joined later and can 
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then be used for decision making.  The thread model allows the robot to scale up to accept and process 

input from many more sources simultaneously. 

5.2 Autonomous Challenge 

The autonomous challenge requires extensive use of both the video processing and Ladar subsystems of 

the robot.  They deliver data to the system for processing, aggregation, and then decision making. 
 
5.2.1 Controller Subsystem 
It is very important that data coming in from multiple sources is synchronized so that the robot is making 

decisions based on data that represents a fixed moment in time.  For that reason, Think-Tank creates, and 

tracks individual threads that are spawned at the Capture Layer seen at the left side of Figure 5 below.  

Those threads can continue to do their jobs in both background and foreground modes or Graphical User 

Interface (GUI) mode.  When they are not updating to the screen, they are collecting and processing the 

incoming data.  The background/foreground modes offer an important performance optimization. 

 

The software model used to get filtered data into the data aggregator and then to the “Brain” of the system 

is also depicted in Figure 5 below. 

 

Figure 5 Think-Tank Software Model 
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Data from the Ladar, Video, GPS, and the Digital Compass are all taken and presented to data consumers 

which then process the data.  For example, the Ladar Capture Processor looks for corridors and obstacles 

as it receives data from the Ladar, and the Video Capture Processor takes camera frames and manipulates 

them through different filtering modules. 

 

Once the data is processed, it is passed to the Virtual Environment which registers interest in all the data 

inputs.  Once there is new data from each of the inputs of interest, the Virtual Environment gets notified 

and aggregates each piece of information. 

 

Finally, when all information is entered into the Virtual Environment for a given point in time, the 

“Brain” module can then make a decision on the best path for the robot to follow. 

 

5.2.2 Video Subsystem 
Video is used to detect the white lines.  To accomplish this, the original video image goes through the 

following steps: 

5.2.2.1  Filtering 

Filtering is accomplished using a scalable, modified, color median filter.  The median filter was chosen 

for its ability to preserve edges in the image while reducing salt and pepper video noise.  The filter is set 

up with a 3X3 convolution window, but can be set to an arbitrary size 

5.2.2.2  Thresholding 

Thresholding is used to prepare a binary image for the Hough Line Transform.  The image must be 

reduced to just 1 or 2% of its original pixels since the Hough transform does many calculations on each 

pixel.   

5.2.2.3  Hough Line Transform 

The Hough line transform [Hough 1959] is a method for finding dominant lines in noisy images.  Every 

point in the binary image is transformed to Hough-space which represents the polar coordinates of 

potential lines through each point in the image.  All of the potential lines through a given point in the 

image show up as sinusoidal curves in the Hough-space.  The intersections of the curves represent 

collinear points in the image.  By locating the peak intersection in the Hough-space, the coordinates of the 

dominant line is extracted.   

5.2.2.4  Hough Circle Transform 

The Hough Circle Transform uses similar techniques as described above to find circles of a specified 

radius in a noisy image.  This is helpful in determining the location of potholes on the course.  

5.2.2.5  Perspective Correction 
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In order to make the line information extracted from the image more useful for navigation, the image is 

transformed to look like a projection onto level ground.  This is accomplished by entering five physical 

dimensions from the camera position on the robot and performing the trigonometric manipulation based 

on these.  The parameters and correction diagram can be found in Figure 6. 

 

Figure 6 Perspective Correction 

5.2.2.6  Map to Virtual Environment 

The last step in the process is mapping to a specific field size in front of the robot which represents a 

common virtual environment.   

 

5.2.3 Line Following Controller 
The line following controller is a single Java class which combines several other classes to accomplish the 

following tasks: 

 

1. Get heading error signal   

2. Get centering error signal 

3. PID controller 

4. Motor control 

5. AX3500 motor driver 

 

All of the tunable parameters are in one block in the controller class and there is no cross coupling or 

dependency between the classes in keeping the object oriented design approach. 
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5.2.4 PID Controller 
Once the heading and centering errors are determined, they are combined into a single error signal for the 

PID controller.  Filtered video data provides input to the PID closed loop controller, which controls the 

vehicle’s yaw-rate. 

 

5.2.5 Motor Control 
The motor control module is a smart actuator that receives speed and yaw-rate commands in engineering 

units; and provides retrieval functions for left and right motor command values.  These can be directly 

transmitted to the motor driver software. 

5.2.6 Ladar Subsystem 

The Ladar (Sick LMS 291) is the predominant robot subsystem that feeds the controller with information 

about where the robot can or cannot go due to obstacles.  Java Ladar processing code classifies objects as 

obstacles or corridors and feeds that information to the 

decision making module, or “Brain.” The Obstacle and 

Corridor Detection algorithm is outlined in the steps 

below. 

1.  Start iterating through all the points of the Ladar sweep. 

 

 

 

 

 

2.  Search:  If you haven’t found an obstacle yet, keep 

searching.  When you find one, check to see if the 

current point you’re looking at is within the “Yellow 

Zone.”  If it is, go to the scanning obstacle mode. 

Otherwise, let’s look to see if there is a possible 

corridor. 
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3. If isObstacle:  Keep track of the maximum and 

minimum radii as well as the angle.  Search to the left 

of the obstacle to see if there is an obstacle that is 

continuous to the last point.  If there are, “expand” the 

angle and continue tracking the maximum and 

minimum angles.  Once you have a gap between two 

points, go back to 2. (Search).  

 

4.  If Scanning a Corridor:  Check all the points collected 

to see if they are greater than or equal to the tunable 

parameter CORRIDOR_THRESHOLD which sets the 

optimal value for a “Safe” corridor.  If you find an 

object, switch back to isObstacle mode in Step 3. 

 

Because the system picks out corridors up to a range of 8 

meters, the robot can avoid cul-de-sacs that are less than 

8 meters deep.  

 

Figure 7 below depicts the categorization of corridors and obstacles.  The key at the bottom describes the 

threat levels of each zone the Ladar sees. 

 

Figure 7 Categorization of Corridors and Obstacles 
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5.3 Navigation Challenge 
Previous LTU vehicles did not have a compass or accurate GPS sensors to determine the orientation of 

the vehicle. The compass and sub-meter accurate GPS on this vehicle makes the robot position 

information more accurate and faster because it can determine the direction to the goal and precisely 

move there. The robot uses the controller and Ladar subsystem code found in sections 5.2.1 and 5.2.6 to 

accomplish the tasks of the Navigation Challenge. 

 

5.3.1 Navigation Challenge Algorithm 
Our method of reaching the GPS waypoint goal is to first start by heading in the direction of the goal.  

This is determined using GPS and compass data. 

When an obstacle is encountered, the robot will 

use Ladar data to avoid it and recalculate the 

path to the waypoint.  We can calculate the 

angle, θ, between our robot direction and the 

goal direction, which is shown in Figure 8. Our 

navigation algorithm reduces the angle error 

between the robot and the goal to an angleθclose 

to zero, which means the robot is headed s

toward the goal. 

Figure 8 The angle θ between our robot and the goal 

traight 

 

5.3.2 Radar Graphical User Interface 
A graphical interface in the form of a radar 

display, shown in Figure 9, presents compass and GPS data in a graphical tool used for testing the robot.  

The N represents north, the blue point is the robot, and the 

red line depicts the direction to the goal.  

 

The radar graphical interface presents easy to understand 

graphics of the navigation.  A red line on the radar display 

links the robot position to the waypoint indicating the path 

the robot should follow to reach the waypoint. When the 

robot reaches the goal, the red line disappears from our radar 

and a new link to the next waypoint is displayed. 
I 
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6. Performance Analysis 

A summary of vehicle predicted and trial data is listed in Table 2. The discrepancies between predicted 

and actual result are mainly due to the “real world” effects of varying terrain and sensor noise not 

included in prediction calculations. 

 
Performance Measure Performance Prediction Performance Results 
Maximum Speed 8 Mph 7 Mph 
Ramp Climbing Ability (mu = .3516) 60% 20% 
Reaction Time 1 – 2 Hz 1.5 Hz 
Battery Life (104W required) 1 Hour 45 Minutes 
Object Detection 8 meters 8 meters 
Dead-end and Traps 8 meters deep 8 meters deep 
Waypoint accuracy (with Omnistar) .1 to .8 meters .6 to .8 meters 

Table 2 Performance Analysis 

6.1 Safety 

The issue of safety was considered early in the initial speculation phase of our agile design process in 

which requirements for the vehicle were gathered.  Electrical safety was addressed by installing circuit 

breakers inline with the motor power circuit and clearly labeling electrical wiring.  The E-stops can be 

engaged in emergency situations when the robot has to be immediately disabled.  After an E-Stop, the 

vehicle can only be restarted by resetting it manually.  

6.2 Reliability 

The Mean Time Between Failure (MTBF) represents the average time between failures of a system.  The 

Think-Tank robot hasn’t had any hardware failures to date, so the MTBF in this case represents the total 

time the robot has been assembled.  Battery redundancy increases reliability in the event one fails.  Also, 

multiple sources of obstacle avoidance inputs from the Ladar and camera offers increased reliability if 

one sensor should fail. 

6.3 Durability 

Durability of the Think-Tank vehicle was measured as the number of times any component on the vehicle 

required repair or maintenance during testing.  None of the components required any repair or significant 

maintenance during testing of the vehicle. 

6.4 Testing 

Hardware and software tests were conducted under a three phase test plan which included: unit testing of 

each component by the developer as the components were created, integration testing as each component 
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was integrated into the entire system to check that the components functioned properly as a system, and 

regression tests to verify that previously tested components didn’t introduce bugs after integration with 

other newer components.  Practice courses were set up to test the functionality of the robot for both the 

Autonomous and Navigation Challenges. 

6.5 Systems Integration 

The systems integration model was a direct benefit from the object-oriented programming model and was 

aided by the use of Java interfaces and a custom written threading model.  Hardware integration was 

facilitated by the modular design of the chassis and the use of electrical buses to deliver power to each 

subsystem.  Hardware and software systems integration was performed during each increment of the 

development. 

6.6 Vehicle Cost Summary 

Table 3 summarizes the total material cost for the Think-Tank vehicle. Items with a team cost of $0 are 

components that were loaned to us for the competition. 

Component Total Cost Team Cost
Chassis Materials $82 $82
(2) 12V DC motors, 285 rpm $310 $310
(2) 4" Tire & Wheel Assembly - 10.5" Knobby Tire $48 $48
(1) NovaTel ProPack-LB DGPS & GPS-600-LB Antenna $2,700 $2,700
(2) Incremental Rotary Optical Encoder Kit $122 $122
(1) Digital Compass/inclinometer $400 $400
(1) JVC TK-C1480U Color Video Camera $1000 $0
(1) PixelLink PL-A544 Video Converter box $500 $0
(1) Sick LMS 291-S05 Ladar $7,000 $0
(1) Roboteq AX3500 Speed controller /w optical encoder inputs $395 $395
(4) Main Battery 12 Volt 7 Ah Power Sonic Sealed Lead Acid $48 $48
Electrical Hardware $136 $136
Hardware (nuts, bolts, etc…) $75 $75
Miscellaneous (paint, Velcro, etc…) $14 $14
(1) MPC Laptop $2,215 $0
Total $15,045 $4,330

Table 3 Vehicle Cost Summary 

7. Conclusion 

Think-Tank is an autonomous vehicle designed and constructed by LTU students that incorporates 

modular extensible software architecture with a robust design capable of challenging the top ranking 

schools at the 2005 IGVC. New to this years vehicle is a host of sensor capabilities integrated using a 

virtual environment map. Various design improvements based on previous LTU designs have increased 

the control, navigation, and vision system accuracy to levels comparable to past event winners. 
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