
 
Presents 

 

 
 

Armadillo 
 

2007 Intelligent Ground Vehicle Competition 
 

 
Team Members 

 
Brandon Bell, Shawn Ellison, Jeremy Gray, and Philip Munie 

 
 
Faculty Advisor Statement 
 
I certify that the design and development of the Armadillo autonomous vehicle has been 
significant and each team member has earned credit hours for their work. 
 
 
Dr. CJ Chung 1 
Department of Math and Computer Science 
Lawrence Technological University 
chung@ltu.edu (248) 204-3504 

  
Date 
 
 

                                                 
1  Co-Advisors: Dr. Lisa Anneberg, Dr. Peter Csaszar, Professor Moriconi, Professor 
Shih, and Professor Maurice Tedder 



 2

1. Introduction  
 
The Autonomous Vehicle Team at Lawrence Technological University (LTU) is proud to present 

Armadillo, a brand new autonomous vehicle designed for the 2007 Intelligent Ground Vehicle 

Competition (IGVC).  Armadillo’s unique two-component, four wheel design features an electric 

power system, a complex dual-channel motor controller, dual-camera optical sensors, and state-

of-the-art software written in Microsoft’s C# programming language.  It represents Lawrence 

Technological University’s latest venture in providing a safe, reliable, and cost-effective 

autonomous vehicle that is rich in cutting-edge technologies.   

2. Design Process 
 
Team Armadillo followed the traditional software engineering process model of planning, 

designing, implementing, and testing the Armadillo autonomous vehicle.  This model was applied 

to both the hardware and software design, since it stresses a “plan before execute” approach.  As 

the project was planned out, team members were each assigned responsibilities for the project. 

2.1 Project Planning Process 
 
As Figure 1 indicates, the Armadillo project’s tasks were broken down into pieces, and a timeline 

was planned for the completion of these individual tasks.  Due to starting this project late in the 

IGVC season, much more time was allocated for getting the hardware designed and implemented 

than for the software.  The primary plan was to get Armadillo up and running this year, and to 

optimize the software for the following year’s competition.  

 
Figure 1 – Project Task Timeline 
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2.2 Development Process  
 
The development process involved both the design and 

implementation of Armadillo.  During this process, both the hardware 

and software components were constructed in small modules that 

were then integrated into the final product.  This allowed for each 

team member to work independently in the early stages of 

development.  However, due to the project plan focusing on getting 

the hardware completed first, software development did not begin 

until shortly before the completed construction of Armadillo.  

Fortunately, Team Armadillo was able to use LTU’s 2005 Think-Tank 

vehicle as a development resource while Armadillo was being 

finished.  In addition, the software team was also able to design the image processing algorithms 

by using L2Bots (Low-Cost Laptop Robots).  The L2Bots are very simple, small robots that have a 

webcam and two low powered wheels that are all controlled by a laptop (see Figure 2).  These robots 

allowed the team to test their image processing and control algorithms outside of the lab. 

2.3 Testing Methodology 
 
Each hardware and software module was first tested individually before the pieces were 

integrated with one another.  The integrated modules were then tested to make sure they 

interacted properly with one another.  Finally, the whole system was tested to ensure that the 

design met all of the requirements of IGVC.  During the early stages of testing, the 2005 Think-

Tank robot was used as a platform for software module testing.  The testing was then moved to 

Armadillo once the mechanical and electrical construction was completed. 

2.4 Team Organization 
 
The 2007 Armadillo team primarily 

consists of three graduate computer 

science students and one 

undergraduate electrical engineering 

student.  The team members and 

their individual responsibilities are 

shown in Table 1.  In addition to the 

primary team members, Lawrence 

Technological University’s H2Bot 

team also contributed to this vehicle’s 

Team Member Responsibilities 
Jeremy Gray 
BSEE 
 

• Mechanical Design 
• Electrical Design 

Shawn Ellison 
MSCS 

• Autonomous Challenge Team Leader 
• JAUS Programming 
• Joystick Control Interfacing 
 

Philip Munie 
MSCS 
 

• Camera Interfacing 
• Image Processing 

Brandon Bell 
MSCS 

• Motor Controller and Motor Interfacing 
• JAUS Hardware Interfacing 
• Electrical Design Assistance 

Table 1 – Team Organization 
 

Figure 2 - Low-Cost Laptop Robot  
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design by acting as experienced advisors for the 2007 competition.  It is estimated that the team 

spent approximately 850 hours on the development of the Armadillo autonomous vehicle.   The 

hardware design took approximately 325 hours, and the software design took approximately 475 

hours.   

3. Hardware Design 
 
Armadillo’s hardware design is comprised of three primary parts: the mechanical design, the 

electrical system, and the sensors and systems integration.  Team Armadillo evaluated its 

success on this part of the design process based on the principals of safety, reliability, and cost-

effectiveness.   

3.1 Mechanical Design 

3.1.1  Structure 
 
Armadillo is a four wheel vehicle with front 

differential drive steering and a two-part body 

structure that is similar to an articulated steering 

system.    Through experimenting and research, it 

was found that using a two-part structure allows for 

a smaller turn radius and more maneuverability than 

a four wheel, one-part structure.  The frame (shown 

in Figure 3) was constructed from angle aluminum of 

3/4” width and 1/8” thickness, and aluminum sheets 

of both 0.125” and 0.190” thickness.  The body of 

the vehicle is constructed from two fiberglass shells that were sculpted and formed to be easily 

removable and attachable to the aluminum structured frame.  This fiberglass body easily supports 

the required payload, and it contains ventilation fans and vents to remove heat produced from the 

internal electronics.   

3.1.2 Drive Train  
 
Armadillo’s drive train design offers low power consumption, speed control, and hardware speed 

limiting.  The motor configuration is two 12V, 2.4HP permanent magnet motors, and these motors 

were selected to achieve the required torque to move Armadillo, stay within competition speed 

limits, and achieve the lowest power consumption relative to torque.  The drive train’s speed 

resolution is achieved by mounting encoders to the motor shaft.  Each motor shaft is directly 

connected to each wheel using an adapter that was specially created to link the motor shaft to its 

Figure 3 - CAD Model of Armadillo's Structure 
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wheel.  Although the vehicle possesses four wheels, only the front two wheels are powered by 

the electric motors.  The two rear wheels simply possess ball-bearing wheel housings attached to 

a fixed shaft bolted to the rear frame.  This design allows for front wheel drive motion with minimal 

resistance from the rear wheels. 

3.1.3  Motor Control 
 
The speed and direction of Armadillo’s 

motors are controlled by a Roboteq 

AX3500 dual-channel digital motor 

controller (shown in Figure 4).  The 

AX3500 provides both a velocity and 

direction channel to govern the motion of 

its dual motors.  It accepts simple 

requests and relays controller state 

information via a single RS-232 serial 

communication line.  This communication 

is achieved through simple hexadecimal commands and responses.  To verify that there are no 

errors in this communication, the controller echoes every command back across the serial 

connection.  This ensures accurate and safe control of the motors through software error 

checking.   

3.2 Electrical System  
3.2.1  Power Source  
 
Armadillo is powered by a single Power-Sonic 12V/40AH sealed lead acid battery.  An onboard 

charger with 110V AC interface is employed to restore battery power when the vehicle is not in 

operation.  The power supply is fed directly to a power distribution box, which dispenses power to 

the vehicle’s various electronics and components.  

3.2.2  Power Distribution 
 
A box mounted printed-circuit board (PCB) distributes and switches power to each of the 

electrical components.  In addition, the PCB provides connections for the wired and wireless E-

stop devices, and power for the front and rear section ventilation fans.  The power and 

communication control system schematic for Armadillo is shown in Figure 5. 

 

Figure 4 - Roboteq AX3500 Motor Controller 
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Figure 5 – Power and Control System Schematic for Armadillo 

 

3.2.3  Safety Features  
 
Armadillo is equipped with several important safety features that help prevent accidents or injury 

while the vehicle is running.  The primary safety devices are both manual and wireless remote 

emergency stop (E-stop) systems.  The manual E-stop system is activated by a large tactile 

button located on the back of the Armadillo’s exterior.  When pressed, this button stops the 

motion of the vehicle by cutting off all power to the motors.  Similarly, the wireless remote E-stop 

system uses an RF remote that sends a signal to the motor controller to shut down all power to 

the motors.  In addition to the E-stop functionality, Armadillo’s fiberglass chassis prevents user 

contact with the active electrical system, and its sealed lead acid battery helps ensure that no 

hazardous material is spilled during operation. 
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3.3 Sensors and Systems Integration 

Armadillo’s sensor design uses only two cameras connected through a FireWire connection for 

visual interpretation.  Thus, the visual information gathered from these cameras is the only 

decision making tool available for the Armadillo besides the very specific JAUS commands.  

Once the visual information is collected, it is then sent to the decision making software on a 

laptop computer for interpretation and motor command decisions.  Alternatively, the laptop can 

receive JAUS commands which are then used to start or stop the autonomous mode, or are used 

to send a signal to the relay output device to activate the warning signal. 

3.3.1  Cameras  
 
Armadillo utilizes two Panasonic PV-GS320 digital 

camcorders for its visual recognition (shown in Figure 6).  

The effective resolution of the cameras is 1.89 megapixels, 

with a video resolution of 320x240 @ 6 frames per second 

(fps).   

3.3.2 Laptop Computer  
 
The laptop that runs Armadillo’s software is a Dell Inspiron E1505.  This system contains a 2.0 

GHz Intel Core 2 Duo processor with 1 GB of DDR memory, and it was found to be an effective 

low power, computationally strong solution to Armadillo’s processing needs.  This computer also 

contains a GeForce Go 7300 video card with 256 MB of ram, which greatly assisted the team’s 

video processing power. 

3.3.3 Relay Output 
 
Armadillo uses an Elexol I/O 24 Relay Output Board to handle routing power to the warning signal 

when the appropriate JAUS command is received.  This device communicates with the laptop 

computer via a USB connection, and it waits for simple hexadecimal commands from the laptop.  

These commands tell the device to route power and cut-off power to specific electrical wires that 

are connected to the device. 

4. Software Design 
4.1 Software Strategy  
 
The Armadillo software was developed on top of Microsoft’s .NET framework in C#, using the 

Visual Studio 2005 software development environment. C# provides a flexible and scalable 

Figure 6– Panasonic PV-GS20
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approach to multi-threaded software development, and its powerful libraries allow for simple 

communication with external devices via the USB and FireWire ports. 

4.2 Software Architecture 
 
Figure 7 shows a high-level diagram of Armadillo’s software architecture.  As this figure indicates, 

Team Armadillo continued to focus on using a modular design throughout the software 

development process.  This allowed for individual team members to code and test each module 

separately before the pieces were integrated into the final system.  After the initial calibration and 

setup phase, the two cameras collect raw data, which is then interpreted and combined in the 

“Sensor Fusion” module.  Once the image data has been merged, the “Path Planning” module 

decides on the proper course for Armadillo, and this decision is passed to software controlling the 

“Path Execution” module.  This module communicates with the motor controller hardware to 

execute the planned path.  Simultaneously, the “JAUS Receiver” module waits for commands 

targeted for Armadillo.  When a command is received, the module interprets this command, and 

signals either the warning indicator to activate (which produces a horn sound) or the motor 

controller to start or stop autonomous mode.   

 

 
Figure 7 – High Level Software Architecture Diagram 
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4.3 Autonomous Challenge 
 
Armadillo will navigate through the Autonomous Challenge with only the use of two digital 

cameras for its vision.  Thus, all navigational logic is based on this limited knowledge, and the 

decision making is done exclusively through software by analyzing the raw visual information 

received from the cameras.  Once a decision has been made, the direction and speed commands 

are sent to the motor controller, which carries out the decision. 

4.3.1  Image Processing 
 
To begin the image processing, each 

camera captures a 160x120 colored image.  

These colored images are then combined to 

create a single wide-view image.  Once this 

single image is created, it is run through a 

color recognition module, which recreates 

the image using only a few basic colors that 

are in its palette.  For instance, there are key 

colors that specify objects to avoid and lines 

to stay within.  All other colors are ignored, 

and thus, they are all defaulted to the same 

color.  After this module completes, the 

image is then passed off to the lane 

following module.  Figure 8 provides an 

illustration of the image fusion process. 

 

4.3.2 Lane Following 
 
Armadillo uses very simple logic for its lane following decisions.  Its primary goal is to navigate 

towards the largest available opening at all times.  This opening, when looking at a 2D image, is 

the largest opening on the x-axis.  When this opening is identified, the algorithm then calculates 

the center of the opening and the degrees in which the robot needs to turn in order to head in that 

direction.  There is also a range, on the y-axis, in which this evaluation takes place.  This range 

was implemented and then adjusted to make sure that the largest available opening was not 

determined from a section of the lane that was too far away.  This was very important because if 

the range was not limited, this algorithm might make decisions too far in advance.  For example, it 

could decide to make Armadillo turn before it even reached the beginning of a curve in the lane, 

and this would be very undesirable.     

160 x 120  
Colored Raw Data 

Image

160 x 120  
Colored Raw Data 

Image

160 x 120  
Colored Wide-

View Raw Image 

Color Recognition 
Module 

Figure 8 - Image Fusion
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Image of Lane                            Lane Recognition 

              
 

 

              
 

Figure 9 – Lane Following Logic 
 
Figure 9 shows an example of two possible lane images, and the corresponding lane recognition 

image.  Each lane image shows the view from the camera after the image has been processed, 

and each lane recognition image shows how the decision making logic works.  The grey box in 

the lane recognition images demonstrates the limited area of the image that the decision making 

logic evaluates.  As shown, the green line, which represents the angle at which Armadillo should 

move in order to follow the line, always points to the center of the largest available opening. 

 

4.3.3 Obstacle Avoidance 
 
Obstacle avoidance is also handled the lane following module.  This is accomplished by having 

the objects internally seen as part of the lane.  Thus, the objects are combined with the lane to 

make a larger, less elegant version of the lanes.  After the object and lane data is combined, the 

lane following module determines the largest opening and plans the appropriate route.  In 

essence, the lane following and object avoidance are handled simultaneously, and use the same 

method.  Figure 10 illustrates the logic behind this computation.   
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Image of Lane/Object                   Lane/Object Recognition 

              
 

Figure 10 – Obstacle Avoidance Logic 
 

As shown, the only difference between Figure 9 and Figure 10 is the addition of the object in the 

camera’s field of view.  Since the object is seen as part of the lane, the lane following logic can 

still be used to stay in the middle of the largest available opening. 

4.4 Navigation Challenge 

Due to cost constraints, Armadillo was unable to acquire the GPS device needed to participate in 

this section of the IGVC competition.   Thus, the team’s plan is to obtain the funding for this 

device for the 2008 competition, so that it can participate in this event.  This will allow the team an 

opportunity to build upon the complex software already developed in the Autonomous and JAUS 

challenges for this year’s competition.   

4.5 JAUS Challenge 
 
Armadillo is designed to handle all of the JAUS commands that are specified for this challenge.  

The JAUS software was seamlessly integrated into the rest of the Armadillo project, although it 

did provide the team with some interesting new challenges. 

4.5.1 JAUS Integration  
 
The JAUS software is designed to interpret very specific JAUS messages that are sent via a 

Radio Frequency (RF) data link that adheres to the 802.11g specification.  The JAUS messages 

that Armadillo can interpret are as follows: 

  

• Start the vehicle moving forward in the autonomous mode: resume message <Cmd Code 

= 0004h> 

• Stop the vehicle from moving forward in the autonomous mode: standby message <Cmd 

Code = 0003h> 

• Activate the warning device such as a horn or a light: discrete devices message <Cmd 

Code = 0406h> 

• Start the waypoint information: query global waypoint message <Cmd Code = 240Ch> 
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Once the JAUS protocol was understood, and once a C# interface was developed for the 

protocol, another interface had to be developed for the relay output device that controlled the 

horn warning device.  These two software modules were then linked together so that all of the 

JAUS commands could be properly executed. 

4.5.2 Challenges Encountered 
 
The biggest challenge faced during the JAUS integration was correctly reading and interpreting 

each field of the header in the JAUS messages.  Once this was accomplished, the design of the 

software allowed the JAUS handling code to be easily integrated with the rest of the system.  The 

only other challenge involved figuring out the correct hexadecimal commands to send to the relay 

output device so that the warning horn would sound.  This task turned out to be very simple due 

to C#’s powerful USB port connection libraries.  

5. Performance Analysis and Estimates 
 
Armadillo’s performance was measured based on several key areas: speed, ramp climbing 

ability, reaction time, battery life, and obstacle detection.  These areas were assessed through 

both theoretical estimates and practical test case scenarios. 

5.1 Vehicle Speed 
 
The two NPC-2212 permanent magnet motors have a maximum, no-load speed of 285 rotations 

per minute (RPM).  Thus, with 10.5 inch wheels, this means that Armadillo’s theoretical maximum 

speed is 8.91 miles per hour (MPH).  In testing, the actual maximum speed was found to be 

approximately 8.64 MPH.  However, in accordance with the IGVC regulations, this speed is 

limited by the motor controller software to a maximum of 156 RPM, which is just under 5 MPH.   

5.2 Ramp Climbing Ability 
 
The driving power of the motors theoretically allows for Armadillo to easily clear the 15% grade 

requirement of the IGVC competition.  During testing, it was found that Armadillo was able to 

climb inclines of approximately 23% grade, which was more than sufficient for the competition 

rules.  However, due to Armadillo’s unique two-component design, it almost did not clear the apex 

of the test ramps because of the limited flexibility of the central hinge.  This could potentially be a 

problem if the ramp in the competition has a large gap in its apex. 
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 5.3 Reaction Time 
 
 The reaction time that was calculated for 

Armadillo is based on the computational time 

for a single cycle of visual interpretation and 

motor control execution.  Each component of 

this calculation is shown in Table 2.  As this 

table indicates, the total maximum cycle time 

was found to be approximately 170 ms, 

which was sufficient for the successful 

execution of the image processing and lane 

following algorithms. 

5.3 Battery Life  
 
Armadillo is equipped with an on-board battery charger, which is used to charge the battery 

whenever it is not in motion.  Due to Team Armadillo’s choice of low power consumption 

electronics, it was first estimated that Armadillo could operate for approximately 3 hours between 

each charging cycle.  Through testing, it was found that Armadillo’s average battery life lasted 

around 2 hours and 50 minutes, which was sufficiently close to the desired runtime.   

5.4 Obstacle Detection 
 
Armadillo attempts to handle all complex situations early before they become a serious issue. 

Thus, efficient path planning algorithms are Armadillo’s most important tool.  

5.4.1 Obstacle Detection Distance 
 

Given the angle and height parameters of Armadillo’s cameras, its calculated distance for object 

detection is about 5 ½ ft.  However, the decision making logic limits that distance to around 3 ½ ft, 

so that objects are not anticipated too early.  Thus, objects are detected when they are closer, but 

this allows the cameras to gather more information about the object since the cameras can see 

more of the object.  This design decision was made because when the object detection distance 

was not limited, it was found that the software often made bad path decision choices since the 

object was only just starting to come into the range of the camera.   

 

 

Process Time (ms)

Image Fusion 40 

Color Recognition 60 

Lane / Obstacle Recognition 50 

Motor Control Command/Execution 20 

Total 170 

Table 2 - Reaction Time Summary 
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5.4.2 Traps, Potholes, and Dashed Lines 
 

Traps are the most serious threat to Armadillo because the vehicle can not move backwards, and 

it has a relatively large turning radius.  Therefore, the camera algorithms attempt to evaluate the 

incoming images as far ahead as possible so that threatening situations can be avoided. 

 

Potholes (both real and simulated) are evaluated as objects, so normal object avoidance 

procedures are used to avoid them.  Switchbacks are easily handled by having a larger range of 

view from the dual cameras, so theoretically there are not any situations were a turn is not 

executed because the line “disappears.”  

 

Dashed lines, or lines that somehow disappear, are reconstructed based on previous “short-term 

memory” used by the vehicle’s software.  This memory stores a limited amount of previous 

decisions that were made by Armadillo, and in the event that the line disappears, this data helps it 

figure out where the line should approximately be located. 

6. Cost Analysis 
 
Table 3 summarizes the total material cost for Armadillo.  As this table indicates, the relative 

simplicity of the hardware kept development costs relatively low.  The most expensive item was 

the laptop, and this was provided by a team member. 

 
Component Total Cost Team Cost 
(1) Dell Inspiron E1505 Laptop $1,500  $0 
(2) Panasonic PV-GS320 3 CCD MiniDV digital camcorder $750  $750 
0.45X wide-angle lens and filters $120 $120 
Electrical hardware parts $300  $300 
(1) Roboteq AX3500 Dual Channel Motor Controller $395  $395 
(2) MPC-2212 Motors, 12V DC power, 285 RPM $162 $162 
(1) Power-Sonic 12V/40AH sealed lead acid battery $108  $108 
(1) ProMite on-board charger, 12V $88 $88 
(1) Omron emergency stop switch $40 $40 
Chassis materials and fiber glass materials $400  $400 
Miscellaneous hardware (nuts, bolts, etc…) $150  $150 
(2) 10" wheels and 10.5" tires $130  $130 
Total $4,143  $2,643 

 
Table 3 - Cost Breakdown of Armadillo 
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7. Conclusion 
 
Lawrence Technological University’s Armadillo Autonomous Vehicle Team has brought together 

a diverse combination of undergraduate and graduate students, both of engineering and 

computer science backgrounds, to continue its tradition of excellence in producing high-quality 

autonomous vehicles.  Armadillo’s innovative design and state-of-the-art software technology 

should set it apart from other competitors in the 15th annual Intelligent Ground Vehicle 

Competition.     


