

Presents

Armadillo

2007 Intelligent Ground Vehicle Competition

Team Members

Brandon Bell, Shawn Ellison, Jeremy Gray, and Philip Munie

Faculty Advisor Statement

I certify that the design and development of the Armadillo autonomous vehicle has been
significant and each team member has earned credit hours for their work.

Dr. CJ Chung 1
Department of Math and Computer Science
Lawrence Technological University
chung@ltu.edu (248) 204-3504

Date

1 Co-Advisors: Dr. Lisa Anneberg, Dr. Peter Csaszar, Professor Moriconi, Professor
Shih, and Professor Maurice Tedder

 2

1. Introduction

The Autonomous Vehicle Team at Lawrence Technological University (LTU) is proud to present

Armadillo, a brand new autonomous vehicle designed for the 2007 Intelligent Ground Vehicle

Competition (IGVC). Armadillo’s unique two-component, four wheel design features an electric

power system, a complex dual-channel motor controller, dual-camera optical sensors, and state-

of-the-art software written in Microsoft’s C# programming language. It represents Lawrence

Technological University’s latest venture in providing a safe, reliable, and cost-effective

autonomous vehicle that is rich in cutting-edge technologies.

2. Design Process

Team Armadillo followed the traditional software engineering process model of planning,

designing, implementing, and testing the Armadillo autonomous vehicle. This model was applied

to both the hardware and software design, since it stresses a “plan before execute” approach. As

the project was planned out, team members were each assigned responsibilities for the project.

2.1 Project Planning Process

As Figure 1 indicates, the Armadillo project’s tasks were broken down into pieces, and a timeline

was planned for the completion of these individual tasks. Due to starting this project late in the

IGVC season, much more time was allocated for getting the hardware designed and implemented

than for the software. The primary plan was to get Armadillo up and running this year, and to

optimize the software for the following year’s competition.

Figure 1 – Project Task Timeline

 3

2.2 Development Process

The development process involved both the design and

implementation of Armadillo. During this process, both the hardware

and software components were constructed in small modules that

were then integrated into the final product. This allowed for each

team member to work independently in the early stages of

development. However, due to the project plan focusing on getting

the hardware completed first, software development did not begin

until shortly before the completed construction of Armadillo.

Fortunately, Team Armadillo was able to use LTU’s 2005 Think-Tank

vehicle as a development resource while Armadillo was being

finished. In addition, the software team was also able to design the image processing algorithms

by using L2Bots (Low-Cost Laptop Robots). The L2Bots are very simple, small robots that have a

webcam and two low powered wheels that are all controlled by a laptop (see Figure 2). These robots

allowed the team to test their image processing and control algorithms outside of the lab.

2.3 Testing Methodology

Each hardware and software module was first tested individually before the pieces were

integrated with one another. The integrated modules were then tested to make sure they

interacted properly with one another. Finally, the whole system was tested to ensure that the

design met all of the requirements of IGVC. During the early stages of testing, the 2005 Think-

Tank robot was used as a platform for software module testing. The testing was then moved to

Armadillo once the mechanical and electrical construction was completed.

2.4 Team Organization

The 2007 Armadillo team primarily

consists of three graduate computer

science students and one

undergraduate electrical engineering

student. The team members and

their individual responsibilities are

shown in Table 1. In addition to the

primary team members, Lawrence

Technological University’s H2Bot

team also contributed to this vehicle’s

Team Member Responsibilities
Jeremy Gray
BSEE

• Mechanical Design
• Electrical Design

Shawn Ellison
MSCS

• Autonomous Challenge Team Leader
• JAUS Programming
• Joystick Control Interfacing

Philip Munie
MSCS

• Camera Interfacing
• Image Processing

Brandon Bell
MSCS

• Motor Controller and Motor Interfacing
• JAUS Hardware Interfacing
• Electrical Design Assistance

Table 1 – Team Organization

Figure 2 - Low-Cost Laptop Robot

 4

design by acting as experienced advisors for the 2007 competition. It is estimated that the team

spent approximately 850 hours on the development of the Armadillo autonomous vehicle. The

hardware design took approximately 325 hours, and the software design took approximately 475

hours.

3. Hardware Design

Armadillo’s hardware design is comprised of three primary parts: the mechanical design, the

electrical system, and the sensors and systems integration. Team Armadillo evaluated its

success on this part of the design process based on the principals of safety, reliability, and cost-

effectiveness.

3.1 Mechanical Design

3.1.1 Structure

Armadillo is a four wheel vehicle with front

differential drive steering and a two-part body

structure that is similar to an articulated steering

system. Through experimenting and research, it

was found that using a two-part structure allows for

a smaller turn radius and more maneuverability than

a four wheel, one-part structure. The frame (shown

in Figure 3) was constructed from angle aluminum of

3/4” width and 1/8” thickness, and aluminum sheets

of both 0.125” and 0.190” thickness. The body of

the vehicle is constructed from two fiberglass shells that were sculpted and formed to be easily

removable and attachable to the aluminum structured frame. This fiberglass body easily supports

the required payload, and it contains ventilation fans and vents to remove heat produced from the

internal electronics.

3.1.2 Drive Train

Armadillo’s drive train design offers low power consumption, speed control, and hardware speed

limiting. The motor configuration is two 12V, 2.4HP permanent magnet motors, and these motors

were selected to achieve the required torque to move Armadillo, stay within competition speed

limits, and achieve the lowest power consumption relative to torque. The drive train’s speed

resolution is achieved by mounting encoders to the motor shaft. Each motor shaft is directly

connected to each wheel using an adapter that was specially created to link the motor shaft to its

Figure 3 - CAD Model of Armadillo's Structure

 5

wheel. Although the vehicle possesses four wheels, only the front two wheels are powered by

the electric motors. The two rear wheels simply possess ball-bearing wheel housings attached to

a fixed shaft bolted to the rear frame. This design allows for front wheel drive motion with minimal

resistance from the rear wheels.

3.1.3 Motor Control

The speed and direction of Armadillo’s

motors are controlled by a Roboteq

AX3500 dual-channel digital motor

controller (shown in Figure 4). The

AX3500 provides both a velocity and

direction channel to govern the motion of

its dual motors. It accepts simple

requests and relays controller state

information via a single RS-232 serial

communication line. This communication

is achieved through simple hexadecimal commands and responses. To verify that there are no

errors in this communication, the controller echoes every command back across the serial

connection. This ensures accurate and safe control of the motors through software error

checking.

3.2 Electrical System
3.2.1 Power Source

Armadillo is powered by a single Power-Sonic 12V/40AH sealed lead acid battery. An onboard

charger with 110V AC interface is employed to restore battery power when the vehicle is not in

operation. The power supply is fed directly to a power distribution box, which dispenses power to

the vehicle’s various electronics and components.

3.2.2 Power Distribution

A box mounted printed-circuit board (PCB) distributes and switches power to each of the

electrical components. In addition, the PCB provides connections for the wired and wireless E-

stop devices, and power for the front and rear section ventilation fans. The power and

communication control system schematic for Armadillo is shown in Figure 5.

Figure 4 - Roboteq AX3500 Motor Controller

 6

Figure 5 – Power and Control System Schematic for Armadillo

3.2.3 Safety Features

Armadillo is equipped with several important safety features that help prevent accidents or injury

while the vehicle is running. The primary safety devices are both manual and wireless remote

emergency stop (E-stop) systems. The manual E-stop system is activated by a large tactile

button located on the back of the Armadillo’s exterior. When pressed, this button stops the

motion of the vehicle by cutting off all power to the motors. Similarly, the wireless remote E-stop

system uses an RF remote that sends a signal to the motor controller to shut down all power to

the motors. In addition to the E-stop functionality, Armadillo’s fiberglass chassis prevents user

contact with the active electrical system, and its sealed lead acid battery helps ensure that no

hazardous material is spilled during operation.

Power
Distribution

Box

12V Battery

Data line

Power

Left and Right
12V DC Electric

Motors

Optical Encoders

Horn

Elexol Relay

 7

3.3 Sensors and Systems Integration

Armadillo’s sensor design uses only two cameras connected through a FireWire connection for

visual interpretation. Thus, the visual information gathered from these cameras is the only

decision making tool available for the Armadillo besides the very specific JAUS commands.

Once the visual information is collected, it is then sent to the decision making software on a

laptop computer for interpretation and motor command decisions. Alternatively, the laptop can

receive JAUS commands which are then used to start or stop the autonomous mode, or are used

to send a signal to the relay output device to activate the warning signal.

3.3.1 Cameras

Armadillo utilizes two Panasonic PV-GS320 digital

camcorders for its visual recognition (shown in Figure 6).

The effective resolution of the cameras is 1.89 megapixels,

with a video resolution of 320x240 @ 6 frames per second

(fps).

3.3.2 Laptop Computer

The laptop that runs Armadillo’s software is a Dell Inspiron E1505. This system contains a 2.0

GHz Intel Core 2 Duo processor with 1 GB of DDR memory, and it was found to be an effective

low power, computationally strong solution to Armadillo’s processing needs. This computer also

contains a GeForce Go 7300 video card with 256 MB of ram, which greatly assisted the team’s

video processing power.

3.3.3 Relay Output

Armadillo uses an Elexol I/O 24 Relay Output Board to handle routing power to the warning signal

when the appropriate JAUS command is received. This device communicates with the laptop

computer via a USB connection, and it waits for simple hexadecimal commands from the laptop.

These commands tell the device to route power and cut-off power to specific electrical wires that

are connected to the device.

4. Software Design
4.1 Software Strategy

The Armadillo software was developed on top of Microsoft’s .NET framework in C#, using the

Visual Studio 2005 software development environment. C# provides a flexible and scalable

Figure 6– Panasonic PV-GS20

 8

approach to multi-threaded software development, and its powerful libraries allow for simple

communication with external devices via the USB and FireWire ports.

4.2 Software Architecture

Figure 7 shows a high-level diagram of Armadillo’s software architecture. As this figure indicates,

Team Armadillo continued to focus on using a modular design throughout the software

development process. This allowed for individual team members to code and test each module

separately before the pieces were integrated into the final system. After the initial calibration and

setup phase, the two cameras collect raw data, which is then interpreted and combined in the

“Sensor Fusion” module. Once the image data has been merged, the “Path Planning” module

decides on the proper course for Armadillo, and this decision is passed to software controlling the

“Path Execution” module. This module communicates with the motor controller hardware to

execute the planned path. Simultaneously, the “JAUS Receiver” module waits for commands

targeted for Armadillo. When a command is received, the module interprets this command, and

signals either the warning indicator to activate (which produces a horn sound) or the motor

controller to start or stop autonomous mode.

Figure 7 – High Level Software Architecture Diagram

 9

4.3 Autonomous Challenge

Armadillo will navigate through the Autonomous Challenge with only the use of two digital

cameras for its vision. Thus, all navigational logic is based on this limited knowledge, and the

decision making is done exclusively through software by analyzing the raw visual information

received from the cameras. Once a decision has been made, the direction and speed commands

are sent to the motor controller, which carries out the decision.

4.3.1 Image Processing

To begin the image processing, each

camera captures a 160x120 colored image.

These colored images are then combined to

create a single wide-view image. Once this

single image is created, it is run through a

color recognition module, which recreates

the image using only a few basic colors that

are in its palette. For instance, there are key

colors that specify objects to avoid and lines

to stay within. All other colors are ignored,

and thus, they are all defaulted to the same

color. After this module completes, the

image is then passed off to the lane

following module. Figure 8 provides an

illustration of the image fusion process.

4.3.2 Lane Following

Armadillo uses very simple logic for its lane following decisions. Its primary goal is to navigate

towards the largest available opening at all times. This opening, when looking at a 2D image, is

the largest opening on the x-axis. When this opening is identified, the algorithm then calculates

the center of the opening and the degrees in which the robot needs to turn in order to head in that

direction. There is also a range, on the y-axis, in which this evaluation takes place. This range

was implemented and then adjusted to make sure that the largest available opening was not

determined from a section of the lane that was too far away. This was very important because if

the range was not limited, this algorithm might make decisions too far in advance. For example, it

could decide to make Armadillo turn before it even reached the beginning of a curve in the lane,

and this would be very undesirable.

160 x 120
Colored Raw Data

Image

160 x 120
Colored Raw Data

Image

160 x 120
Colored Wide-

View Raw Image

Color Recognition
Module

Figure 8 - Image Fusion

 10

Image of Lane Lane Recognition

Figure 9 – Lane Following Logic

Figure 9 shows an example of two possible lane images, and the corresponding lane recognition

image. Each lane image shows the view from the camera after the image has been processed,

and each lane recognition image shows how the decision making logic works. The grey box in

the lane recognition images demonstrates the limited area of the image that the decision making

logic evaluates. As shown, the green line, which represents the angle at which Armadillo should

move in order to follow the line, always points to the center of the largest available opening.

4.3.3 Obstacle Avoidance

Obstacle avoidance is also handled the lane following module. This is accomplished by having

the objects internally seen as part of the lane. Thus, the objects are combined with the lane to

make a larger, less elegant version of the lanes. After the object and lane data is combined, the

lane following module determines the largest opening and plans the appropriate route. In

essence, the lane following and object avoidance are handled simultaneously, and use the same

method. Figure 10 illustrates the logic behind this computation.

 11

Image of Lane/Object Lane/Object Recognition

Figure 10 – Obstacle Avoidance Logic

As shown, the only difference between Figure 9 and Figure 10 is the addition of the object in the

camera’s field of view. Since the object is seen as part of the lane, the lane following logic can

still be used to stay in the middle of the largest available opening.

4.4 Navigation Challenge

Due to cost constraints, Armadillo was unable to acquire the GPS device needed to participate in

this section of the IGVC competition. Thus, the team’s plan is to obtain the funding for this

device for the 2008 competition, so that it can participate in this event. This will allow the team an

opportunity to build upon the complex software already developed in the Autonomous and JAUS

challenges for this year’s competition.

4.5 JAUS Challenge

Armadillo is designed to handle all of the JAUS commands that are specified for this challenge.

The JAUS software was seamlessly integrated into the rest of the Armadillo project, although it

did provide the team with some interesting new challenges.

4.5.1 JAUS Integration

The JAUS software is designed to interpret very specific JAUS messages that are sent via a

Radio Frequency (RF) data link that adheres to the 802.11g specification. The JAUS messages

that Armadillo can interpret are as follows:

• Start the vehicle moving forward in the autonomous mode: resume message <Cmd Code

= 0004h>

• Stop the vehicle from moving forward in the autonomous mode: standby message <Cmd

Code = 0003h>

• Activate the warning device such as a horn or a light: discrete devices message <Cmd

Code = 0406h>

• Start the waypoint information: query global waypoint message <Cmd Code = 240Ch>

 12

Once the JAUS protocol was understood, and once a C# interface was developed for the

protocol, another interface had to be developed for the relay output device that controlled the

horn warning device. These two software modules were then linked together so that all of the

JAUS commands could be properly executed.

4.5.2 Challenges Encountered

The biggest challenge faced during the JAUS integration was correctly reading and interpreting

each field of the header in the JAUS messages. Once this was accomplished, the design of the

software allowed the JAUS handling code to be easily integrated with the rest of the system. The

only other challenge involved figuring out the correct hexadecimal commands to send to the relay

output device so that the warning horn would sound. This task turned out to be very simple due

to C#’s powerful USB port connection libraries.

5. Performance Analysis and Estimates

Armadillo’s performance was measured based on several key areas: speed, ramp climbing

ability, reaction time, battery life, and obstacle detection. These areas were assessed through

both theoretical estimates and practical test case scenarios.

5.1 Vehicle Speed

The two NPC-2212 permanent magnet motors have a maximum, no-load speed of 285 rotations

per minute (RPM). Thus, with 10.5 inch wheels, this means that Armadillo’s theoretical maximum

speed is 8.91 miles per hour (MPH). In testing, the actual maximum speed was found to be

approximately 8.64 MPH. However, in accordance with the IGVC regulations, this speed is

limited by the motor controller software to a maximum of 156 RPM, which is just under 5 MPH.

5.2 Ramp Climbing Ability

The driving power of the motors theoretically allows for Armadillo to easily clear the 15% grade

requirement of the IGVC competition. During testing, it was found that Armadillo was able to

climb inclines of approximately 23% grade, which was more than sufficient for the competition

rules. However, due to Armadillo’s unique two-component design, it almost did not clear the apex

of the test ramps because of the limited flexibility of the central hinge. This could potentially be a

problem if the ramp in the competition has a large gap in its apex.

 13

 5.3 Reaction Time

 The reaction time that was calculated for

Armadillo is based on the computational time

for a single cycle of visual interpretation and

motor control execution. Each component of

this calculation is shown in Table 2. As this

table indicates, the total maximum cycle time

was found to be approximately 170 ms,

which was sufficient for the successful

execution of the image processing and lane

following algorithms.

5.3 Battery Life

Armadillo is equipped with an on-board battery charger, which is used to charge the battery

whenever it is not in motion. Due to Team Armadillo’s choice of low power consumption

electronics, it was first estimated that Armadillo could operate for approximately 3 hours between

each charging cycle. Through testing, it was found that Armadillo’s average battery life lasted

around 2 hours and 50 minutes, which was sufficiently close to the desired runtime.

5.4 Obstacle Detection

Armadillo attempts to handle all complex situations early before they become a serious issue.

Thus, efficient path planning algorithms are Armadillo’s most important tool.

5.4.1 Obstacle Detection Distance

Given the angle and height parameters of Armadillo’s cameras, its calculated distance for object

detection is about 5 ½ ft. However, the decision making logic limits that distance to around 3 ½ ft,

so that objects are not anticipated too early. Thus, objects are detected when they are closer, but

this allows the cameras to gather more information about the object since the cameras can see

more of the object. This design decision was made because when the object detection distance

was not limited, it was found that the software often made bad path decision choices since the

object was only just starting to come into the range of the camera.

Process Time (ms)

Image Fusion 40

Color Recognition 60

Lane / Obstacle Recognition 50

Motor Control Command/Execution 20

Total 170

Table 2 - Reaction Time Summary

 14

5.4.2 Traps, Potholes, and Dashed Lines

Traps are the most serious threat to Armadillo because the vehicle can not move backwards, and

it has a relatively large turning radius. Therefore, the camera algorithms attempt to evaluate the

incoming images as far ahead as possible so that threatening situations can be avoided.

Potholes (both real and simulated) are evaluated as objects, so normal object avoidance

procedures are used to avoid them. Switchbacks are easily handled by having a larger range of

view from the dual cameras, so theoretically there are not any situations were a turn is not

executed because the line “disappears.”

Dashed lines, or lines that somehow disappear, are reconstructed based on previous “short-term

memory” used by the vehicle’s software. This memory stores a limited amount of previous

decisions that were made by Armadillo, and in the event that the line disappears, this data helps it

figure out where the line should approximately be located.

6. Cost Analysis

Table 3 summarizes the total material cost for Armadillo. As this table indicates, the relative

simplicity of the hardware kept development costs relatively low. The most expensive item was

the laptop, and this was provided by a team member.

Component Total Cost Team Cost
(1) Dell Inspiron E1505 Laptop $1,500 $0
(2) Panasonic PV-GS320 3 CCD MiniDV digital camcorder $750 $750
0.45X wide-angle lens and filters $120 $120
Electrical hardware parts $300 $300
(1) Roboteq AX3500 Dual Channel Motor Controller $395 $395
(2) MPC-2212 Motors, 12V DC power, 285 RPM $162 $162
(1) Power-Sonic 12V/40AH sealed lead acid battery $108 $108
(1) ProMite on-board charger, 12V $88 $88
(1) Omron emergency stop switch $40 $40
Chassis materials and fiber glass materials $400 $400
Miscellaneous hardware (nuts, bolts, etc…) $150 $150
(2) 10" wheels and 10.5" tires $130 $130
Total $4,143 $2,643

Table 3 - Cost Breakdown of Armadillo

 15

7. Conclusion

Lawrence Technological University’s Armadillo Autonomous Vehicle Team has brought together

a diverse combination of undergraduate and graduate students, both of engineering and

computer science backgrounds, to continue its tradition of excellence in producing high-quality

autonomous vehicles. Armadillo’s innovative design and state-of-the-art software technology

should set it apart from other competitors in the 15th annual Intelligent Ground Vehicle

Competition.

